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Abstract

The aim of the present study was to test the hypothesis that the cardiovascular-protective effects of eicosapentaenoic acid
(EPA) may be due, in part, to its ability to stimulate the AMP-activated protein kinase (AMPK)-induced endothelial nitric
oxide synthase (eNOS) activation. The role of AMPK in EPA-induced eNOS phosphorylation was investigated in bovine aortic
endothelial cells (BAEC), in mice deficient of either AMPKa1 or AMPKa2, in eNOS knockout (KO) mice, or in Apo-E/AMPKa1
dual KO mice. EPA-treatment of BAEC increased both AMPK-Thr172 phosphorylation and AMPK activity, which was
accompanied by increased eNOS phosphorylation, NO release, and upregulation of mitochondrial uncoupling protein-2
(UCP-2). Pharmacologic or genetic inhibition of AMPK abolished EPA-enhanced NO release and eNOS phosphorylation in
HUVEC. This effect of EPA was absent in the aortas isolated from either eNOS KO mice or AMPKa1 KO mice fed a high-fat,
high-cholesterol (HFHC) diet. EPA via upregulation of UCP-2 activates AMPKa1 resulting in increased eNOS phosphorylation
and consequent improvement of endothelial function in vivo.
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Introduction

Eicosapentaenoic acid (20:5Delta (5,8,11,14,17); v-3: EPA) is an

v-3 polyunsaturated fatty acid (PUFA), which is abundant in fish

oils. Epidemiological and clinical trials have shown that v-3 fatty

acids, in particular EPA, reduce cardiovascular deaths [1] and

retard the progression of atherosclerosis in coronary patients [2].

The precise mechanism by which fish oils inhibit atherosclerosis is

still unclear, but it may relate to the modulation of lipid

metabolism [3], improvement of vascular endothelial function

[4], enhancement of vascular reactivity and compliance [5],

reduction of cytokine production [6], and inhibition of inflamma-

tory processes [7].

Nitric oxide (NO) is essential for endothelial function.

Decreased NO bioactivity is involved in the pathogenesis of many

cardiovascular disorders such as hypertension, atherosclerosis,

venous bypass graft disease, diabetic vascular disease [8]. There is

evidence that the beneficial effects of EPA may be due to its ability

to augment levels of NO. In diabetic rats, long term oral

administration of EPA may stimulate NO production, and

increased NO levels likely inhibit enhanced cardiac sympathetic

activity in these animals [9]. Similarly, the n-3 fatty acids promote

the synthesis of beneficial NO in the endothelium [10]. In rabbits,

EPA reduces myocardial infarct size, primarily through calcium

channel–mediated mechanisms and partially through NO-medi-

ated mechanisms [11]. Accumulating evidence shows that v-3

PUFA can regulate NOS activity and increase NO synthesis in

endothelial cells and vascular smooth muscle cells [12,13].

However, the mechanisms underlying v-3 PUFA-enhanced NO

release remain poorly understood.

The AMP-activated protein kinase (AMPK) is a heterotrimeric

protein composed of a, b, and c subunits. The a subunit imparts

catalytic activity, while the b subunit contains a glycogen-binding

domain (GBD) that also regulates the activity and the c subunit

forms the broad base of the protein and is required for AMP

binding [14,15]. AMPK is well-conserved among eukaryotic cells

and is expressed by endothelial cells of different origins [16,17,18].

Activation of AMPK requires phosphorylation of Thr172 in the

activation loop of the a subunit [19] and is mediated by at least

two kinases, Peutz-Jeghers syndrome kinase LKB1 [20] and Ca2+/

calmodulin-dependent protein kinase kinase (CaMKK) [21].

AMPK has been shown to mediate angiogenic and anti-

inflammatory effects, which are thought to be due to NO

formation [17,22,23,24]. AMPK is reported to phosphorylate

endothelial nitric oxide synthase (eNOS) at Ser1177 or 1179

[17,22] and enhance the interaction between eNOS and heat

shock protein 90 [25]. Based on these reports, we hypothesized

that the protective effects of EPA on the cardiovascular system
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may be due, in part, to the ability of EPA to stimulate AMPK-

induced eNOS activation and consequently, NO production.

Here, we provide evidence of a novel pathway in which EPA

activates AMPK in endothelial cells through an upregulation of

UCP-2.

Results

EPA induces AMPK phosphorylation and activation
To investigate whether EPA activates AMPK in endothelial

cells, confluent BAEC or HUVEC were treated with varying

concentrations of EPA for 2 to 24 h. AMPK activation was

indirectly assessed by western blot analysis of AMPK phosphor-

ylation at Thr172, which is essential for AMPK activity [26].

Ser79 phosphorylation of ACC, a substrate of AMPK [27], was

also used as an indicator of AMPK activation. As shown in

Figure 1A, the phosphorylation of both AMPK and ACC

gradually increased beginning from 6 h after incubation with

25 mM of EPA and reached peak levels at 24 h in BAEC.

Increased AMPK phosphorylation was associated with elevated

AMPK activity, as measured by the SAMS peptide assay

(Figure 1C). EPA treatment did not alter total levels of AMPK

and ACC, suggesting that EPA-induced phosphorylation of

AMPK and ACC was not due to altered expression of these

proteins. Since EPA activated AMPK in both BAEC and HUVEC

at similar potency (data not shown), we performed most of the

experiments in BAEC.

We next examined the dose-dependent effects of EPA on

AMPK-Thr172 and ACC-Ser79 phosphorylation. EPA did not

affect phosphorylation of AMPK or ACC at a concentration of

5 mM (Figure 1B). In contrast, EPA at 25 mM significantly

enhanced AMPK phosphorylation (Figure 1B). Increasing con-

centrations of EPA (50 and 100 mM) further enhanced AMPK

phosphorylation. The changes in ACC phosphorylation mirrored

those of AMPK. Levels of total AMPK and ACC remained

unchanged at all EPA concentrations tested. Based on these

results, 25 mM appears to be the lowest effective concentration of

EPA. Thus, BAEC were stimulated with 25 mM EPA for 24 h in

subsequent experiments.

EPA-induced eNOS phosphorylation is AMPK-dependent
We had previously demonstrated that AMPK phosphorylates

and activates endothelial nitric oxide synthase (eNOS) in cultured

endothelial cells [23]. Similarly, Zhang et al. [28] demonstrated

that infection of endothelial cells with a recombinant adenovirus

expressing the constitutively active AMPK results in eNOS

activation and increased NO production. Treatment of BAEC

with EPA increased eNOS-Ser1179 phosphorylation, with the

time-course of phosphorylation being very similar to that for

AMPK phosphorylation (Figure 2A). The dose-dependent effects

of EPA on eNOS phosphorylation were also similar to those for

AMPK phosphorylation (Figure 2B). Given that EPA activates

both AMPK and eNOS in BAEC, we then investigated whether

the EPA-stimulated eNOS phosphorylation involves AMPK by

infecting BAEC with adenovirus encoding dominant negative

AMPK (Ad-DN-AMPK). As expected, treatment of control BAEC

(Ad-GFP-infected or non-infected BAEC) with 25 mM EPA for

24 h elicited increased phosphorylation of both AMPK and eNOS

(Figure 2C). In contrast, overexpression of Ad-DN-AMPK

Figure 1. EPA activates AMPK in BAEC. BAEC were treated with (A) 25 mmol/L EPA for the indicated times or (B) varying concentrations of EPA
for 24 h. Lysates (80 mg) were analyzed by western blot for the indicated proteins. The blot is a representative of four blots obtained from four
separate experiments. Corresponding densitometric analyses of phosphorylated AMPK and ACC are shown. *, P,0.05 vs. control groups. C) Confluent
BAECs were treated with vehicle or EPA (25 mmol/L) for 24 hours. AMPK activity was assayed using the SAMS peptide as a substrate. Data presented
are means 6 SD from 3 independent experiments. P,0.05 vs. vehicle.
doi:10.1371/journal.pone.0035508.g001
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completely abolished EPA-induced eNOS Ser1179 (equal to

Ser1177 in human) phosphorylation.

Both Akt and AMPK are capable of phosphorylating eNOS at

Ser1179 [29], prompting us to determine whether Akt may also

contribute to EPA-enhanced eNOS phosphorylation. As shown in

Figure 2D, EPA did not increase basal Akt phosphorylation at

Ser473, suggesting that EPA-stimulated eNOS phosphorylation

does not require Akt but depends on activation of AMPK.

EPA-enhanced NO production is AMPK-dependent
Next, we determined if EPA-induced eNOS phosphorylation is

associated with increased NO release. EPA significantly increased

NO release, which was inhibited by L-NAME, a non-selective

inhibitor of NOS (Figure 2E). In addition, inhibition of AMPK

with compound C or through infection with Ad-DN-AMPK

ablated EPA-enhanced NO release (Figure 2E and F). Important-

ly, both treatments reduced AMPK activity in EPA-treated cells to

below control levels (Figure 2E and F).

UCP-2 is required for EPA-induced AMPK
phosphorylation

AMPK is activated by an increase in the AMP/ATP ratios and

by ATP depletion [30]. Because intracellular ATP production rests

mainly on mitochondrial DY [31], we tested the effect of EPA on

the expression of the mitochondrial proton carrier, uncoupling

protein 2 (UCP-2). UCP-2 levels were quantified in BAEC treated

with 25 mM of EPA for up to 24 h. The increase in UCP-2 protein

occurred by 5.5 h and appeared to reach a plateau by 24 h

(Figure 3A).

We next determined if genetic inhibition of UCP-2 altered EPA-

induced AMPK activation. Since siRNA for bovine UCP-2 was

not available, we performed these experiments in HUVEC. As

shown in Figure 3B, transfection of UCP-2 siRNA but not

scrambled siRNA markedly reduced the basal levels of UCP-2 in

HUVEC, implying that HUVEC expressed detectable levels of

UCP-2 sensitive to UCP-2-specific siRNA. Moreover, transfection

of UCP-2-specific siRNA but not scrambled siRNA significantly

Figure 2. AMPK mediates EPA-induced eNOS phosphorylation and NO production in BAEC. BAEC were treated with (A) EPA 25 mmol/L
for the indicated times or (B) varying concentrations of EPA for 24 h. Lysates were analyzed by western blot for the indicated proteins. The blot is a
representative of four blots obtained from four separate experiments. C) Western blot of phosphorylated AMPK and eNOS in EPA-stimulated BAEC
infected with adenoviruses encoding GFP or Ad-DN-AMPK. D) Phosphorylation of Akt in EPA-stimulated BAEC. The data in C and D represent results
of 3 separate experiments. For A–D, corresponding densitometric analyses are shown. *P,0.05 vs. control. E) NO release in EPA-stimulated BAEC.
BAEC were treated with compound C (AMPK inhibitor) (20 mmol/L), DMSO (vehicle), or L-NAME (NOS inhibitor) (0.1 mM) for 30 min prior to
stimulation with EPA. n = 4 for each treatment group. *P,0.05 vs. control; #P,0.05 vs. EPA. F) NO release by EPA-stimulated BAEC infected with Ad-
DN-AMPK (50 multiplicities of infection) or Ad-GFP (control). *P,0.05 vs. non EPA-treated, Ad-GFP group; #P,0.05 vs. EPA-treated, Ad-GFP group. For
A and B, the corresponding AMPK activity is shown in the lower panel.
doi:10.1371/journal.pone.0035508.g002
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abolished EPA-induced UCP-2 expression in HUVEC (Figure 3C).

Consistent with these results, siRNA-mediated knockdown of

UCP-2 abolished EPA-enhanced AMPK phosphorylation, while

scrambled siRNA had no effect (Figure 3C). Further, infection of

BAEC with adenovirus encoding constitutively active UCP-2 (Ad-

CA-UCP-2) significantly increased AMPK phosphorylation

(Figure 3C), indicating that UCP-2 expression was able to activate

AMPK in BAEC. On the other hand, and infection of HUVEC

with Ad-DN-AMPK did not alter EPA-induced UCP-2 upregula-

tion (Figure 3D). These data indicate that UCP-2 might be

required for EPA-induced AMPK activation in endothelial cells.

Because AMPK is highly sensitive to small changes in the

intracellular ATP/ADP ratio [14], we explored whether EPA

induces alterations in ATP/ADP through upregulation of UCP-2.

To test this possibility, HUVEC were transfected with UCP-2

siRNA or control siRNA, then treated with 25 mM EPA for 24 h.

Some HUVEC were co-transfected with Ad-DN-AMPK (or with

Ad-GFP as a control) to account for slight changes in intracellular

ATP levels due to AMPK activation. We found that EPA

significantly decreased intracellular ATP/ADP and that UCP-2-

specific siRNA blocked this effect in both Ad-DN-AMPK-

transfected HUVEC and untransfected HUVEC (Figure 3E).

Thus, reductions in cellular ATP levels by EPA may contribute to

AMPK activation.

EPA stimulates UCP-2 expression partly via a PPARc-
mediated pathway

Thiazolidinediones, which are potent peroxisome proliferator-

activated receptor-c (PPARc) agonists, have been shown to

increase expression of UCP-2 in several tissues [32], leading to

the proposal that PPARc mediates changes in UCP-2 expression

[33]. To test whether PPARc was required for EPA-induced

UCP-2 expression, we compared UCP-2 expression among BAEC

Figure 3. EPA induces AMPK phosphorylation through UCP-2-dependent ATP inhibition. A) Time course of EPA upregulation of UCP-2.
BAEC were incubated with 25 mM EPA for various amounts of time. After the appropriate incubation time, cells were lysed and UCP-2 protein levels
were measured as described. n = 4, *P,0.05; **P,0.01 vs. 0 h time point. B) UCP-2 siRNA significantly suppressed basal UCP-2 protein levels. HUVEC
were incubated with UCP-2-specific siRNA, scrambled siRNA, EPA and its vehicle BSA for 24 h followed by analysis of UCP-2 protein levels. C) Western
blot analysis of AMPK and UCP-2 in EPA-stimulated HUVEC. HUVECs were pretreated with UCP-2-specific siRNA (1 mg/30-mm dish), scrambled siRNA,
or siRNA transfection reagent. Alternatively, a subset was infected with Ad-CA-UCP-2 or Ad-GFP (control) prior to stimulation. The blot is a
representative of four blots obtained from four separate experiments. D) Western blot analysis of UCP-2 in EPA-stimulated HUVEC infected with Ad-
DN-AMPK (50 multiplicities of infection). Cells left non-infected (non-ad) or infected with Ad-GFP served as controls. The data represent results of
three separate experiments. For C and D, corresponding densitometric analyses are shown. E) Intracellular ATP/ADP ratio in EPA-stimulated cultures
pretreated with scrambled or UCP-2-specific siRNA. Results are expressed as mean 6 SD from three independent experiments conducted in triplicate.
*P,0.05; **P,0.01 vs. control; #P,0.05 vs. EPA/scrambled siRNA.
doi:10.1371/journal.pone.0035508.g003
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treated with EPA, Wy14643, or rosiglitazone for 24 h. Rosiglita-

zone, a PPARc agonist, elicited a large increase in UCP-2 protein

levels (,5.2-fold, P,0.05). This increase was of a slightly greater

magnitude to that seen with EPA (Figure 4A). The other PPARa
agonist, Wy14643, resulted in a moderate increase in UCP-2 levels

(,1.5-fold, P,0.05). Treatment of BAEC with GW9662, an

antagonist of PPARc, partially abrogated the stimulatory effect of

EPA on UCP-2 protein expression (Figure 4B), while the PPARa
antagonist MK-886 had no effect on UCP-2 expression. These

data suggest that EPA-induced upregulation of UCP-2 may be

mediated, in part, by PPARc.

To further verify that EPA increases endothelial UCP-2

expression and AMPK activation through PPARc-dependent

signaling, HUVEC were transfected with PPARc-specific siRNA

and assayed for PPARc expression, UCP-2 expression, and

AMPK phosphorylation in the presence of EPA. Western blotting

verified that PPARc expression was selectively and significantly

reduced by the cognate PPARc siRNA duplex compared with

scrambled siRNA (Figure 4C). Importantly, PPARc siRNA-

transfected cells displayed a significant reduction in EPA-induced

UCP-2 expression and AMPK phosphorylation compared with

mock-transfected cells (Figure 4C).

EPA induces UCP-2 expression and AMPK a1-mediated
eNOS phosphorylation in vivo

To determine whether EPA activates AMPK in vasculature,

C57BL/6J mice were given EPA (500 mg/kg/d in drinking water)

for 4 months, and aortic levels of AMPK, ACC, and eNOS

phosphorylation and UCP-2 protein expression were determined.

As shown in Figure 5A, levels of Thr172-phosphorylated AMPK

were significantly increased in EPA-treated animals. The phos-

phorylation of ACC and eNOS was also elevated to a similar

degree as that for AMPK.

We also investigated if AMPK mediates the effects of EPA in an

isoform-specific manner. As demonstrated in Figure 5B, admin-

istration of EPA for 4 months significantly increased the levels of

Ser1177-phosphorylated eNOS in aortas from WT and AMPKa2

KO mice. However, EPA activation of eNOS phosphorylation

was not observed in AMPKa1 KO animals, indicating that EPA-

induced eNOS phosphorylation is mainly mediated by AMPK a1.

Role of AMPK in EPA-enhanced endothelium-dependent
vasorelaxation in Apo-E2/2 mice aortas

Next, to investigate the role of AMPK in endothelial function,

we tested the effect of EPA, AICAR, and compound C on

endothelium-dependent vasoreactivity under ex-vivo conditions.

Acetylcholine (Ach) induced concentration-dependent arterial

vasodilatation in all groups (Figure 6A). Ach-induced vasodilata-

tion was markedly attenuated in Apo-E KO mice, with the

maximum relaxation response of arteries being 44.265.4% and

that from wild type mice being 85.6610.5% (n = 4 per group,

P,0.01). It should be noted that, following treatment with AICAR

or EPA, Ach-induced vasodilatation in aortas from Apo-E KO

mice was significantly improved. In contrast, inhibition of AMPK

with compound C abolished EPA-stimulated increases in Ach-

induced relaxation in this group, where the maximal relaxation

was 76.465.5% for EPA alone and 52.967.3% in the presence of

compound C (Figure 6A). These data suggest that AMPK might

play an important role in enhanced endothelial function elicited by

EPA.

To further substantiate the role of AMPKa1 in EPA-induced

improvement in endothelium function, we assayed the effects of

EPA in endothelium -dependent and –independent vasorelaxation

in aortas isolated from Apo-E or Apo E/AMPKa1 dual KO mice.

As illustrated in Figure 6B, the endothelium-dependent relaxation

in response to Ach was significantly reduced in the aortas of Apo-

Figure 4. EPA stimulates UCP-2 expression via a PPARc-mediated pathway in BAEC. A, B) Western blot analysis of UCP-2 in EPA-
stimulated BAEC pretreated with 10 mmol/L Wy14643 (PPARa agonist), 10 mmol/L rosiglitazone (PPARc agonist), 10 mmol/L MK886 (PPARa
antagonist), or 10 mmol/L GW9662 (PPARc antagonist). *P,0.05 vs. control; **P,0.01 vs. control; #P,0.05 vs. EPA. C) Western blot analysis of AMPK,
UCP-2, and PPARc in EPA-stimulated HUVEC transfected with PPARc siRNA or scrambled siRNA for 48 h. *P,0.05 vs. control; #P,0.05 vs. scrambled
siRNA + EPA. For A–C, the blot is a representative of four blots obtained from four separate experiments, and the corresponding densitometric
analyses are shown.
doi:10.1371/journal.pone.0035508.g004
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Figure 5. EPA upregulates UCP-2 and activates AMPK in mice. A) Western blot analysis of phosphorylated AMPK, ACC, and eNOS in the
thoracic aorta of mice receiving EPA or DMSO (vehicle) in their drinking water for 16 weeks (n = 3 for each group). Corresponding densitometric
analyses are shown. *P,0.05 vs. control. B) Western blot analysis of eNOS phosphorylation in wild type (WT), AMPKa1 knock out (KO), and AMPKa2
KO mice receiving EPA for 16 weeks (n = 3 for each group). The relative p-eNOS/eNOS ratios are shown. *P,0.05 vs. non-treated WT; #P,0.05 vs. EPA-
treated WT. *P,0.05 vs. control; **P,0.01 vs. control.
doi:10.1371/journal.pone.0035508.g005

Figure 6. Both AMPK a1 and NO are required for EPA-enhanced endothelium-dependent vasodilatation in ex vivo or in vivo. A)
Endothelium-dependent relaxation of the aortic rings in response to acetylcholine (Ach) from wild type or Apo-E2/2 mice. Aortic rings were
pretreated 6 compound C, then incubated with EPA or AICAR (n = 4 for each group). Each data point represents relaxation expressed as a percentage
of the value obtained for phenylephrine-preconstricted aorta. *P,0.05 vs. wild type; **P,0.01 vs. wild type; #P,0.05 vs. Apo-E2/2; P,0.05 vs. Apo-
E2/2 + EPA. B) AMPKa1 and eNOS are required for EPA-induced amelioration of endothelium function. Aortic rings extracted from Apo-E KO, Apo-E/
AMPKa1 dual KO or eNOS KO mice were incubated with or without EPA (25 mM) for 24 h in EBM. The endothelium-dependent relaxation were
assayed by the addition of acetylcholine at concentrations indicated (n = 4 for each group). *P,0.05; **P,0.01 vs. Apo-E2/2 mice.
doi:10.1371/journal.pone.0035508.g006
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E/AMPKa1 dual KO mice when compared with those of Apo-E

KO mice. Further, EPA significantly increased Ach-induced

endothelium-dependent relaxation in Apo-E KO but not in the

aortas from Apo-E/AMPKa1 dual KO mice (Figure 6B),

suggesting that AMPKa1 was required for EPA-enhanced

endothelium-dependent vasorelaxation ex vivo.

To further determine the contribution of eNOS in EPA-

enhanced relaxation, we next determined the effect of EPA in the

aortas from eNOS KO mice. As expected, endothelium-

dependent relaxation in response to Ach was minimal

(Figure 6B). In addition, EPA at 25 mM did not alter Ach-induced

relaxation in the aortas from eNOS KO mice. As endothelium-

independent vasorelaxation caused by sodium nitroprusside were

similar among Apo-E KO, eNOS KO, and Apo-E/AMPK a1

KO (data not shown). Overall, our results implied that eNOS was

required for EPA-enhanced endothelium-dependent relaxation at

the doses tested.

Discussion

AMPK is activated by a rise in AMP and a decrease in ATP,

both of which occur by inhibiting ATP production or accelerating

ATP consumption [14]. The uncoupling proteins (UCP1, UCP-2,

and UCP3) are mitochondrial transporters that are capable of

dissipating the proton gradient and increasing thermogenesis,

while reducing the efficiency of ATP synthesis [34]. Since AMPK

is potently stimulated by depletion of intracellular ATP (or

increased AMP:ATP) resulting from the upregulation of UCP-2 in

target tissues [35], a possible functional link between these two

intracellular systems has emerged. In the present study, we have

for the first time provided evidence that EPA via UCP-2

expression increases NO release and endothelial function via

AMPK activation in vivo. The beneficial effects of EPA appear

independent of serum lipids and EPA via AMPK activation exerts

a direct vasoprotective effect. Furthermore, we have characterized

that UCP-2 mediates AMPK responses to EPA in endothelial cells.

Indeed, our data reveal that EPA significantly increases UCP-2

protein expression and AMPK phosphorylation both in vitro and in

vivo. The upregulation of UCP-2 by EPA is consistent with the

findings reported by Armstrong et al. [36] Moreover, all classes of

unsaturated FFA and/or their metabolites have been shown to

upregulate UCP-2 mRNA in cultured cells [37,38]. Indeed,

siRNA-mediated knockdown of UCP-2 protein blocked EPA

stimulation of AMPK phosphorylation, and overexpression of

UCP-2 directly increased AMPK phosphorylation. These findings

support a role for UCP-2 in EPA-induced activation of AMPK.

The mechanism by which EPA increases UCP-2 expression

remains unclear. We observed a significant increase in UCP-2

expression after exposure to EPA or PPARc agonist (rosiglitazone),

while only modest increases in UCP-2 expression were observed

with the PPARa agonist (Wy14643). The PPARc antagonist

(GW9662) but not the PPARa antagonist (MK-886) significantly

blocked EPA-induced upregulation of UCP-2. These results could

be further substantiated using specific PPARc siRNA. Together,

these data suggest that EPA induction of UCP-2 expression was

mediated partly by PPARc.

Another important observation of the present study is that

chronic EPA supplementation significantly increased eNOS

Ser1177 phosphorylation, NO release, and Ach-induced endothe-

lium-dependent relaxation. Further, we have provided evidence

that AMPK was required for increased NO bioactivity. Finally, we

have shown that AMPK might have direct vaso-protective effects

as EPA supplementation improves endothelial function without

altering lipids in serum. Our results strongly imply that a direct

activation of AMPK in endothelial cells might have broad

physiological effects, leading to improvement of endothelial

function. In addition to activating eNOS, activated AMPK

increases fatty acid oxidation by phosphorylating and inhibiting

ACC, which serves to decrease the concentrations of malonyl-CoA

[39]. Decreased malonyl-CoA could, in turn, inhibit the

accumulation of lipids associated with endothelial dysfunction,

which is the precursor of atherosclerosis [40]. Activation of AMPK

also decreases fatty acid incorporation into glycerolipids, either

secondary to its effect on fatty acid oxidation or through its ability

to phosphorylate and inhibit sn-glycerophosphate acyltransferase,

the first committed enzyme in diacylglycerol and triglyceride

synthesis [41]. An additional benefit of endothelial AMPK activity

is that it may inhibit glycerol-3-phosphate acyltransferase, which is

required for the de novo synthesis of diacylglycerol [41]. In this way,

AMPK may lessen endothelial diacylglycerol production (and thus

PKC activation) by diminishing availability of the FFA substrate

for its synthesis and by directly inhibiting the enzyme which

catalyzes its synthesis. The importance of AMPK in the

development of endothelial dysfunction and atherosclerosis is best

demonstrated by recent studies showing that metformin, one of the

most used anti-diabetic drugs which was recently to exert its

therapeutic effect in diabetes by activating AMPK [42,43], has

been shown to improve vascular functions and to dramatically

reduce cardiovascular endpoints and mortality for type II diabetic

patients in large scale clinical trials [44,45,46].

In summary, we have uncovered a novel pathway by which the

v-3 fatty acid EPA activates AMPK in endothelial cells. This

pathway, which relies on UCP-2 as a mediator of AMPK

activation, stimulates NO production through eNOS phosphory-

lation. Thus, AMPK activation may help account for the

beneficial effects of fish oil on endothelial function and

atherosclerosis.

Materials and Methods

Materials
Bovine aortic endothelial cells (BAEC) and cell culture media

were obtained from Clonetics Inc. (Walkersville, MD). Human

umbilical vein endothelial cells (HUVEC) and cell culture media

were purchased from Cascade Biologics (Portland, OR). FFA-free

bovine serum albumin (BSA), palmitic acid, oleic acid, GW9662,

and MK-886 were obtained from Sigma (St. Louis, MO).

Wy14643 and rosiglitazone were obtained from Cayman Chem-

ical Co. (Ann Arbor, Michigan, USA), and 5-aminoimidazole-4-

carboxamide-1-b-D-ribofuranoside (AICAR) was purchased from

Toronto Research Chemicals, Inc (Toronto, Canada). Antibodies

against phospho-acetyl-CoA carboxylase (ACC) (Ser79), phospho-

AMPK (Thr172), AMPK, and phospho-eNOS (Ser1177) were

purchased from Cell Signaling Inc. (Beverly, MA). The antibodies

against ACC were obtained from Alpha Diagnostic International,

Inc. (San Antonio, TX). All other chemicals and organic solvents

were of the highest grade and were obtained from Sigma.

Animals
To generate Apo-E/AMPK dual knockout (KO) mice, Apo-E

KO mice obtained from Jackson Labs were crossbred for at least 5

generation with the mice deficient of AMPK a1. Deficiency of

both Apo-E and AMPK a1 was confirmed by both RT-PCR and

western blots by using the specific antibody against AMPK a1. As

both AMPK KO mice and Apo-E KO had extensively been

backcrossed to the C57BL6 background, C57BL6 mice aged 8-

months were used as wild type control (WT) in the study. All

animal protocols were approved by the Institutional Animal Care
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and Use Committee at University of Oklahoma Health Sciences

Center.

Cell culture, addition of EPA and adenoviral infection
BAEC were grown in EBM supplemented with 2% fetal bovine

serum (FBS). HUVEC were maintained in Medium 200

supplemented with a low serum growth supplement (LSGS) before

use. All culture media were supplemented with both penicillin (100

Units/ml) and streptomycin (100 mg/ml). Cells between passages 5

and 10 were used for all experiments. All cells were incubated in a

humidified atmosphere of 5% CO2/95% air at 37uC. The fatty

acids were added to the cell cultures coupled to fatty acid-free BSA

in the ratio of 2 mol of fatty acid to 1 mol of albumin [47]. When

the ECs were 90% confluent, the maintenance medium was

removed and cells were treated with EPA (0 to 100 mmol/L), in

medium with 2% FCS for 0 to 24 h. In other studies, BAEC or

HUVEC were infected with adenoviruses encoding green

fluorescence protein (GFP) as a control (Ad-GFP), constitutively

active human UCP2 (Ad-CA-UCP2), or a dominant negative

mutant form of AMPK alpha (Ad-DN-AMPK). The AMPK-DN

adenoviral vector was constructed from AMPK bearing a

mutation altering lysine 45 to arginine (K45R) as described

previously [42,48]. Infection was performed in 80% confluent

cultures with media containing 0.1% FCS and recombinant

adenovirus at a multiplicity of infection of 50. Cells were further

incubated with EBM for additional 24 h (HUVEC) or 48 h

(BAEC) before experimentation. Using these conditions, infection

efficiency was typically at least 80%, as determined by GFP

expression.

SiRNA silencing of PPARc or UCP2 in HUVEC
HUVEC (passages 3–5) were grown in antibiotic free-EGM-2

medium containing 2% FBS until 70% confluence and transfected

with human-specific PPARc siRNA, UCP2 siRNA, or corre-

sponding scrambled siRNA for 48 h using LipofectamineTM 2000

(Invitrogen) according to the manufacturer’s instructions. The final

concentration of siRNA was 200 nM.

Measurement of nitric oxide production
For NO detection, BAEC grown in 24-well plates were

incubated for 30 min in the presence of 15 mM 4,5-diaminofluor-

escein diacetate (DAF-2 DA) in PBS or in PBS alone (control) in

the dark at 37uC. Cells were then washed with PBS to remove

excessive DAF-2 DA, and the change in fluorescence was recorded

for 15 min at room temperature using a microplate reader (FL

600, Bio-Tek) with the excitation wavelength set at 485 nm and

the emission wavelength set at 530 nm. Changes in fluorescence

were also visualized with a fluorescence microscope (Olympus

IX71), and images were captured for analysis [49].

Determination of adenine nucleotides
HUVEC were cultured in 6-well plates with control siRNA or

UCP2 siRNA for 48 h, treated with EPA or vehicle for 24 h,

washed with PBS, and scraped in 0.3 ml of PBS. ATP and ADP

were then measured in quadruplicate by a luminometric method

as described elsewhere [50].

Western blot analysis
BAEC or HUVEC and thawed mouse aortas were lysed in cold

RIPA buffer. Protein concentrations were determined with a

bicinchoninic acid (BCA) protein assay system (Pierce, Rockford,

IL). Proteins were subjected to Western blots using ECL-Plus, as

described previously [42]. Relative PPARc protein expression was

measured in nuclear extracts from HUVEC as previously detailed

[51]. The intensity (area6density) of the individual bands on

Western blots was measured by densitometry (model GS-700,

Imaging Densitometer; Bio-Rad). The background was subtracted

from the calculated area.

AMPK activity assay
AMPK activity was assayed using the SAMS peptide, as

previously described [48]. The activity was determined in the

presence and absence of AMP (200 mM). AMPK activity was

calculated by determining the difference in activity between both

conditions.

Measurement of endothelium-dependent and
endothelium-independent vasorelaxation

Aortic rings (3–4 mm in length) extracted from C57BL6 aged 8-

weeks, 20-weeks, 4-months or 8-months (wild type, WT), Apo-E

KO aged 8-months, Apo-E/AMPK dual KO mice (8-month old)

or eNOS KO (8-week old) were further incubated with EPA

(25 mM) or AICAR (2 mM) in endothelial cell basal media (EBM)

for 24 h. After that, aortic rings were pre-constricted with

phenylephrine in organ chambers (PowerLab, AD Instruments,

Colorado Springs, CO). Endothelium-dependent and independent

vasodilation responses were determined in the presence of

acetylcholine (0.01 to 100 mM) and SNP (0.0001 to 1 mM),

respectively. When indicated, compound C (20 mM) were added

30 min prior to addition of EPA.

Statistics
Statistical comparisons of vasodilation were performed using a

two-way ANOVA. Intergroup differences were analyzed using

Bonferroni’s post test. Analysis of time-course studies was

performed with repeated measures ANOVA. All other results

were analyzed with one-way ANOVA. Values are expressed as

mean 6 SD. P values less than 0.05 were considered as significant.
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