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Abstract

UV exposure and p53 mutations are major factors in non-melanoma skin cancer, whereas a role for HPV infections has not
been defined. Previous data demonstrated the wtp53-mediated degradation of cutaneous HPV20E6 by caspase-3. DNp63a
and hot-spot mutant p53R248W conveyed a protective effect on HPV20E6 under these conditions. We demonstrate a
differential regulation by wtp53 of the E6 genes of cutaneous types HPV4, HPV5, HPV7, HPV27, HPV38, HPV48, HPV60 and
HPV77. Caspase- or proteasome-mediated down-regulation was HPV type dependent. Mutant p53R248W up-regulated
expression of all these E6 proteins as did DNp63a except for HPV38E6 which was down-regulated by the latter. None of
these cellular proteins affected HPV41E6 expression. Ectopic expression of both mutp53R248W and DNp63a in the normal
NIKS keratinocyte cell line harbouring endogenous p53 and p63however led to a down-regulation of HPV20E6. We
demonstrate that HPV20E6 expression in these cells is modulated by additional, yet unidentified, cellular protein(s), which
are not necessarily involved in apoptosis or autophagy. We further demonstrate proliferation of HPV20E6-expressing
keratinocytes. Levels of proteins involved in cell cycle control, cyclin-D1, cdk6 and p16INK4a, phosphorylated pRB, as well as
c-Jun and p-c-Jun, were all increased in these cells. HPV20E6 did not compete for the interaction between p16INK4a with
cyclin-D1 or cdk6. Phosphorylation of pRB in the HPV20E6 expressing cells seems to be sufficient to override the cytokenetic
block induced by the p16INK4a/pRB pathway. The present study demonstrates the diverse influence of p53 family members
on individual cutaneous HPVE6 proteins. HPV20E6 expression also resulted in varying protein levels of factors involved in
proliferation and differentiation.
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Introduction

Cutaneous papillomaviruses (HPV) have been associated with

the pathogenesis of non-melanoma skin cancer. The wide

spectrum of HPV types demonstrated by DNA detection in

malignant lesions also occurs in normal skin [1–8]. The

mechanism by which these viruses contribute to malignant disease

remains unclear. A crucial function of high-risk mucosal HPV E6

in the pathogenesis of malignant tumors is targeting a number of

cellular proteins, including wtp53, for proteasomal degradation

[9–12]. Cutaneous HPVs do not induce proteasome-mediated

degradation of p53 or PDZ-domain proteins [11,13,14]. The

majority of so-called cutaneous HPV types belong phylogenetically

to the genera Beta- and Gamma-papillomaviruses, although a few

types which are mainly associated with benign lesions of the skin,

group within the genus Alpha-papillomavirus [15,16]. Evidence

on the molecular activity of single cutaneous HPV types is slowly

emerging. Recent results indicate that the activation of telomerase

by HPV38E6 may prolong the lifespan of human keratinocytes

[17,18]. A number of cutaneous HPV types, in contrast to others,

have transforming potential in rodent cells [19,20].

UV-exposure and mutations in wtp53 are considered as co-

factors in the pathogenesis of non-melanoma skin cancer [21,22].

A number of p53 mutations have been termed ‘‘hot-spot’’

mutations due to their frequent association with respective tumor

types [23]. p53 mutantR248W is a UV-induced ‘‘hot-spot’’

mutation in non-melanoma skin cancer. Mutant p53 binds to

promoters to form transcriptionally active complexes, thereby

gaining function [24,25]. The contact-mutant p53R248W exerts a

dominant-negative effect through tetramerization with wtp53 and

other p53 family members, with re-localization of this complex to

the nucleus [26].

TAp63a and DNp63a play an important role in proliferation

and differentiation of the skin and the ratio between these two

isoforms determines the biological outcome. Increased level of

DNp63aleads to failure of differentiation and the organization of

the epithelium [27]. Proliferation and differentiation defects in the

skin of p63-null mice were rescued by the direct down-regulation

of p16INK4a expression by p63 [28]. DNp63a acts as a dominant

negative by inhibiting p53, TAp63 and TAp73 trans-activation

and thus apoptosis [29,30] and is over-expressed in several tumors

including the majority of squamous cell carcinomas [31–33].

E6 gene expression of several cutaneous HPV types protected

keratinocytes from UV-B induced apoptosis [34–36] by mediating

degradation [34] or a reduction in the levels of pro-apoptotic Bak

[37] and thereby preventing the release of pro-apoptotic factors
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from mitochondria [38]. We demonstrated that p53-mediated

caspase-dependent degradation of HPV20E6 was rescued by

mutant p53R248W and DNp63a and other unknown proteins

involved in proteasome degradation [13]. We now investigated

whether similar interactions between mutant p53R248W, wtp53

and DNp63a with E6 of other cutaneous HPV types occurred, as

we had previously demonstrated a type specific, rather than genus-

or species-specific UV-induced activation or suppression of a

number of cutaneous HPV promoters [36,39]. The present study

demonstrates a differential regulation of the E6 genes of cutaneous

types HPV4, HPV5, HPV7, HPV27, HPV38, HPV48, HPV60

and HPV77 by wtp53. Caspase- or proteasome-mediated down-

regulation was HPV type dependent. The majority of these E6

proteins were upregulated by both mutant p53R248W and

DNp63a. An exception was HPV38E6 which was down-regulated

by DNp63a. None of these cellular proteins affected the expression

of HPV41E6. These data were obtained by over-expression in the

p53-null H1299 cell line. We continued to examine whether

similar observations could be made in human keratinocytes with

endogenous wtp53 and p63. We limited these further studies to the

expression of HPV20E6 in human keratinocytes. Ectopic

expression of both mutp53R248W and DNp63a in the normal

NIKS keratinocyte cell line harbouring endogenous p53 and p63

however led to a down-regulation of HPV20E6. We demonstrate

that HPV20E6 expression in these cells is modulated by

additional, yet unidentified, cellular protein(s) which are not

necessarily involved in apoptosis or autophagy. We further

demonstrate proliferation of HPV20E6-expressing keratinocytes.

Levels of proteins involved in cell cycle control, cyclin-D1, cdk6

and p16INK4a, phosphorylated pRB, as well as c-Jun and p-c-Jun,

were all increased in these cells. HPV20E6 did not compete for the

interaction between p16INK4a with cyclin-D1 or cdk6. Phosphor-

ylation of pRB in the HPV20E6 expressing cells seems to be

sufficient to override the cytokenetic block induced by the

p16INK4a/pRB pathway.

Materials and Methods

Expression vectors
Plasmid constructs pcDNA3.1(+)-mtp53R248W, pcDNA3.1(+)-

wtp53 and pcDNA3.1(+)-DNp63a were described previously [40].

N- and C-terminal flag-tagged HPV4E6, HPV5E6, HPV7E6,

HPV20E6, HPV27E6, HPV38E6, HPV41E6, HPV48E6,

HPV60E6 and HPV77E6 were obtained by PCR amplification

using the respective complete genome as template (primers in

Table S1) [13,41]. All amplified products were cloned into vector

pcDNA3.1(+) from Invitrogen (Karlsruhe, Germany). Sequences

of all DNA inserts and their orientation were verified by

sequencing of the constructs. pLXSN-flagHPV20E6 was con-

structed by cloning PCR amplified flag-tagged HPV20E6 into the

pLXSN vector as previously described [41].

Cell culture and transfection assays
H1299 cells (non-small cell lung carcinoma, p53-null, ATCC)

were transfected with the respective HPV-E6 constructs as

described previously [40]. Empty vector pcDNA3.1 (+) was used

to equalize the total amount of transfected DNA in all samples and

transfection efficiency was measured by co-expression of b-

galactosidase (pCMV-b-gal). pLXSN without HPV20E6 was used

as negative control in comparison with pLXSN-flag20E6.

Retrovirus production and infection of NIKS cells
The spontaneously immortalized human foreskin keratinocyte

cell line NIKS (Stratatech, Madison, USA) [42] was used for

expression of HPV20E6. This cell line was maintained as sub-

confluent cultures on a mitomycin C-treated fibroblast feeder layer

in NIKS medium (3:1 Ham’s F-12 medium and Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 5% FCS,

24 mg/adenine, 8,4 ng/ml cholera toxin, 10 ng/ml epidermal

growth factor (EGF), 0,4 mg/ml hydrocortisone, 5 mg/ml insulin

and 1% penicillin/streptomycin). NIKS cells were infected with

pLXSN-flagHPVE6 retrovirus and pooled after selection with

G418 as previously described [41]. The pooled cells (pLXSN and

pLXSN-flag20E6) were subsequently kept on fresh mitomycin C-

treated feeder layer in NIKS complete medium and expanded for

4 to 8 passages.

Caspase- and ubiquitin-inhibitors
Transfected H1299 cells were incubated overnight with either

50 mM Z-VAD-FMK (general caspase inhibitor) or 25 mM

calpeptin (calpain inhibitor) before harvesting. These transfected

cells were alternatively incubated for 6 hours in the presence of the

proteasome inhibitor MG132 (20 mM) or the 20S proteasome

inhibitor b-lactone (Lactacystin 5 mM) (all Calbiochem, Darm-

stadt, Germany) before harvesting. HPV20E6-expressing NIKS

cell line was incubated overnight with 10 mM MG132.

Western blot analyses
Western blot was performed as described [40]. Total cellular

protein was extracted and subjected to Western blot analysis after

separation in 15% or 8% SDS-PAGE. For quantitation of the

respective proteins, as well as to control for transfection efficiency,

antibody staining for b-actin and b-galactosidase were respectively

included in each analysis. The primary antibodies used were anti-

Flag (cat#200472) (Stratagene, CA, USA), anti-p53 (sc-126), anti-

p63a (sc-8344), anti-p16 (sc-9968) and anti-PCNA (sc-56) (all

Santa Cruz, Heidelberg, Germany), anti-b-gal (cat#Z378A)

(Promega, Madison, USA), anti-b-actin (cat#691001) (ICN,

Aurora, Ohio, USA) and anti-pRB (cat#OP136) (Calbiochem,

Darmstadt, Germany). Primary antibodies against Apaf-1

(cat#4452), caspase-3 (cat#9662), caspase-9 (cat#9509), cas-

pase-8 (cat#9746), LC3B (cat#4108), Bak (cat#3792), Bax

(cat#2774), phospho-c-Jun (ser63) (cat#9261) and c-Jun

(cat#9165) were purchased from Cell Signaling (Frankfurt am

Main, Germany).

Apoptosis assays
Cells (with or without MG132 treatment) were collected by

trypsinization, washed with phosphate-buffered saline and stained

using an Annexin V-PE apoptosis Detection Kit I (BD Biosciences)

as described previously [13]. Early stage apoptosis was identified as

Annexin V positive(+)/7-AAD negative(2) population. Percent-

ages were determined in the FACScalibur system using FlowJo

software (Ashland, USA).

Silencing of p53 by siRNA
siRNA p53 (10 nM; cat#1024849) and control siRNA which

has no homology to any known mammalian gene (10 nM;

cat#1022563) was transfected into the NIKS cell line as previously

described [43]. Both reagents were purchased from Qiagen

(Hilden, Germany). Control-siRNA and mock transfections

(absence of siRNA) served as negative controls.

Cell proliferation as measured by EdU incorporation
Cell proliferation was measured in three independent assays by

EdU (5-ethynyl-29-deoxyuridine) incorporation using the Click-

iTTM EdU Flow Cytometry Assay Kit (Invitrogen, Karlsruhe,
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Germany) according to the manufacturer’s protocol. Cells were

treated with 10 mM EdU for 24 hours prior to staining with Alexa

Fluor 488 azide (cat#C35002, Invitrogen, Karlsruhe, Germany).

EdU incorporation was determined by FACScalibur using FlowJo

software (Ashland, USA).

Co-immunoprecipitation
Total protein was isolated from pLXSN-flagHPV20E6-NIKS

cells as described previously [40] for co-immunoprecipitation assays.

Lysates were pre-cleared to reduce background [44] and used for

immunoprecipitation by adding 4 mg of the respective antibodies

Cdk6, (Santa Cruz, Heidelberg, Germany), P16 (mtm, Heidelberg,

Germany) and PP2AC (Cell Signal, Frankfurt am Main, Germany),

followed by incubation for 1 h at 4uC on a rocking platform. Protein

A-agarose (25 ml bed volume) was subsequently added to each

immune complex and incubated overnight at 4uC. Reactions

without cell lysates served as negative control. Immunocomplexes

were washed according to the manufacturer’s protocol (Roche,

Mannheim Germany) before the immunoprecipitated proteins were

dissociated from the beads by boiling for 3 min in one bed volume of

elution buffer [126 mM Tris – HCl (pH 6), 20% glycerol, 4% SDS,

0.02% bromophenol blue, and 1% 2-mercaptoethanol]. The total

sample was used for Western blots analysis [45]. Interaction partners

with the immunoprecipitated proteins were visualized by Western

blot analysis using the following respective antibodies Cdk6, Cdk4

(Santa Cruz, Heidelberg, Germany) CyclinD1, PP2AB, PP2AC

(Cell Signaling, Frankfurt am Main, Germany) and P16 (mtm,

Heidelberg, Germany).

Methylation-specific PCR
Cellular DNA methylation was determined using the CpGeno-

meTMDNA Modification kit (Millipore, Schwalbach, Germany).

Unmodified DNA was controlled for by amplification using W

(wild type) primers. Methylation status of p16 CpG islands was

analyzed by methylation-specific PCR amplification using the

CpG WIZH p16 Amplification Kit (Millipore, Schwalbach,

Germany). Primers for amplification of methylated p16 CpG

islands were (forward) 59-TTA TTA GAG GGT GGG GCG

GAT CGC-39 and (reverse) 59-GAC CCC GAA CCG CGA CCG

TAA-39 [46] and for unmethylated p16 CpG islands (forward) 59-

TTA TTA GAG GGT GGG GTG GAT TGT-39 and (reverse)

59-CAA CCC CAA ACC ACA AAC ATA A-39. Genomic DNA

of the colon cancer cell line RKO served as positive control in all

reactions. PCR was performed with the HotStarTaq DNA

polymerase kit (Qiagen, Hilden, Germany). Unmethylated p16

was amplified using the following conditions: 95uC for 5 min

followed by 30 cycles of amplification (denaturation at 95uC for

30 s, annealing at 62uC (20.3uC/cycle) for 30 s and elongation at

72uC for 30 s) plus 10 additional cycles of annealing at 53uC and a

final extension at 72uC for 10 min [46]. Methylated p16 and wild

type p16 were amplified in 45 cycles: Initial denaturation at 95uC
for 12 min was followed by 10 cycles of denaturation at 94uC for

45 s, annealing at 68uC (methylated p16) or 60uC (wild type p16)

for 45 s and elongation at 72uC for 45 s. This was followed by 35

cycles of denaturation at 94uC for 45 s, annealing at 63uC for

methylated p16 or 58uC for wild type p16, elongation at 72uC for

45 s and additional a final extension step of 72uC for 10 min.

Results

p53 family-mediated stimulation or degradation of
cutaneous HPV E6 depends on HPV type

We had previously demonstrated the wtp53 family-mediated

degradation of HPV20E6 after ectopic expression of these proteins

in the p53-null cell line H1299 [13]. In the present study we

expressed N-terminal flag-tagged E6 proteins of a number of HPV

types from different genera using the same conditions. These E6

proteins included HPV4, HPV48 and HPV60 of the genus

Gamma-papillomavirus, from genus Beta-papillomavirus HPV5

and HPV20 (both species 1) and HPV38 (species 2), from genus

Alpha-papillomavirus HPV7 (species 1), HPV77 (species 2) and

HPV 27 (species 4), and HPV41E6 of genus Nu-papillomavirus.

Proteins were extracted and Western blot analyses performed

using antibodies against p53, DNp63a and flag for detection of

flag-tagged E6 proteins (Figure 1). Transfection efficiency was

measured by co-expression of b-galactosidase and the protein

loading controlled with b-actin. Expression of both wtp53 and

mutant p53R248W stimulated the expression of HPV4E6,

HPV48E6 and HPV60E6 (genus Gamma-papillomavirus). Co-

expression of HPV4E6 with DNp63a led to a higher stimulation of

the viral E6 when compared to HPV48E6 and HPV60E6, but less

than by p53 (Figure 1A).

The HPV types tested in genus Beta-papillomavirus reacted

differently (Figure 1B). HPV20E6 expression was reduced in the

presence of ectopically expressed wtp53, but protected by both

mutp53R248W and DNp63a expression as previously reported

[13]. This was similar when HPV5E6 was co-expressed with the

respective wtp53, mutp53R248W and DNp63a. HPV38E6 in

contrast, was down-regulated by co-expression of either wtp53 or

DNp63a and stimulated by co-expression of mutp53R248W.

Differential results were also obtained for the HPV types

belonging to genus Alpha-papillomavirus (Figure 1C). HPV7E6

and HPV27E6 were both down-regulated by co-expression with

wtp53, whereas wtp53 expression increased the level of

HPV77E6. Co-expression of mutp53R248W stimulated E6

expression of all three these HPV types, whereas DNp63a co-

expression increased HPV7E6 and HPV27E6, but led to a

decrease in HPV77E6.

Expression levels of HPV41E6 (genus Nu-papillomavirus) were

hardly influenced by co-expression of any of the p53-family

members (Figure 1D). C-terminal flag-tagged HPV20E6 was also

tested. No difference was noted in comparison to the N-terminal

flag-tagged HPV20E6 with respect to the down-regulation by

wtp53, even though the obtained signal was weak (data not

shown). C-terminal HA-tagged protein levels of all HPVE6

proteins could not be detected by Western blot analyses despite

the demonstration of the respective mRNA production by RT-

PCR (Figure 1E).

Degradation of the respective HPV6 proteins
Caspase-3 is required for the degradation of HPV20E6 [13].

The degradation of the respective HPVE6 proteins in the presence

of over-expressed wtp53 may be induced through different

pathways. We therefore expressed the proteins in the p53-null

H1299 cell line in the presence of either a general caspase

inhibitor (Z-VAD-FMK), a calpain inhibitor (calpeptin) or

proteasome inhibitors (MG132 or b-lactone), respectively

(Figure 2). The reduction of HPV20E6 when co-expressed with

wtp53, was eliminated in the presence of the caspase inhibitor Z-

VAD-FMK. Calpeptin, MG132 or b-lactone in contrast, did not

notably influence HPV20E6 levels. Similar observations were

made when co-expressing HPV38E6 and wtp53 (Figure 2A).

Treatment of H1299 transfected cells with proteasome inhibitors

MG132 or b-lactone resulted in an increase of the respective

HPV5E6, HPV7E6 or HPV27E6 protein levels in comparison to

their levels under co-expression with wtp53 in untreated H1299

cells. Caspase-inhibitor Z-VAD-FMK seemed to rescue E6 levels

of HPV5 and HPV7 from over-expressed wtp53, whereas the
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rescue in the case of HPV27E6 was very marginal. Calpeptin

exerted a neutral or slightly negative effect (Figure 2B).

These data also indicate a HPV type difference in relation to the

influence of cellular proteins involved in the degradation of the

respective HPVE6 proteins. The effect is again independent of

phylogenetic grouping.

Figure 1. p53 family-mediated stimulation or degradation of cutaneous HPVE6 is HPV type dependent. Expression of HPVE6 genes in
H1299 cells (p53-null) with co-expression of wtp53, mutp53R248W or DNp63a (1 mg each). HPV types included (A) HPV4E6, 48E6 and 60E6 of genus
Gamma-papillomavirus, (B) HPV5E6, 20E6 and 38E6 from genus Beta-papillomavirus, (C) HPV7E6, 27E6 and 77E6 from genus Alpha-papillomavirus
and (D) HPV41 from genus Nu-papillomavirus. Proteins were analysed by Western blot analyses and levels were quantified by Imagequant.
Histograms represent HPV E6 protein expression normalized against b-actin loading control. Empty vector pcDNA3.1 (+) was co-transfected to
equalize the total amount of transfected DNA. Transfection efficiency was controlled for by b-galactosidase expression. (E) RT-PCR [40,59]
demonstrating the respective mRNA of c-terminal HA-tagged HPVE6 genes.
doi:10.1371/journal.pone.0035540.g001
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Influence of over-expressed wtp53, mtp53R248W and
DNp63a on HPV20E6 in human keratinocytes harbouring
endogenous wtp53

Degradation of HPV20E6 in the presence of ectopically

expressed wtp53 in the p53-null H1299, a small cell lung cancer

cell line, was used as model. This however raises the question

whether similar observations can be made in human keratinocytes

under the influence of endogenous wtp53 and p63. HPV20 does

not readily immortalize primary keratinocytes. Difficulties were

encountered in obtaining sufficient numbers of cultured primary

keratinocytes expressing HPV20E6 for repeat experiments. We

instead used the spontaneously immortalized human keratinocyte

cell line NIKS [42] which also harbours endogenous p53-family

members. Even though we demonstrated HPV20E6 mRNA by

RT-PCR after transient transfection into NIKS cells (Figure S1),

we failed to detect N-terminal flag-tagged HPV20E6 protein in

these cells. We therefore established NIKS cells constitutively

expressing N-terminal flag-tagged HPV20E6 using retroviral

constructs (pLXSN-flagHPV20E6). Cells were pooled after G418

selection. We established and used 4 individual HPV20E6

expressing cell lines in order to cover any influences exerted by

varying chromosomal integration loci. Similar cell lines were

established for N-terminal flag-tagged HPV41E6, HPV27E6,

HPV38E6 and HPV4E6, respectively. mRNA of the respective

E6 genes was demonstrated in each case in these cells by RT-PCR,

but only flagHPV20E6 and flagHPV41E6 proteins were detect-

able by Western blot analyses. We failed to detect expression of C-

terminal HA-tagged E6 protein in pLXSN-HPV20E6-, -HPV4E6-

or -HPV41E6-NIKS cells, respectively.

We restricted all further experiments in this study to the use of

the 4 lines established for pLXSN-flagHPV20E6 for two reasons:

detection of flagHPV20E6 in Western blot analyses and the

differing influence of the p53 family members on its expression.

Equal amounts of wtp53-, mtp53R248W- and DNp63a-

expressing constructs were transfected into the pLXSN-

flagHPV20E6 cells. Expression levels of the respective proteins

were measured in Western blot analyses. Co-transfection of b-

galactosidase controlled for transfection efficiency. Protein expres-

sion was standardized against b-actin and normalized against b-

galactosidase. Ectopically-expressed wtp53 and mutp53R248W

both down-regulated HPV20E6 in the presence of endogenous

p53 when compared to the flagHPV20E6 protein level (Figure 3).

These results are contrary to observations made in H1299 cells in

the absence of endogenous wtp53, where mutp53R248W had a

protective effect [13]. A possible explanation is that tetrameriza-

tion between endogenous wtp53 and mtp53R248W may lead to a

gain of wtp53 function for the mutant p53 protein [26]. Similarly,

ectopic expression of DNp63a at high levels in the keratinocytes

also led to down-regulation of HPV20E6. Here tetramerization of

Figure 2. Degradation of the respective HPVE6 proteins. Wtp53 was co-expressed in H1299 cells with (A) HPV20E6 or HPV38E6, and (B)
HPV5E6, HPV7E6 or HPV27E6. Transfected cells were treated with general caspase inhibitor Z-VAD-FMK (50 mM), calpeptin (calpain inhibitor, 25 mM)
or proteasome inhibitors MG132 (20 mM) or b-lactone (Lactacystin 5 mM) prior to harvesting. Proteins were analysed by Western blot analyses and
protein levels quantified by Imagequant. Histograms represent HPVE6 protein expression normalized against b-actin. Empty vector pcDNA3.1(+) was
co-transfected to equalize total amount of transfected DNA and transfection efficiency was controlled for by b-galactosidase expression.
doi:10.1371/journal.pone.0035540.g002
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endogenous p53 with ectopically expressed DNp63a may have a

neutralizing effect on the latter.

Other cellular factors also exert an influence on HPV20E6
protein expression

Endogenous p53 was partially silenced by transfecting siR-

NAp53 into pLXSN-flagHPV20E6 cells. Total elimination of p53

by siRNA is not possible under experimental conditions [47].

Surprisingly, the level of HPV20E6 was concomitantly down-

regulated in the presence of siRNAp53 in contrast to the negative

controls (untransduced, transfected with control-siRNA or mock

transfected cells) (Figure 4). These data indicate that cellular

factor(s) other than endogenous p53, may be involved in the

degradation of HPV20E6. Transduced cells were then treated

with MG132 to determine whether proteasomal degradation was

involved. This led to a further decrease of HPV20E6 protein after

Figure 3. Influence of over-expressed wtp53, mtp53R248W and DNp63a on HPV20E6 expression in human keratinocytes with
endogenous wtp53. HPV20E6 protein expression in pLXSN-flafHPV20E6-NIKS cells in the presence of wtp53, mtp53R248W or DNp63a (1 mg) as
measured by Western blot analyses. Protein levels were quantified by Imagequant and histograms represent HPVE6 protein expression normalized
against b-actin. Empty vector pcDNA3.1(+) was co-transfected to equalize total amount of transfected DNA and transfection efficiency was controlled
for by b-galactosidase expression.
doi:10.1371/journal.pone.0035540.g003
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transfection with siRNAp53 in comparison to down-regulation in

untreated cell lines. Results point to a sensitivity of this unknown

cellular factor to proteasomal degradation. Interestingly, MG132

treatment alone did not influence endogenous p53 levels, whereas

silencing of the latter by siRNAp53 was strongly augmented under

MG132 treatment and independent of expression of HPV20E6

(Figure 4). We investigated whether other cellular proteins known

to be involved in protein degradation, may be involved in the

down-regulation of HPV20E6 and endogenous p53 in pLXSN-

flagHPV20E6 and control pLXSN cells in the presence or absence

of MG132 (Figure 4). Apaf-1, caspase-3, caspase-9 and caspase-8

were all activated in the presence of MG132 as measured by their

respective cleaved proteins, indicating activation of both extrinsic

and intrinsic apoptotic pathway in both cell lines. Similarly,

LC3BI was activated to LC3BII indicating involvement of

autophagy [48]. Activation of these proteins in the presence of

MG132 has previously been reported [49,50]. The HPV20E6 and

wtp53 levels were minimally reduced under these conditions.

Interestingly, wtp53 expression in MG132 treated cells was

decreased in the presence of HPV20E6 expression when

compared to control cells. We subsequently performed FACS

analyses in order to determine whether an apoptotic effect of these

proteins could lead to the reduction in HV20E6 protein (Figure 5).

The very low rate of apoptosis (range of 2%) measured in both cell

lines, with a slightly higher rate in pLXSN-flagHPV20E6 cells in

comparison to pLXSN cells (p,0.05), was significantly increased

in both cell lines after MG132 treatment (p,0.001). The presence

of siRNAp53 did not influence this apoptosis. Molecular regulators

of apoptosis and autophagy are inter-connected and can be

activated by a variety of death stimuli [51]. These results indicate

that the mere activation of pathways involved in apoptosis or

autophagy did not result in the reduced HPV20E6 and

endogenous p53 protein levels.

Previous studies reported that cutaneous HPVE6 prevented

apoptosis after UV exposure by inducing degradation of the pro-

apoptotic Bak protein and preventing release of AIF from

mitochondria [37,38]. Constitutive Bak was however not degraded

in the presence of HPVE6 [37]. In the present study neither Bak

nor Bax was degraded in the presence of HPV20E6 (Figure 4).

HPV20E6 expression leads to increased proliferation of
keratinocytes

As the low levels of apoptosis did not markedly influence growth

of the pLXSN-flagHPV20E6 cell line, we continued to explore

whether even low level HPV20E6 expression provides a

proliferative advantage to keratinocytes. EdU incorporation into

the cells was used to measure proliferation (Figure 6). Increased

proliferation rate of pLXSN-flagHPV20E6 cells was significantly

higher than in the pLXSN control cells (p,0.05) or untransfected

NIKS cells (p,0.05).

These results prompted us to investigate whether HPV20E6

expression influenced cellular proteins involved in cell cycle

regulation.

HPV20E6 does not influence interaction between cyclin-
D1 and cdk6

An important step in cell cycle control is the complex formation

between cyclin-D1 and the cyclin-dependent kinases cdk4/6 to

drive cells from the early to the late G1 phase of the cell cycle. The

INK4 family of cyclin-dependent kinase inhibitors (including

p16INK4a) dysregulates this step by binding to and inactivating

cyclinD1-cdk4/6 complexes [52]. We investigated whether

HPV20E6 may contribute to cell proliferation by interacting with

cyclin-D1, cdk6 and/or p16INK4a. We performed competitive co-

immunoprecipitation assays between HPV20E6 and these cellular

proteins. Cyclin-D1 and p16INK4a were pulled down by cdk6

antibodies without involvement of HPV20E6 (Figure 7). Interest-

ingly, expression of HPV20E6 increased the protein levels of

cyclin-D1, cdk6 as well as p16INK4a in comparison to the control

pLXSN cells. Inverse co-immunoprecipitation assays excluded

non-specific interactions. Only unmethylated p16 was present in

both pLXSN-flagHPV20E6 and pLXSN cell lines as demonstrat-

ed by methylation specific PCR analyses (Figure S2).

PP2A does not play a role in HPV20E6-induced
keratinocyte proliferation

PP2A is a major serine-phosphatase. SV40 small t-antigen binds

to the A subunit of PP2A by displacing its B subunit. This binding

induces upregulation of cyclin-D1 transcription which leads to cell

transformation [53,54]. We investigated whether HPV20E6 is able

to interact with PP2A in a similar way by performing co-

immunoprecipitation assays. We failed to demonstrate binding

between HPV20E6 with either the AC subunits or the B subunit of

PP2A (data not shown).

c-Jun enhances cell proliferation through the induction of

cyclin-D1 transcription, whereas PP2A represses AP-1 activity by

dephosphorylation of c-Jun on Ser63 [55]. We therefore also

determined the levels of both phosphorylated and un-phosphor-

ylated c-Jun in the pLXSN-flagHPV20E6 cells. The levels of both

forms of c-Jun were increased in the HPV20E6 expressing cells in

comparison to the pLXSN control cells (Figure S3).

pRB is phosphorylated in the presence of HPV20E6
expression

The inactivation of pRB leads to suppression of senescence

allowing the cell to maintain the proliferative state by entry into S-

phase [56]. Phosphorylation of pRB was increased in the presence

of HPV20E6 expression, as demonstrated by western blot analyses

(Figure 8), indicating inactivation of this protein.

Discussion

HPV infection, UV-exposure and mutations in wtp53 have

been considered as interacting factors in the pathogenesis of non-

melanoma skin cancer. DNA of a wide spectrum of HPV types,

mainly of the genera Beta- and Gamma-papillomaviruses has been

demonstrated not only in the malignant lesions, but also in normal

skin [3,4]. Recent data failed to demonstrate HPV transcription in

these lesions thereby posing the question whether these viruses are

actually involved in the pathogenesis of this disease [57]. We have

previously demonstrated that the activation or suppression of a

number of cutaneous HPV promoters by UV-irradiation is type

specific rather than genus- or species-specific [39]. This was

recently confirmed by others [36]. Chronic exposure of HPV20-

and HPV27E6/E7 transgenic mice to UV-irradiation resulted in

the formation of papillomas and malignant lesions of the skin [58].

Our previous studies demonstrated interplay between UV-induced

mutp53R248W, DNp63a and wtp53 in relation to the expression

of HPV20E6. Wtp53 mediated the caspase-3-dependent degra-

dation of HPV20E6 protein [13,40,59]. We now extended these

investigations to other HPV types of the genera Beta-, Gamma-

and Nu-papillomavirus. Co-expression with wtp53 exerted a very

distinct regulation for the individual cutaneous E6 genes. E6

proteins of all types from genus Gamma-papillomavirus tested

(HPV4, HPV48 and HPV 60) were up-regulated by wtp53, in

contrast to the E6 down-regulation of all Beta-papillomavirus

types tested (HPV5, HPV20 and HPV38). Wtp53 down-regulated
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HPV7E6 and HPV27E6, but up-regulated HPV77E6, all from

genus-Alpha-papillomavirus. Mutp53R248W up-regulated expres-

sion of all HPVE6 proteins tested. HPV38E6 and HPV77E6 were

down-regulated by DNp63a whereas all other E6 proteins were

up-regulated. Down-regulation of the respective HPV E6 proteins

was type dependent and mediated either through caspase- and/or

proteasome pathways. HPV41E6 expression remained unaffected

by any of these p53-family members. These data underline the

diversity in intracellular mechanisms exerted by various papillo-

mavirus types, differing not only between genera, but even

between HPV types within a genus.

We had obtained these results by over-expressing the respective

proteins in a p53-null cell line. We now attempted to mimic the in

vivo situation as close as possible by repeating these experiments

using a spontaneously immortalized keratinocyte cell line (NIKS)

harbouring endogenous p53 and p63. Ectopic expression of both

mutp53R248W and DNp63a led to a down-regulation of

HPV20E6 in contrast to our previous data obtained in p53-null

cells, as well as in untransfected pLXSN-flagHPV20E6 cells. The

contact-mutant p53R248W acts as dominant negative after

tetramerization with wtp53. This complex re-localizes to the

nucleus. p63 localizes predominantly to the nucleus in the

presence of wtp53, but forms perinuclear aggregates when

tetramerizing with mutant p53R248W [26]. Re-localization of

these complexes may lead to altered function. An imbalance

between endogenous p53 and p63 in relation to over-expressed

Figure 4. Down-regulation of HPV20E6 is influenced by proteins other than those involved in apoptosis or autophagy. Western blot
analysis of cell lysates from pLXSN-flagHPV20E6- and pLXSN-NIKS cells after transfection with siRNAp53 (10 nM) or siRNA-NK (negative control siRNA,
10 nM) and incubation for 16 h with or without MG132 (10 mm). MG132 treatment induced activation of apaf-1, caspase-8, caspase-9 and caspase-3,
as well as the autophagy marker LC3BII. Histograms represent HPV20E6 and wtp53 protein levels normalized against b-actin.
doi:10.1371/journal.pone.0035540.g004
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mutp53R248W or DNp63a as given in our in vitro system may

have influenced the functions of these proteins.

Endogenous p53 was partially silenced by transfecting siR-

NAp53 into pLXSN-flagHPV20E6 and pLXSN cells. Surprisingly

this resulted in a reduced expression of HPV20E6 as well. MG132

treatment of these cells led to the expected activation of several

cellular proteins involved in both apoptotic and autophagic

pathways, but did not alleviate the down-regulation of HPV20E6.

Partial silencing of p53 by addition of siRNAp53 did not influence

the increased apoptosis in MG132-treated pLXSN-flagHPV20E6

and pLXSN cells as measured by FACS analyses. We therefore

conclude that HPV20E6 expression is modulated by additional,

yet unidentified, cellular protein(s) which are not necessarily

involved in apoptosis or autophagy.

HPV20E6 expression induced proliferation of the pLXSN-

flagHPV20E6 cells. In an attempt to identify cellular proteins

involved in cell cycle control which may be affected by the

expression of HPV20E6, we investigated cyclin-D1, cdk6,

p16INK4a, PP2A and pRB. Cyclin-D1 and ckd6 enhance

keratinocyte proliferation by phosphorylation of down-stream

targets including pRB [60,61]. The increased pLXSN-

flagHPV20E6 proliferation may be a consequence of increased

expression of cell cycle proteins indirectly induced by HPV20E6

expression. However, p16INK4a is active and its expression

Figure 5. HPV20E6 expression itself does not induce apoptosis. pLXSN-flag20E6- or pLXSN- NIKS cells were incubated overnight with MG132
(10 mM). Apoptosis was subsequently measured by flow cytometry of Annexin V-staining cells (Annexin V+/7-AAD-) in three independent
experiments. Apoptosis [Annexin V(+)/7-AAD(2)] was significantly increased in both pLXSN20E6- and pLXSN-NIKS cells after MG132 treatment
(p,0,001), but no significant difference (p = 0,042) was seen between HPV20E6-expressing cells in comparison to controls. Statistical analyses were
performed using the student t-test. * - p,0.05, *** - p,0.001.
doi:10.1371/journal.pone.0035540.g005

Figure 6. HPV20E6 expression increases proliferation. Equal densities of pLXSN-20E6 and pLXSN cells were incubated with 10 mM EdU for
24 hours. EdU-7AAD staining was analysed by FACS for the percentage of proliferating cells as indicated in the histogram. Statistical analyses (student
t-test) of three independent experiments indicate a significant increase in the proliferation rate of pLXSN-20E6 cells (*p,0.05) in comparison to
pLXSN cells and untransduced NIKS cells.
doi:10.1371/journal.pone.0035540.g006
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elevated in our system. We demonstrated binding of p16INK4a to

the CDK complexes which would negatively regulate prolifera-

tion. HPV20E6 did not compete for this interaction of p16INK4a

with cyclin-D1 or cdk6. p16INK4a similarly activates pRB by

preventing its phosphorylation. However, the level of pRB

phosphorylation in the HPV20E6 expressing cells would be

sufficient to override the cytokenetic block induced by the

p16INK4a/pRB pathway [62].

HPV16E7 binds to subunits of PP2A thereby sequestering de-

phosphorylation of down-stream targets involved in proliferation

[63]. PP2A does not seem to be directly involved in our system.

HPV20E6 does not bind either A or B subunits and PP2A in turn

does not influence the phosphorylation of c-Jun which is necessary

for the activation of cyclin-D1 transcription. The levels of both p-

c-Jun and c-Jun were elevated in the HPV20E6 expressing cells.

The p53 and p63 proteins (including p53 mutants) are involved

in a plephora of cellular functions [24,26–28,64]. Many of these

functions are attributed to complex interactions between p53 and

p63 isoforms and their mutants, which in turn influence the

activity of downstream targets involved in development and

proliferation. A delicate balance between protein levels of

individual cellular factors is very important and ratios between

proteins often determine biological outcome [27]. The present

study demonstrates the diverse influence of p53 family members

on individual cutaneous HPVE6 proteins. HPV20E6 expression

also resulted in varying protein levels of factors involved in

proliferation and differentiation. Additional investigation for each

cutaneous HPV type is needed to determine the exact role of

individual viral proteins in relation to cellular factors involved in

proliferation and differentiation. These observations underline the

diverse clinical manifestations induced by individual cutaneous

HPV types.

Supporting Information

Figure S1 RT-PCR demonstrating expression of
HPVE6. N-terminal-flag-HPVE6 of the respective HPV types

was transiently transfected into NIKS cells. Total RNA was

Figure 7. HPV20 E6 does not compete for binding of cdk6 to cyclinD1 or to p16INK4a. Total protein extracts from pLXSN-flag20E6- or
pLXSN-NIKS cells were immuno-precipitated onto cdk6 protein. Protein A agarose precipitated with cdk6 antibody alone served as negative control.
Levels of input proteins flagHPV20E6, p16, cyclinD1 and cdk6 were visualized by western blot analyses. Histograms represent input protein
expression normalized to b-actin serving as loading control.
doi:10.1371/journal.pone.0035540.g007

Figure 8. HPV20E6 increases the expression of ppRB. Western
blot analyses of the protein level of pRb and ppRb in pLXSN-flag20E6
and pLXSN transduced NIKS cells. The pRb and ppRb protein level were
quantified by Imagequant. Histograms were adjusted for b-actin which
was used as a loading control.
doi:10.1371/journal.pone.0035540.g008
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subsequently isolated and used for RT-PCR. GAPDH served as

internal control.

(TIF)

Figure S2 HPV20E6 influenced neither the methylated
nor unmethylated p16. Methylation status of the bisulfied p16

CpG islands was analysed by PCR amplification using primers

specific for methylated or unmethylated p16. RKO was used as

positive control of methylated p16. W (wild type) primers amplify

only DNA which is not chemically modified and serve as a control

for the efficiency of chemical modification. Gene expression was

measured from three independent experiments and histograms

represent unmethylated p16 normalized against wild type p16. No

significant difference (student t-test) was determined between

pLXSN-flag20E6 NIKS cells and the respective controls: (1)

untransfected NIKS cells (2) pLXSN-NIKS cells (3) pLXSN-

flag20E6-NIKS cells and (4) RKO cells.

(TIF)

Figure S3 HPV 20E6 up-regulated c-Jun and p-c-Jun
protein levels. c-Jun and p-c-Jun levels in pLXSN-flag20E6 and

pLXSN-NIKS cells by Western blot analyses. Histograms indicate

levels adjusted against b-actin which served as loading control.

(TIF)

Table S1 Primers for plasmid design. Primers used for

PCR amplification of N-terminal or C-terminal flag-tagged E6

and C-terminal hemagglutinin (HA)-tagged E6. Full-length

genomes were used as template for the E6 amplification of HPV

types 4, 5, 7, 20, 27, 38, 41, 48, 60 and 77.

(DOC)
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