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Abstract

The complexity of neurons and neuronal circuits in brain tissue requires the genetic manipulation, labeling, and tracking of
single cells. However, current methods for manipulating cells in brain tissue are limited to either bulk techniques, lacking
single-cell accuracy, or manual methods that provide single-cell accuracy but at significantly lower throughputs and
repeatability. Here, we demonstrate high-throughput, efficient, reliable, and combinatorial delivery of multiple genetic
vectors and reagents into targeted cells within the same tissue sample with single-cell accuracy. Our system automatically
loads nanoliter-scale volumes of reagents into a micropipette from multiwell plates, targets and transfects single cells in
brain tissues using a robust electroporation technique, and finally preps the micropipette by automated cleaning for
repeating the transfection cycle. We demonstrate multi-colored labeling of adjacent cells, both in organotypic and acute
slices, and transfection of plasmids encoding different protein isoforms into neurons within the same brain tissue for
analysis of their effects on linear dendritic spine density. Our platform could also be used to rapidly deliver, both ex vivo and
in vivo, a variety of genetic vectors, including optogenetic and cell-type specific agents, as well as fast-acting reagents such
as labeling dyes, calcium sensors, and voltage sensors to manipulate and track neuronal circuit activity at single-cell
resolution.
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Introduction

The brain is highly heterogeneous [1–3], and therefore requires

single-cell resolution techniques for its analysis. Genetic manipu-

lation, labeling, and tracking of single cells in brain tissues enable

the analysis of neuronal circuits [4–6], cellular dynamics, and

genetics in ways not possible using viral or other bulk methods [7].

Brain regions accessible via cranial windows in vivo and brain slice

preparations ex vivo offer physically and optically accessible

platforms in which to study single cells [4,8–11], while at the

same time maintaining the integrity of the tissue [12,13].

Organotypic brain slices can be cultured for extended periods of

time and serve as reliable platforms for studying the development

and progression of disease and stress models [14–16], analyzing

circuits in neural tissue [13], tracking axonal and dendritic

morphologies [17–19], and developing pre-clinical models for

various human diseases including Alzheimer’s, stroke, and epilepsy

[20–22]. Unfortunately, while optical microscopy techniques have

been able to take advantage of the accessibility of brain slice

cultures to achieve sub-cellular resolution imaging [23–25],

technologies for genetically modifying and labeling cells with

single-cell accuracy have been limited in both their speed and

scalability. The researcher is left to choose between two groups of

transfection techniques: one which enables cells to be transfected

in bulk with little to no capability of targeting single cells, such as

through viral labeling [26,27], transgenics [28,29], or biolistic

transfection [30], or another group of techniques, that transfects

cells with single-cell accuracy but at low-throughput and

repeatability, such as manual microinjection [31], single-cell

electroporation (SCE) [32–34,19], or modified patch-clamping

[5]. A high-throughput, scalable, easy-to-use, and reliable single-

cell genetic manipulation technique could open new frontiers in

neuroscience.

We developed a technology for high-throughput single-cell

manipulation and transfection using computer-controlled servos,

fluidics, and imaging which can rapidly move, clean, load, and

target a front-loaded micropipette to single cells with micron-level

accuracy and repeatability. The system requires no modification to

currently established slice culture protocols [35,36,23] and is

therefore compatible with and can greatly enhance previously

established techniques for long-term sub-cellular imaging, electro-

physiological recordings, and other experimental methods.

Additionally, our system is not only cost effective but also

compatible with standard liquid handling formats such as multi-

well plates containing reagents to be transfected. After detailing

the system design below, we demonstrate its operation through

multi-colored labeling of neurons and also through combinatorial

plasmid transfection of single cells in organotypic brain slices.

Results

System Design and Operation Overview
The key features of our system are shown in Figure 1. (a) A

micropipette acts as a short-term diffusion-restricted sample
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reservoir after drawing in small volumes of reagents from a

multiwell plate. (b) The micropipette is automatically transferred

to the tissue slice bath and brought into a fixed point in the user’s

field of view. (c,d) By using a stage controller in conjunction with

fluorescence imaging of dye outflow from the micropipette and

phase-contrast imaging of cell soma, the user can rapidly bring

cells into contact with the micropipette and electroporate them

using an electrical pulse sequence we designed for reliable high-

efficiency transfection. (e) When transfection of a reagent is

completed, the system automatically removes, cleans, and washes

the micropipette before beginning the transfection cycle of a new

reagent. In this way, the same micropipette can be used to

transfect many cells with multiple reagents within the same brain

slice.

Single-Cell Electroporation using Front-Loaded
Micropipettes

Single-cell electroporation (SCE) has emerged as a versatile

means for transfecting cells due to its potential for high efficiency

[37,33], its ability to transfect a variety of agents including dyes

[38], plasmids [8], and RNAi reagents [39], and its tissue and in

vivo compatibility [9,8,40]. The fundamental operation of the

technique relies upon loading a micropipette with a transfection

reagent, which may contain a mixture of multiple agents such as

plasmids, in an ionic solution, and then positioning the tip opening

on or near the cell of interest before applying an electrical signal to

electroporate the membrane of the targeted cell. The micropipette

therefore serves as both a highly-focused electrode and a sample

delivery device. In all publications to date, however, micropipettes

have been used in a disposable, short-term manner in which they

are pre-loaded through manual backfilling with the reagent

mixture immediately before usage. Each micropipette is used to

transfect only one loaded sample or mixture, and transfection of a

different sample or mixture necessitates exchanging the micropi-

pette. This is time-consuming and therefore has limited high-

throughput applications of SCE. In addition, use of multiple

micropipettes, even when pulled under similar conditions,

introduces significant variability in transfections. No clear strategy

has been presented to date as a means of expanding conventional

SCE so that it could be scaled for high-throughput purposes.

To address this, we investigated whether it is possible to front-

load small volumes of reagents (on the order of nL) into a

micropipette containing a standard electrically conductive solution

while maintaining accurate knowledge of reagent concentration at

the tip. While for microinjection, a front-loaded reagent can be

isolated at the tip via an air-gap in the micropipette, for

electroporation, a continuous conductive salt solution must exist

to maintain electrical continuity from the electrode (generally Ag/

AgCl) to the volume of the reagent at the tip. Consequently, any

reagent front-loaded into a micropipette will diffuse and dilute into

the greater volume of the salt solution over time (Fig. 2a). We

found however that the micron-scale tip dimensions of micropi-

pettes in combination with the large molecular weights (and

correspondingly low diffusion coefficients) of plasmids, can provide

a means of maintaining a relatively non-diffuse and stable volume

of reagent at the tip over time scales of several minutes where the

high speed of our semi-automated system allows many cycles of

single-cell transfections. Micropipettes loaded with 5 mL of

Ringers solution were front-loaded with approximately 2 nL

(230 psi applied for 15 seconds) of either Alexa Fluor 594

hydrazide, Alexa Fluor 488 hydrazide, or SYBR-Green-labeled

4.7 kbp plasmid (pEGFP-N1) and were then immediately inserted

into a saline bath where we monitored the brightness of the

fluorescence in the tip over time to infer concentration changes.

Using empirically determined molecular parameters from the

literature (see Methods), we also carried out simulations of the

diffusion process for the different species and compared these to

our experimental data (Fig. 2b, Fig. S1). While low molecular

weight species (the Alexa Fluors) diffused away quickly, the

concentration of plasmid at the tip varied by only a few percent

over the ten minute duration of the experiments. Therefore, using

a high-speed platform, front-loaded micropipettes can maintain

Figure 1. High-Throughput Single-Cell Electroporation System. The sequence of operations and the system are shown on the left and on the
right, respectively. (a) The micropipette is front-loaded from a multiwell plate containing reagents, (b) before being rapidly transferred and positioned
at a fixed location in the field of view of the microscope objective. (c,d) The three-axis stage holding the slice bath/manipulation chamber moves the
sample and bring cells into contact with the stationary micropipette, allowing transfections to be carried out. (e) The system automatically transfers
the micropipette tip to a cleaning solution bath as well as a rinsing reservoir where the tip is washed and prepped to sample a different well of the
multiwell plate, allowing the cycle to continue. Pyramidal cells depicted in inset were imaged for Cerulean, EGFP, YFP, and tdTomato 24 hours post-
transfection.
doi:10.1371/journal.pone.0035603.g001
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stable concentrations of plasmids for sufficient amounts of time to

enable sequential electroporation of single cells.

We experienced inconsistent and inefficient transformation

efficiencies using standard SCE electrical pulse parameters

reported in the literature [33,9] and therefore screened a variety

SCE pulse parameters, including different pulse repetition

frequencies and pulse duty cycles using our platform. Examples

of transfection efficiencies with different pulse parameters are

shown in Table S1. We found that a short 100 millisecond burst of

210 V 1 kHz (10% duty cycle) provided the highest efficiency in

our system compared to more commonly used lower repetition

rate pulses with long total durations such as a 200 Hz (20% duty

cycle) or 50 Hz (2.5% duty cycle) repetition rate for a one second

duration. Using these pulse parameters with front-loaded micro-

pipettes, we transfected cells in the pyramidal cell layer (PCL) of

the CA1 within approximately 40 mm of the surface of organotypic

hippocampal slices with 300 ng?mL21 pEGFP-N1 and 50 mM

Alexa Fluor 594 hydrazide for visualization in standard Ringers

solution. At 24 hours following electroporation (Fig. 2c), the

transformation efficiency as determined by EGFP expression was

79.168.7% with very high repeatability (n = 72 cells from six

independent experiments), comparable to the best efficiencies

reported in conventional SCE methods [33,9]. It should be noted

that in these experiments, no expression of fluorescent protein was

observed in any of the cells that were not targeted for

electroporation. Additionally, expression of plasmids in cells was

consistently long-term, with sufficient expression in cells at 7 days

post-transfection for both dendritic spine counting as well as

neurite morphology analysis (Fig. S2).

Micropipette Tip Recycling
We next investigated if micropipettes can be completely cleaned

of reagents, and subsequently reloaded without any cross-

contamination, therefore allowing the transfection of multiple

reagents. During standard use, micropipettes frequently clog with

debris, an issue which can be monitored by visual analysis of dye

outflow at the tip and by measurement of the electrical

conductivity of the tip. The major contributing factors to clogging

are debris arising from the cell-to-micropipette contact and the

precipitation of plasmids at the tip, both of which greatly inhibit

the ability of a micropipette to be flushed beyond several sample-

rinse cycles. We therefore developed a robust method for cleaning

the tip by immersing the tip of the micropipette into a well

containing a continually-perfused (1.5 mL?min21) solution of

0.25% sodium hypochlorite solution and by applying 20 seconds

of alternating +30 psi and 230 psi gauge pressure pulses with a

2:1 positive/negative duration ratio. The resulting net positive

flow out of the tip ensures that sodium hypochlorite is not left in

the conductive saline bridge of the micropipette. Immediately

following the cleaning step, the micropipette is withdrawn and the

tip is then inserted into a well containing a continuous perfusion of

deionized water (1.5 mL?min21). +30 psi is then applied to the

micropipette for five seconds to further ensure remaining sodium

hypochlorite is removed. Using this technique, the micropipette

could be successfully cleaned and reloaded 9263.2% of the time

(n = 100, based on 25 sequential load-clean-rinse cycles from four

independent experiments).

To characterize how capable our cleaning methodology is at

minimizing cross-sampling (from residues of previous loadings), we

next performed a sequential four-part transfection experiment on

cells of the CA3 PCL which consisted of pCAG-EGFP, then

vehicle, then pCAG-dsRed, and then pCAG-EGFP. At 36 hours

post-transfection, cells were analyzed for fluorescent expression.

We observed 86.166.4% overall efficiency (n = 99 cells) with

100% sample specificity (0% cross contamination). Even when all

system operations (including loading, targeting, electroporating,

washing) are taken into account, it takes only 27.361.5 seconds

per cell (n = 129 cells) (Fig. 3a).

Automation, Control, and Throughput
We developed a comprehensive software suite in MATLAB and

the C programming languages for precision control and

synchronization of all aspects of the system automation through

a National Instruments Data Acquisition (NIDAQ) card and

USB/Serial communication (Figs. S3, S4, and S5). While the user

selects the cells to be targeted and transfect, a single high-level

control allows triggering of the system to withdraw, clean, rinse,

reload, and finally reposition the micropipette. Long-travel servos

move the entire micromanipulator at 100 mm/s between the slice

bath and the tip cleaning/reagents, which minimize chances for

Figure 2. Single-Cell Electroporation Can Be Carried Out at High Efficiency by Front-Loading Micropipettes. (a) In a micropipette filled
with saline (scale bar 1 mm), a front-loaded reagent diffuses over time, decreasing concentration of the sample at the tip (drawings are not to scale).
(b) Approximately 2 nL of three different fluorescent molecules, Alexa Fluor 594 (Dye1) and 488 (Dye2) hydrazide salts and SYBR-Green-labeled
pEGFP-N1 (Plasmid), were front-loaded into micropipettes and their fluorescence monitored at 1 minute intervals over ten minutes and compared to
simulations (continuous lines). Each data point is the mean 6 s.d. of three independent experiments. (c) Concentration of plasmid in the tip of the
micropipette remains stable enough to reliably transfect multiple cells with pEGFP-N1. 79.168.7% of the transfected cells expressed EGFP 24 hours
following transfection (n = 72 from six independent experiments, where 12 cells were transfected within 2 minutes in each experiment). Scale bar
50 mm.
doi:10.1371/journal.pone.0035603.g002
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clogging due to exposure to air. A computer-controlled bank of

valves as well as pressure and vacuum regulators then precisely

rinse, clean, and load the micropipette. Each full transfection cycle

(including cleaning and loading) takes only 88.968.6 seconds

(Fig. 3b), (n = 100 from four independent experiments of 25

transfection cycles each). The targeting and transfecting of

individual CA1 and CA3 pyramidal cells generally requires on

average 14.866.2 seconds per cell (n = 56).

Long-Term Operation
We found that commonly used Ag/AgCl wire electrodes are not

compatible for long durations of operation because the repeated

hyperpolarizing pulses eventually release Ag+ ions into solution

even after the wire had been properly chloridized, resulting in

variation in electrical conductivity. The presence of Ag+ ions in

solution is also potentially toxic to cells. Critically, the Ag+ ions in

solution also react with sodium hypochlorite during the washing

step to form AgCl in the proximity of the micropipette tip, which

precipitates leading to the clogging of the tip. To avoid these

shortcomings, we used an electrode holder containing a 30

American Wire Gauge (AWG) platinum wire that does not

degrade. We found that electrical resistance (measured with a

hyperpolarizing 5V DC voltage) to vary by only about 3% per

hour of usage (n = 10 micropipettes from 10 independent

experiments).

With all of these developments, we were able to continuously

recycle and use a single micropipette for over six hours. Only the

amount of solution initially backfilled into the micropipette limited

this operation duration because each transfection cycle results in a

net loss of saline in the micropipette. A micropipette loaded with

6 mL of solution was capable of providing three hours or more of

operation, and when initially filled with 12 mL, six hours of

continuous usage was possible.

Multicolor Combinatorial Labeling of Single Cells within
Brain Slices

The ability to uniquely label individual cells permits tracking

and analysis of multiple cells within complex brain tissues. The

‘‘brainbow’’ technique [29] is a pioneering method to achieve

multicolor single-cell labeling, however the need to engineer

transgenic animals, and the density and the stochasticity of

labeling limits its wide-range use. The capability to rapidly and

deterministically label single cells with multiple combinations of

colors and without using transgenic animals provides significant

flexibility. Using our system, we were able to transfect multiple

adjacent pyramidal neurons within minutes of one another (Fig. 4a)

with different fluorescent reporter plasmids (Methods Section). We

were also able to easily differentiate the dendritic processes of

multiple neurons (Fig. 4b).

Testing effects of multiple genetic perturbations in tissues while

simultaneously labeling cells with fluorescent reporters for

tracking, traditionally requires the development and use of

specialized vectors expressing multiple proteins. However, because

SCE can transfect mixtures of multiple plasmids, we proposed that

mixing plasmids encoding genes of interest along with known

fluorophore-encoding plasmids would allow for a means of rapidly

analyzing effects of these genes. In addition, this same method-

ology could allow co-transfection with multiple fluorescent

reporters enabling the labeling and differentiation of greater

numbers of densely packed cells in a given brain slice. To ensure

co-transfection could reliably be performed using our modified

SCE techniques, we transfected cells with a sample comprised of

1:1:1 molar ratios of three plasmids: pCAG-Cerulean, pCAG-

EYFP, and mCherry-Lac-Rep (nuclearly-localized mCherry), at

concentrations of 300 ng?uL21, 300 ng?uL21, and 347 ng?uL21,

respectively, as well as 50 mM Alexa Fluor 594 in Ringer’s solution

(Fig. 4c). 92 CA3 pyramidal cells were electroporated in eight

different organotypic slices with this three-plasmid mixture.

24 hours following transfections, fluorescence was observed in 70

of the electroporated cells. Of these 70 cells, 64 (91%) expressed all

three fluorescent signals, while 2 cells (2.8%) expressed only two at

significant levels, and 4 cells (5.6%) expressed only one fluorescent

maker, indicating a very high triple-transfection rate for multiple

plasmids (Fig. 4d).

Combinatorial Genetic Modification of Single Cells within
Brain Slices

The ability to rapidly genetically modify single cells can allow

parallel analysis of many genetic modifications in a single brain

slice. The protein Kalirin is a Rho guanine nucleotide exchange

factor (RhoGEF) which exists as a number of alternatively spliced

Figure 3. Rapid Transformation of Single Cells with Different
Reagents with No Cross-Contamination. (a) Sequential transfec-
tions were carried out on groups of single cells using the same
micropipette, in which pCAG-EGFP was transfected first (efficiency:
83.362.9%), followed by a reagent containing only the fluorescent
vehicle solution (plasmid contamination: 0%), then pCAG-dsRed
(efficiency: 8562.9%, plasmid cross-contamination: 0%), and finally
pCAG-EGFP again (efficiency: 86.166.4%, plasmid cross-contamination:
0%). The entire sequence took 19.661.1 minutes. (n.d. = not detected)
Results are mean 6 s.d. of three independent experiments in which 129
total cells were transfected. (b) Average time of different steps in a full
transfection cycle. Withdrawal, cleaning, rinsing, loading, and insertion
to slice bath of the micropipette takes 88.968.6 seconds (from four
independent experiments, n = 25 per experiment). Transfection/dye
uptake of single cells takes on average 14.866.2 seconds per cell
(n = 56 from five separate experiments).
doi:10.1371/journal.pone.0035603.g003
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isoforms in the mammalian brain [41], and its functions have been

investigated in a series of elegant papers [42–49]. The exogenous

expression of several Kalirin variants, notably Kalirin-7, has been

shown to significantly modify dendritic spine morphology in

cultured cortical neurons [50] as well as hippocampal interneurons

[46]. We selected three plasmids encoding Kalirin-5, Kalirin-7,

and Kalirin-9 with a myc-tag (see Methods) for use in a

combinatorial fluorophore plasmid test on linear dendritic spine

density in cells of the CA3 PCL.

To check whether the labeling with different fluorophores

introduce bias in the observed linear spine density, we transfected

a total of 120 cells in the CA1 and CA3 PCLs with the four

different fluorophore-encoding plasmids to be used. Linear spine

densities of the basal dendritic arbors of the cells were counted for

each population of cells at 24 hours post-transfection (n = 120 cells

total) (Fig. S6). No statistical difference in spine density among the

populations of cells transfected with the fluorophores Cerulean,

EGFP, YFP, and tdTomato was observed. (Fcrit = 2.63, F = 0.29

and 0.62 for CA1 and CA3, respectively).

To verify successful expression of the Kalirin isoforms, each

plasmid was co-transfected along with pCAG-Cerulean into CA3

pyramidal cells in organotypic slices. 24 hours following transfec-

tions, slices were fixed, stained, and imaged for myc-tag and

Cerulean expression (Fig. 5a). Differences in cell staining patterns

were readily apparent, with the cells transfected with Kalirin-5 and

Kalirin-9 exhibiting myc staining in the cytosol, while cells

transfected with Kalirin-7 exhibiting localized myc-labeling in the

dendrites (Fig. 5b), in agreement with the evidence for Kalirin-7

localization to the post-synaptic densities due to its Sec14p/

spectrin-like repeat region unique amongst the Kalirin isoforms

[47]. Co-transfection rates, determined by co-localized Cerulean

fluorescence and anti-myc staining, were 88.262.2% (n = 24),

77.1611.1% (n = 21), and 71.965.5% (n = 20) for Kalirin-5,

Kalirin-7, and Kalirin-9, respectively. (Fig. 5c).

We next transfected individual cells in the CA3 PCL with one of

four different plasmid mixtures: tdTomato (control), Cerulean/

Kalirin-5, EGFP/Kalirin-7, and YFP/Kalirin-9. Linear spine

densities of the basal dendrites were analyzed 24 hours post

transfection (Fig. 5d). Because each isoform was co-transfected

with a known and unique fluorophore, we could readily distinguish

and analyze cells that had been transfected with different Kalirin-

isoform-encoding plasmids in the same tissue slice even for

neighboring cells with significantly overlapping processes. When

compared to the control cells with an average of 6.761.0 spines/

Figure 4. Multicolor Labeling of Single Cells within Brain Tissues and High Co-transfection Efficiencies. (a) Multiple fluorophore-
encoding plasmids (pCI-tdTomato, pCAG-YFP, pCAG-Cerulean, and pCAG-EGFP) are transfected into neighboring cells in the same slice. (b)
Overlapping processes can be easily distinguished. (c) pCAG-Cerulean, pCAG-YFP, and mCherry-Lac-Rep express three spectrally distinguishable
fluorescent markers: cytosolic 442/470 nm (ex/em), cytosolic 514/530 nm (ex/em), and nuclearly-localized 561/610 (ex/em), respectively, as shown in
the top three rows. They were used to determine co-transfection efficiencies of multiple plasmids, as shown in the bottom row. (d) A mixture
containing 300 ng?mL21 of both pCAG plasmids and 347 ng?mL21 of mCherry-Lac-Rep was transfected using our front-loaded SCE methodology into
CA1 and CA3 pyramidal cells in organotypic hippocampal slices and imaged 24 hours later for expression patterns. 92 cells total were transfected,
with 23.9% expressing no visible fluorescence signal, 4.3% expressing only one type of fluorescent protein, 2.2% expressing only two types of
fluorescent proteins, and 69.5% expressing all three types of fluorescent proteins. Scale bar in panel a is 10 mm, and in b and c is 20 mm.
doi:10.1371/journal.pone.0035603.g004
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10 mm (n = 95 segments from 19 cells), no statistical difference in

linear spine density was observed in Kalirin-5-transfected cells

(6.6562.0 spines/10 mm, n = 60 segments from 12 cells, p = 0.74),

as well as Kalirin-9-transfected cells (7.660.6 spines/10 mm n = 55

segments from 11 cells, p = 0.08). However, a statistically

significant difference in linear spine density was measured in

Kalirin-7-transfected cells (8.660.9 spines/10 mm, n = 70 seg-

ments from 15 cells, p,1024) (Fig. 5e). Our results are in

agreement with the previous studies on the effects of Kalirin

isoforms [42–50], which suggest that our methodology based on

co-transfection of multiple plasmids provide statistically significant

results in a high-throughput, single-cell manner.

Acute hippocampal slices were also tested, in order to assess the

system’s operational characteristics in a tissue environment more

closely resembling in vivo conditions (Fig. S7). Because plasmid

expression in acute slices cannot be compared directly to

expression in organotypic slices due to the limited lifetime of

acute slices (several hours), we compared the cell targeting and

electroporation efficiency of our system between acute and

organotypic slice cultures, which we define as the percentage of

cells intentionally and successfully electroporated and filled with

fluorescent dyes (determined visually by dye uptake). No

significant difference was found between the two tissue cultures:

In acute slices, the targeting efficiency was 95.364.2% (n = 62 in

five separate experiments) while in organotypic slices it was

96.065.4% (n = 56 in five separate experiments). No off-target

electroporation, which we define as the electroporation of

unintended adjacent cells, was observed in either case. The higher

density of cells in acute slices made the average cell-targeting time

longer however: In acute slices, it took 26.568.9 seconds per cell,

(n = 62 cells in five separate experiments) while it took

14.866.2 seconds per cell in organotypic slices (n = 56 cells from

five separate experiments) to achieve the level of electroporation

efficiency reported above. This significant difference in timing

(p,1025) was primarily due to the extra time needed in targeting

cells with less-clearly defined somatic boundaries in acute slices, as

well as the slower movement of the micropipette in acute slices.

These results were expected, based on the often-observed

flattening and thinning of organotypic slices when compared to

acute slice environments [13].

Discussion

The diversity of cells and the complexity of neuronal circuits in

the nervous system require single-cell resolution studies. However,

single cell studies have so far been painstakingly slow and error-

prone. Here, we demonstrated a technology which permits single

cells to be genetically manipulated rapidly inside brain tissue,

enabling significant acceleration of the throughput of standard

single-cell analytics and techniques used on brain slices. We also

designed this system to be low cost and compatible with standard

brain slice culture equipment and techniques to make it readily

adaptable by the research community.

Our system can be readily applied to both organotypic and

acute slice formats (Fig. S7), the two primary tissue culture

methodologies. A wealth of research exists in using brain slice

platforms, and particularly organotypic cultures, in modeling

many human diseases including Alzheimer’s, Parkinson’s, and

epilepsy, all of which could benefit from the increased throughput

in single-cell manipulation and analysis [21,22]. In addition to

Figure 5. Combinatorial Genetic Transformation of Multiple Single Cells within Brain Tissue and Effects on Spine Densities. (a)
Plasmids encoding the three isoforms of Kalirin (Kalirin-5, Kalirin-7, and Kalirin-9) were each co-transfected with pCAG-Cerulean by our system into
CA3 pyramidal cells in hippocampal slices. 24 hours following transfection, slices were fixed and stained for the myc tag from the Kalirin isoforms
before imaging for Cerulean (cyan) and myc (orange). Scale bar 15 mm. (b)Anti-myc staining in Kalirin-7-transfected cells shows localization into fine
points on the dendrites. Scale bar 5 mm. (c) Co-transformation efficiencies determined by co-staining for pCAG-Cerulean and the three pEAK-His-Myc-
Kalirin vectors, were 88.262.2% (n = 24), 77.1611.1% (n = 21), and 71.965.5% (n = 20) for Kalirin-5, Kalirin-7, and Kalirin-9, respectively. (d) A series of
transfection cycles were carried out on CA3 pyramidal cells in the same slice (8 total slices) to analyze the effects of exogenous expression of the three
Kalirin isoforms on linear dendritic spine density of basal dendrites. Cells were transfected with either tdTomato (tdT) as a control, Cerulean and
Kalirin-5 (C,K5), EGFP and Kalirin-7 (G, K7), or YFP and Kalirin-9 (Y, K9). Spines were imaged 24 hours post-transfection. Scale bar is 10 mm. (e) Linear
spine densities for four groups: tdT cells had an average of 6.761.0 spines/10 mm (n = 95 segments from 19 cells). C,K5 exhibited no statistically
higher spine density (6.6562.0 spines/10 mm, n = 60 segments from 11 cells, p = 0.74) and so Y,K9 (7.660.6 spines/10 mm n = 55 segments from 9
cells, p = 0.08). G,K7, however, did show a statistically higher linear spine density (*) compared to tdT (8.660.9 spines/10 mm, n = 75 segments from 15
cells, p,1024).
doi:10.1371/journal.pone.0035603.g005
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plasmids encoding cDNA, shRNA-encoding plasmids can also be

transfected as well as both long coding RNA and siRNA using

SCE [51,39]. Optogenetic proteins could also be transfected with

single-cell resolution [52,53]. The throughput of our technology

also makes possible the use of brain slices in high-content, single-

cell resolution screens. For instance, large libraries of cDNA or

RNAi encoding vectors could be rapidly tested for their effects on

neurite and synaptic morphogenesis in brain tissue. Fast-acting

reagents such as multiplexed fluorophores, calcium-sensing, and

voltage-sensing dyes can also easily be transfected via SCE into

both acute and organotypic slices using our system providing a

means of real time connectivity and circuit analysis at cellular

resolution [54]. Additionally, we can also sequentially transfect

reagents into the same cells, enabling pre-and-post transfection

analysis [18] (Fig. S8). Furthermore, it is also feasible that our

system can be used in conjunction with single-cell electrophysiol-

ogy techniques using conventional micropipettes and labeling as

shown by Rancz et al. or with novel nanoprobe electrical

recording techniques demonstrated by Qing et al. [55,5].

Cell-type-specific transfections could be carried out by using

either (a) tissues from transgenic animals that express fluorescent

reporters driven by cell-specific promoters, or (b) wild-type tissues

labeled with fluorescent reporters (driven by cell-specific promot-

ers) delivered using bulk transfection through viral or biolistic

techniques. Once the subpopulations of cells are labeled with

fluorescent reporters, their identification, targeting, and transfec-

tion with reagents is readily possible with our platform.

Additionally, since larger plasmids (up to 13 kbp were transfected

in this paper) can be introduced using SCE, cell-type specific

promoters can be incorporated into transfected vectors in order to

add a further level of specificity to our system.

Our system could in principle be adapted for deeper tissue and

even in vivo single-cell manipulations using cranially accessible

preparations and multi-photon microscopy [8–11]. When working

at greater depths in vivo, the speed of the system would need to be

decreased in order to avoid damage to both tissue and

micropipette as we did for acute slices above. However, because

in vivo preparations can be operated on over longer time periods

than acute brain slices, it should still be feasible to perform large-

scale in vivo single-cell manipulations through cranial window

preparations. By enabling more variables to be tested within the

same tissue and on specific anatomical regions, the effect of

variability between multiple tissue preparations and between

animals can be avoided. More efficient utilization of tissues could

also enable larger scale studies.

Materials and Methods

Single-Cell Electroporation
Micropipettes were pulled from 1.2 mm OD, 0.60 mm ID

filament capillary glass (Sutter) to an opening diameter of

approximately 1.0 mm on a Sutter P-97 Flaming-Brown puller

with a 2.5 mm62.5 mm box filament (FWB255) at settings

RAMP = 490; HEAT = 490 PULL = 0 VEL = 24 TIME = 250 (4

Loops). Ringers solution (135 mM NaCl; 5.4 mM KCl; 0.5 mM

MgCl2; 1.8 mM CaCl2; 25 mM HEPES) was balanced to pH 7.4,

and 6 mL of the solution was back-filled into the micropipette

using a gel-loading pipette tip (Invitrogen). The micropipette was

mounted on a holder (WPI) modified to use 30 AWG platinum

wire (Alfa Aesar) for its electrode. Micropipette resistances at DC

were approximately 8 to 10 MV for experiments in this paper. For

electroporation, the electrode was driven directly from a pCIe-

6259 National Instruments Data Acquisition Card (NIDAQ),

which enabled both hyperpolarizing and depolarizing pulses with

magnitudes up to 10 V. For signals with a larger magnitude, an

amplifier with 618 V power supply rails driven by the NIDAQ

card was used. During targeting of cells for transfection by the

user, bright-field/phase-contrast illumination was used to coarsely

move the desired cell soma near the micropipette tip. Following

this, epi-fluorescence visualization of Alexa Fluor 594 or 488 dye

was used to bring the tip into fine contact with targeted cells. By

monitoring the outflow of the fluorescent dye, and noting when it

almost ceased, we were able to reliably find a location at which to

electroporate cells. Low pressure (+1 psi) was applied to the

micropipette to prevent clogging as it approached the cells. Just

before applying the electrical pulse train, the system automatically

released pressure. Pressure was not reapplied until tip was

removed from proximity of cell.

System Automation, Control Software, Electroporation
Equipment, Pressure Control

All Sutter instruments were interfaced using custom-written

code in C/C++, while the long-travel stages (ROBO Cylinders by

International Automation Incorporated) were controlled through

the serial port interface using standard protocols. The Data

Acquisition Toolbox in MATLAB was used for controlling the

PCIe-6259 NIDAQ card. A computer-controlled bank of electrical

valves (Numatics) selectively apply one of five preset positive and

negative gauge pressures to the gasket/holder assembly for

purposes of cleaning, rinsing, loading, and transfection. The

software and most up-to-date drivers and operating system

requirements are available upon request from the authors

(M.F.Y.).

Imaging and Analysis
A 1660.8 NA water-dipping objective was used on an FN-1

upright electrophysiology microscope (Nikon), utilizing bright field

and epi-fluorescence. A Hitachi KP-M2RU near-infrared mono-

chrome CCD camera was used in conjunction with either a Nikon

TRITC HQ cube or a FITC HQ (both Nikon). A multi-focal

Visitech vtHawk confocal imaging unit, CoolSnap HQ camera,

and PIFOC-400 400 mm travel piezo were used for high-speed

imaging of cells after transfection. For spine imaging, a 6061.0

NA objective (Nikon) was used, while for lower resolution/

magnification images, the 1660.8 NA objective was used. When

collecting data for dendritic spine analysis, z-stack slices were taken

at 0.5 mm increments, and for low-magnification images z-stack

slices were taken at 2 mm increments. For immunohistochemistry

imaging, we used a TE-2000 microscope in conjunction with

either a 2060.7 NA or 6061.4 NA oil immersion objective and

Nikon Elements Advanced Research. Because all images were

monochromatic, prior to analyzing spine densities, image files

were fed into a custom-written MATLAB script which both

renamed randomly and recorded the original name of each image

file to ensure blind analysis. Following image analysis, the files

were matched up with their encoded names in order to properly

compare data. Spine counting was conducted manually in a blind

fashion.

Organotypic Slice Culture and Acute Slice Harvesting
P5 to P9 Sprague-Dawley rat pups were sacrificed and their

hippocampi were sliced immediately at 300 to 350 mm thickness

using a Vibratome and cultured on membranes (Millipore

PICM0RG50) as described previously [36]. Slices were kept for

up to six weeks in the case of organotypic culture, or immediately

transferred to the working slice bath, in the case of acute slices. All

animal work was approved by the MIT Committee of Animal
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Care and Division of Comparative Medicine and abided by

institutional, state, and federal guidelines for animal welfare. For

organotypic work, slice media was changed 24 hours following

slicing and every third day afterwards. To avoid contamination,

organotypic slices were rinsed in pre-warmed Rat Ringers

Solution (buffered to pH 7.4) containing 100 U/mL penicillin

and 100 mg/mL streptomycin and were returned to a well

containing fresh media, containing both containing antibiotics at

above concentration and 60 ng/mL of Nystatin immediately

following either transfections or imaging in the slice bath. Using

this methodology as well as standard techniques during slicing,

contamination of organotypic cultures was extremely rare. For

transfections in acute slices, the bath chamber was perfused with

warmed Rat Ringer’s solution that was continuously bubbled in

carbogen (95% O2/5% CO2). Acute slices were maintained for up

to three hours.

Immunohistochemistry
For staining slices, the entire membrane inserts were rinsed in

Tris-Buffered Saline and Tween-20 (TBST) for five minutes,

followed by fixing for 10 minutes at room temperature in 4%

Paraformaldehyde in Phosphate Buffered Solution (PBS). TBST

was introduced to the fixing solution before aspirating and rinsing

twice in TBST. Slices were permeabilized in 0.1% Triton X-100

for 10 minutes at room temperature before rinsing twice in TBST,

and then incubated in 1% casein in TBST for 60 minutes at room

temperature. Slices were then cut out of their membrane inserts

and placed into 24 well plates and incubated with antibody (anti-

myc conjugated to Alexa Fluor 555 from Millipore) in TBST

containing 0.4% casein for three hours at room temperature.

Slices were then rinsed in TBST with rocking for thirty minutes

changing TBST every ten minutes before being mounted on slides

in Vectashield under cover glass, sealed with nail varnish, and

being stored at 4 degrees Celsius in the dark. Using the described

protocol we did not see significant loss of native fluorescence in

Cerulean and therefore did not need to use anti-bodies for its

imaging.

Plasmids and Sample Preparation
Plasmids were grown in the conventional bacteria strains XL-1

Blue, DH5a, or TOP10. All plasmids were harvested using

Qiagen Endo-Free Maxi Kits, and stored in TE Buffer or DI water

at 1 to 6 mg/mL concentration, determined by a Qubit dsDNA

Broad Range Kit (Invitrogen). All plasmids were acquired from

Addgene unless otherwise specified:

pCAG-EGFP, pCAG-YFP, pCAG-dsRed (Addgene plasmids

11150, 11180, and 11151, respectively) [56]

pEGFP-N1 (Clontech)

pCI-tdTomato, (courtesy of Rachael Neve)

mCherry Lac-REP (Addgene plasmid 18985) [57]

Cerulean (Addgene plasmid 15214) [58]

pEAK10-His-Myc-Kal7 (Addgene plasmid 25454) [59]

pEAK10-His-Myc-Kal5 and pEAK10-His-Myc-Kal9 (Addgene

plasmids 25440 and 25441, respectively) [41]

pCAG-Cerulean was constructed by removing the Cerulean

gene from its native Clontech backbone [58] using the AgeI and

BsrGI restriction endonucleases (New England Biolabs) and sub-

cloning into the pCAG plasmid. For results in Figure 5, in all

cases, concentration of fluorescent-protein-encoding plasmids was

300 ng?mL21, while for the plasmids encoding Kalirin-5, Kalirin-

7, and Kalirin-9, plasmid concentrations were 250, 300 and

373 ng?mL21, respectively to provide equivalent molarity of

delivered plasmids.

Diffusion Measurements and Simulations
Diffusion measurements were carried out by front-loading

micropipettes with samples of known concentration. Brightness

was correlated to concentration using calibration curves derived

from large volume (several mL) samples rear-loaded into similar

micropipettes and then imaged (Fig. S1). Images were captured

every minute, with fluorescence exposure occurring only during

image acquisition to avoid bleaching of dyes. A tip-diffusion model

was developed in MATLAB to study the recorded measurements.

To generate a structural model, micropipettes were imaged under

low magnification (Figure 2a) and we traced the outside of the glass

to get total micropipette cross-section, which assuming longitudi-

nal symmetry could be used to calculate total volume of the tip.

Next, using the assumption of a constant ratio of outer to inner

diameter of the micropipette glass we calculated the internal

volume profile [60]. This internal calculated volume of the

micropipette was then binned into 1 mm3 cubes for the purposes of

simulation. To begin simulation, a sufficient number of volume

bins (starting from the tip) were filled with the start concentration

in order to generate a longitudinal concentration profile as shown

in the middle drawing of Figure 2a. No diffusion was assumed to

take place through the glass, and diffusion out of the micropipette

tip was assumed to be negligible. Fick’s Law was used to model

diffusion:

J~{D+c

where J is diffusive flux, D is the diffusion coefficient, and +c is the

spatial concentration gradient of the molecular species in question.

The simulation took advantage of the longitudinal axial symmetry

of the micropipettes to break down simulation into two phases for

each time step. First longitudinal diffusion (down the length of the

micropipette) was simulated in two dimensions. Second, cross-

sectional diffusion of each plane of the micropipette was carried

out in two dimensions. Diffusion was calculated between each

block and all adjacent blocks. Empirically determined diffusion

coefficients taken from the literature were 430 mm2/s [61],

370 mm2/s [61], and 3.5 mm2/s [62], for Alexa Fluor 488

hydrazide, Alexa Fluor 594 hydrazide, and pEGFP-N1, respec-

tively.

Statistics
A one-way ANOVA test was used for cross-cell comparisons in

Figure S4 and Figure 5. For individual comparisons Welch’s

modification on a student’s t-test was used. All results are reported

as mean 6 s.d.

Cost
The semi-automated system presented is built around a

standard electrophysiology microscope (Nikon FN-1). Because

most laboratories already have a/several micromanipulator(s)

from other work (e.g. Sutter MP-285), the additional equipment

needed to implement this system only costs on the order of $4000:

$3000 for the long-travel stages and controls, $500 for the

pneumatic regulators, valves and interfacing electronics, and $500

for a National Instruments DAQ card. While we used a pCIe-6259

DAQ in this work, less expensive models also work.

Supporting Information

Figure S1 Calibration Curve for Fluorescence Intensity
vs. Concentration. Micropipettes were rear-loaded with

approximately 4 mL fluorophores at varying concentrations to

generate a calibration curve for measured fluorescent intensity

High-Throughput Single-Cell Manipulation in Tissue

PLoS ONE | www.plosone.org 8 April 2012 | Volume 7 | Issue 4 | e35603



versus concentration. Samples were measured from a concentra-

tion of 500 mM (for the Alexa Fluors) and 500 ng?mL21 (for the

plasmid/SYBR Green mixture) and stepped by dilutions of two to

approximately 8 mM (for the Alexa Fluors) and 8 ng?mL21 (for the

plasmid/SYBR Green mixture).

(TIF)

Figure S2 Distribution of Fluorescence Emission
Strength in Electroporated Cells. (a) CA1 pyramidal cells

were transfected with pCAG-EGFP using SCE, and the average

fluorescence of their soma was measured at 24 hours post-

transfection. Brightness was normalized to maximum possible

value (214 bits = 16384 values). Average normalized brightness was

0.4760.15 (n = 52). (b) Cells were transfected with pCAG-YFP

and their fluorescence was monitored over time in a manner

similar to in part a. Values were normalized to the first data point

taken at 24 hours post-transfection. Black line shows average of all

normalized brightness levels (n = 35). At 7 days post-transfection,

fluorescence intensity was 67.6% of peak value.

(TIF)

Figure S3 Graphical User Interface (GUI) for Control.
All major controls are contained within a single window. (a)

Single-cell electroporation parameters, (b) Applied SCE voltage

signal (top) and measured SCE current (bottom). (c) Micropipette

pressure controls, high-level controls for automated system

operation, and micropipette manipulator controls. (d) Micropi-

pette position control, micropipette clean/wash parameters, and

multiwell and washing equipment position controls.

(TIF)

Figure S4 Primary Control GUI (Detailed). Detailed

images of the portions of the control window, including (a)

Single-cell electroporation parameters, (b) Applied SCE voltage

signal (top) and measured SCE current (bottom). (c) Micropipette

pressure controls, high-level controls for automated system

operation, and manipulator controls. (d) Micropipette position

control, clean/wash system parameters, and multiwell/washing

equipment position control.

(TIF)

Figure S5 Flowchart of System Operation. Boxes are

actions and processes, hexagons are preparation steps, diamonds

are decision/pause points, parallelograms are data storage.

‘‘Servo1’’ refers to the micropipette/manipulator positioner, and

‘‘Servo2’’ refers to the multiwell and washing equipment

positioner.

(TIF)

Figure S6 Different Fluorophores Do Not Affect Mea-
sured Dendritic Spine Density Count. Cells in both the CA1

(n = 50) and CA3 (n = 70) of hippocampal organotypic slices were

transfected with one of the four fluorescent proteins, Cerulean,

EGFP, YFP, or tdTomato, and the linear spine densities of their

basal dendritic arbors were sampled (n = 600 dendritic spine

segments). For each cell type, no significant difference exists in

spine density count among the subsets of cells labeled with

different fluorescent reporters (ANOVA results: Fcrit = 2.63,

F = 0.29 and 0.62 for CA1 and CA3, respectively).

(TIF)

Figure S7 Transfection of Single Cells in Acute Slices
with Fluorescent Dyes. Cells in the CA1/CA2 region of a

hippocampus were transfected in short succession with Alexa

Fluor 594 hydrazide (orange) and Alexa Fluor 488 hydrazide

(green). Electroporation efficiency, the percentage of cells

electroporated by targeting was 95.364.2% with mean targeting

and electroporation time per cell of 26.568.9 seconds per cell in

acute slices (n = 62 in five separate experiments) Scale bar 30 mm.

(TIF)

Figure S8 Sequential Transfection of Cells with Plas-
mids. CA2/CA3 cells were rapidly transfected with pCAG-

EGFP using our system. At 24 hours following first-transfection 23

out of 30 cells (efficiency: 76.7%) expressed EGFP. Twelve of the

expressing cells were then re-transfected by our system at 30 hours

following first-transfection with a nuclear-localization-mCherry

plasmid (red-arrow). 24 hours following second-transfection, cells

were analyzed for expression. 100% (n = 11) of non re-transfected

(control) cells continued to expressed EGFP. 16.7% (2/12) of re-

transfected cells were no longer visible, 41.7% (4/12) were

expressing both mCherry NLS and EGFP, and 50% (6/12)

expressed only EGFP. Scale bar 15 mm.

(TIF)

Table S1 Single-Cell Electroporation Efficiencies. Mea-

sured efficiencies for different electroporation pulse parameters for

a micropipette tip with approximately 8 MV resistance filled with

300 ng?mL21 pEGFP-N1 and 50 mM Alexa Fluor 594 hydrazide

in standard Ringers solution. Efficiency was determined from

expression of EGFP at 24 hours post-transfection. n = total

number of cells that were electroporated in the indicated number

of independent experiments. Rise/Fall time of the micropipettes

used was measured at 0.2360.015 ms (n = 8).

(DOC)
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