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Abstract

Eukaryotic cells have developed a diverse repertoire of Rab GTPases to regulate vesicle trafficking pathways. Together with
their effector proteins, Rabs mediate various aspects of vesicle formation, tethering, docking and fusion, but details of the
biological roles elicited by effectors are largely unknown. Human Rab6 is involved in the trafficking of vesicles at the level of
Golgi via interactions with numerous effector proteins. We have previously determined the crystal structure of Rab6 in
complex with DENND5, alternatively called Rab6IP1, which comprises two RUN domains (RUN1 and RUN2) separated by a
PLAT domain. The structure of Rab6/RUN1-PLAT (Rab6/R1P) revealed the molecular basis for Golgi recruitment of DENND5
via the RUN1 domain, but the functional role of the RUN2 domain has not been well characterized. Here we show that a
soluble DENND5 construct encompassing the RUN2 domain binds to the N-terminal region of sorting nexin 1 by surface
plasmon resonance analyses.
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Introduction

Eukaryotic cells rely on an intricate trafficking system to shuttle

proteins, lipids, and other vesicular cargo between sub-cellular

compartments. Trafficking involves protein/protein and protein/

lipid interactions leading to vesicle formation, tethering, docking

and fusion. These steps are regulated to provide specificity and

preserve cellular structure and organelle identity, such as the Golgi

apparatus, endosomes and lysosomes [1–3]. The specificity

between donor and acceptor membranes is widely believed to be

mediated by the Rab family of small GTPases, which comprise the

largest member of the Ras superfamily [4]. Active Rabs are non-

covalently associated with GTP and localize to distinct sub-cellular

compartments via prenylated C-terminal tails [5,6]. Recruitment

of effector proteins, which recognize the active conformation, leads

to the regulation of various steps in vesicle delivery. Inactivation of

Rabs follows hydrolysis of GTP, aided by GTPase activating

proteins (GAPs), and Rabs are subsequently extracted from the

membrane into the cytosolic fraction by GDP dissociation

inhibitor [7].

Rab6 regulates anterograde and retrograde traffic at the level of

Golgi via interactions with numerous and unrelated effector

proteins [8,9]. Rab6A and Rab6A’ are ubiquitously expressed in

cells, whereas expression of a third isoform – Rab6B – is restricted

to brain tissue [10]. A fourth isoform, Rab6C, has recently been

shown to encode a brain-specific retrogene with an unusual GTP-

binding motif that localizes to the centrosome and regulates cell

cycle progression [11]. One of the most widely studied effectors of

Rab6 is DENND5/Rab6IP1 protein (Differentially Expressed in

Neoplastic versus Normal Cell; alternatively called Rab6-Inter-

acting Protein 1) [12]. DENND5 was initially identified by yeast

two-hybrid assays as an effector of Rab6 [13]. The N-terminal half

of the 1287-residue DENND5A isoform is composed of a series of

the eponymous DENN domains that appear to function as a

GDP/GTP exchange factor (GEF) for Rab39 [14]. The C-

terminal half of the effector is composed of two RUN domains

(RUN1 and RUN2) separated by a PLAT domain. In previous

work, we determined the crystal structure of Rab6A in complex

with the tandem RUN1-PLAT domains of DENND5A [15]. The

structure revealed the molecular basis for Rab6-mediated

recruitment of DENND5 to Golgi, as well as the orientation of

the lipophilic loops of the PLAT domain, relative to the Rab-

binding interface.

Despite numerous cellular and structural studies of Rab6

effectors, the role of the RUN2 domain of DENND5 remains

unknown. RUN domains, named after RPIP8 (Rap2 interacting

protein 8), UNC-14 and NESCA (new molecule containing SH3

at the carboxyl-terminus) [16], are widely occurring modules that

appear to have diverse roles in cell signaling [17]. Rap2-

Interacting Protein X (RPIPX) also contains a RUN domain

and belongs to a family of effectors that bind to the small GTPase

Rap2 [18,19]. The uncomplexed crystal structure of the RUN

domain of RPIPX has been determined [20]. However, RUN

domains appear to have roles beyond small GTPase signaling [21].

Recently, an interaction between DENND5 and sorting nexin 1

(SNX1) has been reported by a genome-wide yeast two-hybrid

screen and GST pulldowns [22]. SNX1 forms a transient complex

with the retromer in mammalian cells to drive vesicle transport

between early endosomes and the trans-Golgi network [23–25].

Human SNX1 consists of an N-terminal sorting nexin (SNX)

region, a central PX (Phox-homology) domain, and a C-terminally

situated BAR domain (Bin, amphiphysin and Rvs) that binds to
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and/or induces membrane curvature via interactions with the lipid

bilayer [26–28]. Here we report that the RUN2 domain of

DENND5 binds to the N-terminal SNX region of SNX1 by

surface plasmon resonance analyses.

Methods

DENND5 Expression and Purification
Cloning, expression and purification of Rab6 and an engineered

RUN1-PLAT (RPdel) construct has been published previously

[29]. In brief, a truncated version of human Rab6a encompassing

residues 8 to 195 (Q72L mutant), with a thrombin cleavable N-

terminal His-tag was used in this study. An engineered variant of

mouse DENND5A containing a loop deletion between residues

813–835 (inclusive) of RUN1, henceforth referred to as RPdel, was

also used [29]. RPdel denotes the RUN-PLAT tandem domains of

DENND5A. This protein was expressed as an N-terminal His-

tagged protein containing a tobacco etch virus (TEV) cleavable N-

terminal His-tag. Both proteins were expressed in E. coli

individually or co-expressed and purified to homogeneity.

Cloning, expression and purification of the RUN1-PLAT-

RUN2 (RPRdel; residues 716–1278) region of DENND5A, was

performed using similar strategies [29], with the exception of the

reverse primer (Table 1). Cloning of the fragment was derived

from a synthetic gene comprising the entire coding region of

DENND5 (Geneart AG), with or without the cDNA correspond-

ing to the loop 813–835 of RUN1. However, both the wild-type

RPR protein and RPRdel were insoluble when expressed alone in

E. coli. Co-expression with Rab6a increased the solubility of the

three-domain constructs, therefore the complex Rab6a/RPRdel

was purified as outlined in previous work and used for binding

studies.

SNX1 expression and purification
A near full-length version (residues 9–521) of the mouse SNX1

gene (Gene ID 56440) was generated by Geneart AG (Regens-

burg, Germany). Four truncated constructs spanning different

parts of the protein were sub-cloned from the parent Geneart

construct (Figure 1; Table 1). The PCR fragments were ligated

into the expression vector pNIC28-BSA4 which was linearized

with the endonuclease BsaI [GenBank Accession No. EF198106;

[30]], which encodes an N-terminal fusion peptide

(MHHHHHHSSGVDLGTENLYFQ*SM) that encompasses a

His-tag and an rTEV cleavage site (*).

The various constructs were transformed into E. coli BL21 (DE3)

cells and all subsequent cultures were grown in 2xYT medium

supplemented with 34 mg/L kanamycin. For large-scale cultures,

1 litre 2xYT was inoculated with 10 ml of an overnight culture.

The cells were harvested by centrifugation at 27006g for

10 minutes. The bacterial pellets were washed once with ice-cold

phosphate-buffered saline buffer and stored as frozen pellets at

253 K.

For purification, the pellets were resuspended in 300 mM NaCl,

5 mM MgCl2, 10 mM imidazole, 20 mM b-mercaptoethanol,

0.5 mM PMSF, and 10 mM Tris-HCl (pH 8.0). The cells were

disrupted by sonication and the lysates centrifuged at 200006g for

60 minutes to eliminate cellular debris. The cleared lysate was

decanted, passed through a 0.2 mm filter, and loaded onto a

gravity column containing 2 mL of Ni2+-agarose ChroMatrix

(Jena Biosciences). The slurry was washed with ten column

volumes of 300 mM NaCl, 5 mM MgCl2, 10 mM imidazole,

20 mM b-mercaptoethanol, 10 mM Tris-HCl (pH 8.0), followed

by five column volumes of the same buffer but with increased

imidazole (40 mM). Finally, the proteins were eluted with a step

gradient to 200 mM imidazole, along with the various compo-

nents of the wash buffer. The hexahistidine tag was cleaved by

overnight dialysis in 150 mM NaCl, 5 mM MgCl2, 20 mM b-

mercaptoethanol, 10 mM Tris-HCl (pH 8.0) using 10 mg of rTEV

per milligram of eluted protein. Following dialysis, the proteins

were supplemented with NaCl and imidazole to final concentra-

tions of 300 mM and 10 mM, respectively. The rTEV protease,

the cleaved tag and remaining uncleaved SNX1 protein remained

bound to the resin during a second passage through a Ni2+-agarose

ChroMatrix column, while the cleaved SNX1 protein was

collected as the flow-through sample.

Affinity-purified proteins were then dialyzed at 277 K for three

hours against 40 mM NaCl, 5 mM DTT, 10 mM Tris-HCl

(pH 8.0). After dialyzing, the proteins were loaded onto a MonoQ

anion exchange column (GE Healthcare) and eluted with a NaCl

linear gradient from 40–500 mM. Fractions containing the SNX1

proteins were pooled, concentrated, and loaded onto a Superdex-

200 size-exclusion column (GE Healthcare) equilibrated with

100 mM NaCl, 5 mM DTT, 10 mM Tris-HCl (pH 8.0).

Table 1. Oligonucleotide primers used for cloning of DENND5 and SNX1 variants.

Protein Variant (residue range) Primers (59R39)

DENND5 RPdel (702–1057) N CAGGATCCATGGGCAGTACCATCCGTG

C CGGAATTCTCAGGACTGCTGTAGTGGCGGAGT

RPRdel (702–1287) N CAGGATCCATGGGCAGTACCATCCGTG

C TATCCACCTTTACTGTTAAATATCAATGCCTTTAACCAGGCTGGT

SNX1 SNX-PX (9–303) N TACTTCCAATCCATGAGCGCAAGCGAACGTCTGCCTCCG

C TATCCACCTTTACTGTTATTCATTCATTTTAATGGTCATTTGC

PX-BAR (141–521) N TACTTCCAATCCATGGATCAGTTTGATCTGACCGTTGG

C TATCCACCTTTACTGTTAGCTAATGGCTTTTGCTTCCGGCAG

PX (141–303) N TACTTCCAATCCATGGATCAGTTTGATCTGACCGTTGG

C TATCCACCTTTACTGTTATTCATTCATTTTAATGGTCATTTGC

BAR (300–521) N TACTTCCAATCCATGAATGAAAGCGATATTTGGTTTG

C TATCCACCTTTACTGTTAGCTAATGGCTTTTGCTTCCGGCAG

doi:10.1371/journal.pone.0035637.t001
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Cellular localization by confocal microscopy
The full-length human DENND5A gene (Gene ID 19347),

lacking the cDNA corresponding to residues 813-LSTSGILLD-

SERRKSDASAVMSP-835, was synthesized by Geneart AG

(Regensburg, Germany). The synthetic gene was sub-cloned into

the pEGFP-C3 vector at the SacI/EcoRI site. HeLa cells were

grown in DMEM containing 4.5 g/l glucose supplemented with

10% fetal calf serum, penicillin-streptomycin, and sodium

pyruvate in a 5% humidified CO2 incubator. Transfection was

achieved using the calcium phosphate precipitate method

described [31]. HeLa Cells were transfected for 48 hours and

processed for immunofluorescence analysis of the recombinant

protein, henceforth referred to as DENND5del, as previously

described [32]. Control experiments involved the full-length wild-

type protein DENND5A transfected into HeLa cells under

identical conditions. Green fluorescent protein (GFP) labeled

DENND5A (WT and deletion variants) were analyzed for co-

localization with full-length CherryFP-labeled Rab6A upon co-

transfection of the two constructs. Alexa Fluor–labeled secondary

antibodies were obtained from Molecular Probes (Eugene, OR),

and Cy3 labeled secondary antibody was obtained from Jackson

ImmunoResearch Laboratories (West Grove, PA). Anti-GM130

was from BD Biosciences (San Jose, CA) and was stained using

Cy3 labeled secondary antibody. Alternatively the natural

fluorescence of GFP, YFP and mCherry was used. The optical

microscope used was a Leica DMRA (Wetzlar, Germany)

equipped with a Micromax cooled CCD camera controlled by

the Metamorph software (Molecular Devices, Berkshire, United

Kingdom). Images were acquired using the Leica 636 numerical

aperture (NA) 1.32, with len immersed in oil, contrast mode ph3,

objective lens type HCX PL APO, and fluorescence filters A4, L5,

Y3, and Y5.

Surface Plasmon resonance
A Biacore X-100 instrument (GE healthcare) was used for

collection of surface plasmon resonance (SPR) data, and all

binding experiments were carried out at 293 K. The complexes

Rab6/RPRdel or Rab6/RPdel were coupled as ligands to a CM5

chip using standard amine coupling procedure via 1-(3-dimethy-

laminopropyl)-3-ethylcarbodiimide hydrochloride and N-hydroxy-

succinimide to a level of approximately 2,500 Resonance Units

(RU) on flow cell 2. Although a non-covalent complex was initially

coupled, it is very likely that one of the two proteins dissociated

following a wash of the derivatized chip. Since RPRdel (60 kDa)

and RPdel (40 kDa) are larger than Rab6 (20 kDa), it was

expected that significant amounts of the effector were actively

coupled to the CM5 chip, and also for this reason, a high density

of protein was coupled to the chip.

SPR data were subtracted from the non-derivatized surface

(flow cell 1) in all subsequent binding analyses. In order to

minimize buffer mis-match, the analytes (SNX1 fragments) were

dialysed against running buffer (100 mM NaCl, 1 mM DTT,

0.005% P20, 10 mM HEPES pH 8.0) before injection. The

experiments were performed in multi-cycle mode with regenera-

tion of the chip following each injection/dissociation step. The

regeneration condition was optimized and depending on the

experimental conditions and ligand coupled to the chip, a solution

of 10 mM glycine (pH 2.5) or 4 M NaCl was utilized for stripping

the analyte without significant loss of activity on the chip. Various

concentrations of analyte (SNX1 fragments) ranging from 0.2 to

40 mM were used in the binding experiments. One of the

Figure 1. The domain organization of DENND5 and SNX1. Constructs used in the mapping studies are shown below the domains. The
engineered loop deletion in DENND5 between a3 and a4, denoted by D (residues 813–835), rendered the protein soluble and facilitated its
purification.
doi:10.1371/journal.pone.0035637.g001
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concentrations, typically 1 mM, was duplicated as an internal

control. A buffer duplication (0 mM concentration of protein) was

also performed during the series of injections. Prior to data

processing, each set of injections were subtracted from the

background (0 mM injection). The equilibrium dissociation

constant (KD) was derived by fitting the data to a 1:1 binding

model using Biacore Evaluation software version 2.0.

Results and Discussion

Protein expression and purification
The RUN2 domain of DENND5 was successfully expressed

and purified to homogeneity (data not shown). However, upon

coupling of the isolated DENND5 domain to CM5 chips, no

significant interactions could be detected with various constructs of

SNX1. Alternatively, various constructs of SNX1 could not be

coupled actively to CM5 sensor chips, possibly due to the

elongated structure and chemistry of the PX and BAR domains.

These technical obstacles were overcome by soluble expression of

the complete C-terminal half of DENND5 (residues 702–1287),

which comprises the RUN1-PLAT-RUN2 domains (RPRdel;

Figure 2). The RPRdel construct could not be expressed solubly

alone, and therefore, it was necessary to co-express with Rab6 to

obtain a soluble non-covalent complex (Rab6/RPRdel) in

milligram amounts for binding studies. During the derivatization

of CM5 chips, it is probable that only one of the two proteins,

Rab6 or RPRdel, was coupled to chips, while the non-covalently

associated partner would be expected to dissociate. Since RPRdel

(60 kDa) and RPdel (40 kDa) are much larger than Rab6, we feel

that derivatization of the CM5 chip would be dominated by the

effector. In addition, a high density of protein was coupled to the

surface (2,500 RU), so the chip is expected to have significantly

active amounts of the effector.

The loop deletion in RUN1 (RPRdel) enhanced its solubility

upon co-expression with Rab6 in E.coli, and did not affect the

recruitment of the full-length protein to Golgi. Overlays of the

immunofluorescence of GFP-labelled wild-type DENND5del and

Golgi-resident GM130 (Figure 3A) reveal the Golgi localization

of the effector containing the engineered loop deletion. The row of

panels in Figure 3B is the co-expression of the full-length variant,

DENND5del, with Rab6a (red) showing that the proteins co-

localize. In order to highlight the co-localization, the non-

overlayed cell expression is duplicated in adjacent gray scale

images. Although there is an excess of green background in these

panels, due to high levels of effector expression, there is

nevertheless co-localization. The last row of panels (Figure 3C)

is a positive control showing the co-localization of wild-type

DENND5 and Rab6-labelled Golgi membranes.

As a control for the SPR experiments, the complex Rab6/

RPdel was also purified to homogeneity (Figure 2B) and coupled

to a CM5 chip. This construct lacked the C-terminal RUN2

domain and therefore provided an ideal negative control for

binding to SNX1 fragments. Despite the non-covalent nature of

the Rab6/effector complexes prior to covalent coupling onto

sensor chips, there was no significant loss in sensor activity during

buffer washes and SNX1 binding studies. We successfully purified

numerous variants of SNX1 in milligram amounts and performed

surface plasmon resonance analyses of their interactions with

DENND5. The binding analyses were performed in parallel, on

two separate CM5 chips coupled with DENND5del in the

presence (RPRdel) or absence (RPdel) of the C-terminal RUN2

domain (Figure 4). These SNX1 variants were used to identify

the segments that recognize DENND5. Most protein fragments

were homogenous, although the PX domain of SNX1 was always

purified as a doublet band, despite the presence of protease

inhibitors during extraction and a rigorous purification regime

(Figure 4B). Both bands migrated faster in SDS-PAGE gels upon

cleavage by rTEV (not shown). This may indicate partial

proteolysis at the C-terminal end of the protein, since the PX

domain was expressed with a hexahistidine tag and rTEV site at

the N-terminus.

Mapping of the RUN2-interacting region of SNX1
Purified SNX1 fragments were analyzed for binding to RPRdel

using surface plasmon resonance experiments. Identical flow rates

and association/dissociation parameters were utilized for all

experiments. Ideal binding and dissociation curves were obtained

upon injection of SNX-PX onto CM5 chips coupled with Rab6/

RPRdel (Figure 5). The sensorgrams at various concentrations

revealed conventional binding kinetics and were fit to a 1:1 model

(Figure 6), with an equilibrium dissociation constant (KD) of

1.7 mM. In contrast, the PX domain by itself revealed linear, slow,

and non-saturable binding to the identical derivatized chip

(Figure 7A). The sensorgram is indicative of non-specific

aggregation and may indicate instability or unfolding of the PX

domain and increased deposition onto the protein-coupled flow

cell 2, relative to flow cell 1 (non-derivatized).

Figure 2. Purification of Rab6/DENND5 complexes by gel filtration chromatography. (A) Elution of Rab6/RPRdel. (B) elution of Rab6/RPdel.
The bars denote the samples analyzed by SDS-PAGE (inset).
doi:10.1371/journal.pone.0035637.g002
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The data suggested that the SNX domain binds to Rab6/RPRdel

coupled to the sensor surface of CM5 chips. As a control, purified

Rab6/RPdel, lacking the RUN2 domain, was attached to a CM5

chip at a similar density. The binding properties of various SNX1

constructs were analyzed using identical injection parameters. In

contrast to the Rab6/RPRdel complex, SNX-PX binding to Rab6/

RPdel was 10-fold less (response units, RU) at twice the concentration

(30 mM, Figure 7B) relative to binding of Rab6/RPRdel (15 mM,

Figure 7A). In addition, the sensorgram revealed that the analyte

SNX-PX was dissociating from the chip (Figure 7B) prior to

completion of the 240 second injection pulse, suggesting an unstable

complex. Therefore, the data are consistent with the stable binding of

the N-terminal SNX region to the RUN2 domain of DENND5.

In summary, the only binary interaction that could be fit

successfully to a conventional 1:1 binding model was the complex

between the tandem SNX-PX region and the coupled protein

complex, Rab6/RPRdel. The affinity is relatively weak

(KD = 1.7 mM), but the low micromolar binding affinity is similar

to the strength of Rab6 interactions with numerous effectors [9]. It

cannot be conclusively ruled out, however, that the PX and BAR

domains also contribute to the binding of RUN2. Recently, a

relatively low affinity (1.6 mM) interaction between FIP5 (a Rab11

effector) and SNX18 has been identified, which contributes to

endosomal trafficking in epithelial cells [33]. Interestingly, similar

to our findings, the authors identified a low complexity (LC) region

of SNX18, which lies ahead of the PX and BAR domains, as the

binding site for FIP5. Previously, the weak affinities of Rab6 with a

variety of unrelated effector proteins, along with rapid on/off

kinetics, has been linked to the trafficking role of Rab6 in

mediating transient tethering interactions [9]. The closely related

SNX2 protein, which shares only 25% sequence identities with

SNX1 in the SNX region (72% with the PX-BAR domains), is

unable to bind DENND5 [22]. These observations are consistent

with the notion that the SNX region encodes specificity.

DENND5 also does not interact with SNX4, a sorting nexin

protein with a similar domain organization, as evidenced by GST

pulldowns [22]. Indeed, the SNX and PX regions of SNX1

mediate binding to Vps35 and Vps29, whereas SNX2 does not

bind to the core retromer subunits [34]. Our mapping studies

suggest a functional division of labour in which the N-terminus of

SNX1 mediates vesicle specificity through interactions with Rab6/

DENND5, and lipid attachment via the C-terminal PX-BAR

domains. There are few studies describing the affinities or kinetics

of protein/protein interactions that enable retromer-associated

sorting pathways. The best example is the association of

paralogues Vps26A and Vps26B with the heterodimer of

Vps35/Vps29, which revealed an affinity (Kd) of 8 nM and

4 nM, respectively, by isothermal titration calorimetry [35]. Thus,

Figure 3. Immune co-localization studies of Rab6 and DENND5. (A) transfection and overlay with GFP-DENND5del (green) and GM130 (Cy3;
red). The black and white panels are the same image without colour, revealing the expression of each protein in the transfected cells. (B) Transfection
with GFP-DENND5del and wild-type Rab6A (mCherry; red), with the overlap apparent from the yellow colour. (C) Transfection with YFP-DENND5
(wild-type) and mCherry-Rab6A (wild-type), revealing co-localization in Golgi compartments.
doi:10.1371/journal.pone.0035637.g003

RUN Domain and SNX1
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the interactions that are involved in formation of the core retromer

are over two orders of magnitude stronger than the interaction

between SNX1 and DENND5.

Regulation of endosome/Golgi trafficking
In addition to Rab6 binding, DENND5 has previously been

linked to the regulation of endosome/Golgi trafficking via its

Figure 4. Purification of various SNX1 fragments by gel filtration chromatography. Lanes from SDS-PAGE gels (inset) correspond to the
bars across the peaks.
doi:10.1371/journal.pone.0035637.g004

Figure 5. Surface plasmon resonance analyses of SNX1 binding to DENND5. The SNX-PX protein fragment was injected onto a Rab6/RPRdel
coupled CM5 chip at various concentrations ranging from 0 to 15 mM.
doi:10.1371/journal.pone.0035637.g005

RUN Domain and SNX1
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interactions with endosome-resident Rab11 [32]. The structure of

Rab6 in complex with the RUN1-PLAT domains of DENND5

revealed that the recruitment of the effector is mediated by an all

a-helical RUN1 domain [15]. The PLAT domain, which adopts a

beta-sandwich fold, was rigidly associated with RUN1 via an

intervening a-helix. Three loops connecting the beta-strands of the

PLAT domain, enriched in positively-charged and aromatic

residues, were oriented on the opposite end from the Rab6/

RUN1 interface. PLAT domains have previously been observed to

interact weakly with phospholipids [36–38]. Our data here suggest

that the RUN2 domain associates with the N-terminal segment of

SNX1 and potentially enables lipid binding via the PX and BAR

domains. Several circumstantial pieces of evidence suggest that

RUN2 is loosely associated with the rigid RUN1-PLAT tandem

module. The C-terminus of the PLAT domain, preceding the

RUN2 domain of DENND5, is flexible and the last 13 residues

(1049–1061) are not seen in electron density maps of the Rab6/

RUN1-PLAT crystal structure [15]. Also, incubation of purified

RUN2 with the complex Rab6/RUN1-PLAT, followed by gel

filtration chromatography, results in the elution of RUN2 and

Rab6/RUN1-PLAT as separate peaks (data not shown).

A model of the possible orientation of molecules is shown

(Figure 8), using the PDB co-ordinates Rab6/DENND5 (3cwz)

and the structure of the PX-BAR domains of the related molecule,

SNX9 (3rai). The C-terminal tail (last 36 residues) of GTP-bound

Rab6 is tethered to phospholipids via a prenylation site, and the

RUN1-PLAT tandem region potentially interacts with the same or

opposing bilayer [15]. The SNX region of SNX1 is predicted to be

largely flexible and non-globular. For this reason, expression and

purification of this segment in milligram amounts has proven

Figure 6. Fitting of SPR data using Biacore evaluation software. The end-points of the various injections were plotted against protein
concentration and the hyperbolic curve was fit to a 1:1 binding model. The vertical line represents the estimate of KD at half-maximal binding of the
ligand and analyte.
doi:10.1371/journal.pone.0035637.g006

Figure 7. Control SPR experiments to map the binding segment of SNX1. (A) Injection of equivalent 15 mM amounts of SNX-PX and PX
domains are superimposed. A CM5 chip coupled with RPRdel was used in these experiments. (B) Injection of 30 mM SNX-PX protein onto a CM5 chip
coupled with Rab6/RPdel. Note that the magnitude of the binding, as evidenced by the y-axis (RU), is 10-fold smaller. These representative control
experiments show that SNX-PX binds stably to DENND5-coupled chips that include the RUN2 domain. Data from the control experiments could not
be processed and fit to conventional kinetics or equilibrium binding models using the evaluation software.
doi:10.1371/journal.pone.0035637.g007

RUN Domain and SNX1
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elusive (data not shown). However, the PX-BAR domains are a

rigid module that homo- and hetero-dimerize via the BAR

domains [39,40]. The banana-shaped BAR domain forms a

positively-charged concave surface that promotes membrane

curvature, while the PX domain binds to phosphatidyl-inositides

such as phosphatidylinositol 3-monophosphate (PtdIns3P) [39,41].

Deletion of the PX domain or truncation of the BAR domain

disrupted vesicle trafficking from the endosome to the trans-Golgi

network (TGN), indicating that both domains are required for

proper cellular/membrane localization [28]. These structural

properties of the PX-BAR tandem domains place steric and

topological constraints on the multi-protein complex. The

presence of unstructured links such as the C-terminal tail of

Rab6, the segment linking PLAT and RUN2 domains, and the

non-globular nature of the SNX region may provide the necessary

flexibility to satisfy topological and steric constraints in complex

formation.

The model presented in Figure 8 is a simplification, since there

is experimental evidence supporting dimerization of full-length

DENND5 [32]. Thus, the dimerization capacities of both SNX1

and DENND5 may enable the formation of an oligomeric

platform for lipid binding. In addition, it is not evident why

RUN2 alone (coupled to CM5 chips) is unable to bind SNX1,

although it may relate to better steric accessibility of RUN2 as part

of the larger RUN1-PLAT-RUN2 fragment of DENND5.

Furthermore, it is important to clarify that there is no evidence,

either presented here or published previously, that directly

supports the presence of a ternary complex of Rab6/DENND5/

SNX1 in vivo. It is possible that Rab6/DENND5 and DENND5/

SNX1 are binary and mutually exclusive complexes. However,

there is circumstantial evidence for ternary complexes, given that

TGN localization of DENND5 is dependent on Rab6. A fraction

of endosomes carrying SNX1 were co-localized with TGN-

associated DENND5, and suppression of DENND5 by siRNA

resulted in loss of TGN-proximal SNX1-decorated endosomes

[22]. Further structural and cellular studies are necessary for

understanding the mechanism by which DENND5 regulates Golgi

traffic via interactions with Rab6 and SNX1.
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