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Abstract

Background: The inflammatory response plays a critical role in hypertension-induced cardiac remodeling. We aimed to
study how interaction among inflammatory cells causes inflammatory responses in the process of hypertensive cardiac
fibrosis.

Methodology/Principal Findings: Infusion of angiotensin II (Ang II, 1500 ng/kg/min) in mice rapidly induced the expression
of interferon c (IFN-c) and leukocytes infiltration into the heart. To determine the role of IFN-c on cardiac inflammation and
remodeling, both wild-type (WT) and IFN-c-knockout (KO) mice were infused Ang II for 7 days, and were found an equal
blood pressure increase. However, knockout of IFN-c prevented Ang II-induced: 1) infiltration of macrophages and T cells
into cardiac tissue; 2) expression of tumor necrosis factor a and monocyte chemoattractant protein 1 (MCP-1), and 3) cardiac
fibrosis, including the expression of a-smooth muscle actin and collagen I (all p,0.05). Cultured T cells or macrophages
alone expressed very low level of IFN-c, however, co-culture of T cells and macrophages increased IFN-c expression by
19.860.95 folds (vs. WT macrophage, p,0.001) and 20.9 6 2.09 folds (vs. WT T cells, p,0.001). In vitro co-culture studies
using T cells and macrophages from WT or IFN-c KO mice demonstrated that T cells were primary source for IFN-c
production. Co-culture of WT macrophages with WT T cells, but not with IFN-c-knockout T cells, increased IFN-c production
(p,0.01). Moreover, IFN-c produced by T cells amplified MCP-1 expression in macrophages and stimulated macrophage
migration.

Conclusions/Significance: Reciprocal interaction between macrophages and T cells in heart stimulates IFN-c expression,
leading to increased MCP-1 expression in macrophages, which results a forward-feed recruitment of macrophages, thus
contributing to Ang II-induced cardiac inflammation and fibrosis.
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Introduction

Hypertension is a multi-factorial chronic inflammatory disease.

It induces cardiac remodeling, which is characterized by

inflammation, fibrosis and hypertrophy, a major cause of heart

failure. In hypertension stage, damaged vasculature release

inflammatory signals to recruit leukocytes into cardiac tissues,

and then initiate fibrosis cascade [1]. The interaction between

these inflammatory cells is complex and is still largely unknown.

The renin-angiotensin system, especially angiotensin II (Ang II),

plays a major role in inflammation and cardiac fibrosis [2]. Ang II

can directly or indirectly activate different signaling pathways to

trigger the inflammatory response and fibrosis in hypertension [3].

Several studies point to a role for the immune system in Ang II–

dependent hypertension and its complications. Blockade of

inflammatory responses blunted the chronic hypertensive response

to Ang II, thus reducing cardiac hypertrophy [4]. Moreover,

emerging evidence shows that activated effector T cells do not

simply accompany hypertension but rather support a role of

inflammation in this disease [5]. Co-stimulation of T cells via B7

ligands was found essential for the development of hypertension

[6]. Ang II infusion in rats stimulated a T helper 1 (Th1) immune

profile in splenocytes, which could be suppressed by the Ang II

type I receptor (AT1R) blocker olmesartan but not by hydralazine,

even the two treatments lowered blood pressure to a similar extent

[7]. Th1 but not Th2 immune responses were positively associated

with both outward vascular remodeling and intimal expansion of

ascending thoracic aortic aneurysm [8]. However, the specific role

of interaction of T cells and the macrophage on inflammatory

response and cardiac fibrosis remains unclear.

IFN-c is produced by activated T cells, macrophages or

dendritic cells [9] and is a potent activator of macrophage and

Th1 responses and production of inflammatory cytokines [10].

IFN-c can augment [11] or suppress [12] autoimmunity and the
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associated abnormalities in context- and disease-specific manners.

Function of different cellular sources of IFN-c in different types

and phases of immune response is multifarious. In renovascular

hypertension models, endogenously increased Ang II production

induced T-lymphocyte secretion of IFN-c that induced a switch

from stable to vulnerable plaques [13]. Furthermore, the

expression of both tumor necrosis factor a (TNF-a) and IFN-c
secreted by T cells was increased in mice with Ang II-induced

hypertension [5]. However, the exact role of IFN-c, such as the

cellular sources for its production and its effector cells, in Ang II-

induced inflammation and remodeling remains unclear.

In this study, we aimed to study the role of interaction between

T cells and macrophages in regulating inflammatory responses in

cardiac inflammation and fibrosis induced by Ang II infusion. We

found IFN-c deficiency in mice prevented Ang II-induced

inflammatory cells infiltration and cardiac fibrosis. The underlie

mechanism involves a reciprocal interaction between T cells and

macrophages to stimulate IFN-c and MCP-1 production in T cells

and macrophages respectively, which results a forward-feed

recruitment of macrophages.

Results

IFN-c Expression Is Increased in Ang II-infused Hearts
We have reported previously that Ang II infusion stimulates

cardiac inflammation and fibrosis [14,15,16], we assessed whether

IFN-c is expressed in the process of Ang II-induced hypertensive

cardiac inflammation and fibrosis. Compared with saline-treated

mice, Ang II infusion significantly increased IFN-c positive cells in

left-ventricle tissues of WT mice at day 7 after infusion (Figure 1A).

The mRNA expression of IFN-c was also significantly higher in

Ang II-treated mice than that of in saline-treated controls at day 1,

3 or 7 after infusion (Figure 1B). To examine if Ang II induces T

lymphocytes infiltration into hearts, we used antibodies against

CD45 or CD3e (T cell marker) to perform flow cytometry analysis.

Flow cytometry analysis revealed that Ang II induced CD45+

leukocytes and CD3e+ T cells infiltration as early as 1 day of Ang

II infusion (Figure 1C). To determine the types of cell producing

IFN-c in Ang II-treated heart, we used antibodies against IFN-c,

F4/80 (macrophage), CD3e (T cell), CD4 or CD8 to perform flow

cytometry analysis. Flow cytometry analysis revealed that IFN-c
was primarily produced by CD3e+ T cells (both CD4 and CD8

positive cells) in Ang II-treated hearts (Figure 1D), although

macrophages could also produce IFN-c at a lower level.

Knockout of IFN-c Reduces Ang II-induced Cardiac
Fibrosis

To determine whether IFN-c has a biological role in Ang II-

induced hypertensive cardiac inflammation and remodeling, we

used IFN-c-knockout (IFN-c KO) mice. After 7-day Ang II

infusion, blood pressure increased equally in WT and IFN-c-KO

mice, and baseline systolic blood pressure was also similar in both

WT and IFN-c-KO mice (Table 1, WT sham 101.363.9 mmHg

vs. WT Ang II 156.266.1 mmHg, p,0.05; IFN-c KO sham

110.561.6 mmHg vs. IFN-c KO Ang II 149.8614.8 mmHg,

p,0.05). We next assessed the left ventricular (LV) hypertrophy

after Ang II-infusion using HW/BW ratios. WT and IFN-c KO

mice had similar ratios under baseline conditions (Table 1). After

Ang II infusion for 7 days, there was no significant change in

HW/BW ratios in both WT and IFN-c KO mice (Table 1). We

also used echocardiography to evaluate LV size and function, but

there was no difference between baseline and Ang II infusion for

7 days (data not shown). These results indicated that short period

Ang II infusion (7 days) is not sufficient to cause cardiac

hypertrophy.

We then next determined the role of IFN-c in cardiac fibrosis.

Masson’s trichrome staining was performed to evaluate the degree

of cardiac fibrosis. Compared with saline-treated mice, Ang-II-

treated mice developed cardiac fibrosis (Masson’s trichrome-

positive area) at day 7 after infusion (Figure 2A). In contrast, Ang

II-induced cardiac fibrosis was significantly reduced in IFN-c-KO

mice. Moreover, knockout of IFN-c also significantly prevented

accumulation of a-SMA-positive cells (a marker of myofibroblast),

expression of a-SMA (at both mRNA and protein levels) in cardiac

tissues (Figure 2B and 2D and 2F). Finally, knockout of IFN-c
significantly reduced collagen I expression at both mRNA and

protein levels (Figure 2C and 2E).

Knockout of IFN-c Suppresses Macrophage Infiltration
and Downregulates TNF-a Expression in Ang II-treated
Hearts

To determine how IFN-c regulates cardiac fibrosis, we

measured inflammatory cells infiltration in Ang II-treated WT

and IFN-c-KO hearts by flow cytometry analysis at day 7. Ang-II-

treated WT hearts showed an increase in F4/80+ macrophages

and CD3e+ T cells infiltration (Figure 3A–C). Ang II treatment

also resulted in an increase in number of Mac-2+ macrophages in

WT hearts, while the number of Mac-2+ macrophages was

significantly less in IFN-c-KO than WT hearts (Figure 3D).

It was reported that peripheral blood T cell secretion of IFN-c
and TNF-a was increased in Ang II-infused WT mice [5]. To

examine the effect of IFN-c on the expression of TNF-a, we

evaluated the expression of TNF-a at the mRNA level at baseline

and 3 days, 7days after Ang II infusion. Ang II-infusion induced

expression of mRNA of TNF-a at early as day 3 and day 7 in WT

mice, however, knockout of IFN-c significantly inhibit the Ang II-

induced expression of TNF-a at day 3 and day 7 (Figure 3E).

Interestingly, knockout of IFN-c had not effect of the expression of

another cytokine MIP-1a(Figure 3E).

It was reported that cell death may involved in inflammation

[17,18], to evaluate if effect of IFN-c on Ang-II-induced

inflammation and fibrosis is involved in cell death, we performed

TUNEL assay in Ang-II-infused hearts. Apoptotic cells were found

in the hearts of both WT and IFN-c KO mice, and there was no

significant difference between the two groups (Figure S1A). The

cell types of the TUNEL positive cells were analysised by HE

staining for serial slide and dual immunofluorescence staining for

Troponin I (cardiomyocyte) & TUNEL. Apoptosis was not found

in cardiomyocytes after Ang II infusion (Figure S1B). Moreover,

we performed serial section analysis of HE staining, the TUNEL

positive cells may be primarily in infiltrated inflammatory cells

(new Figure S1A). These results indicated that the difference in

inflammatory cells infiltration and cytokine expression is not

involved in cell death in Ang II-induced inflammation and fibrosis.

We next examined how IFN-c regulates the inflammatory cells

infiltration into hearts in response to Ang II infusion.

IFN-c Deficiency Decreases MCP-1 Expression In Vivo
It has been reported that MCP-1 may be involved in IFN-c-

primed macrophages recruiting leukocytes [19]. Therefore, we

determined whether IFN-c regulates inflammatory cells infiltration

by promoting MCP-1 expression in Ang II-induced cardiac

fibrosis. To determine the expression of MCP-1 in Ang-II-infused

hearts, immunohistochemical staining was performed, MCP-1 was

predominantly expressed in a-SMA negative cells around

microvessels in Ang-II-infused WT hearts(Figure 4A). To further
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identify the types of cell population responsible for the MCP-1

production in Ang II-infused hearts, we performed double-

immunofluorescence staining using antibodies against MCP-1

and F4/80 (macrophage). We found that MCP-1 was primarily

expressed in macrophages in Ang II treated-hearts in WT mice

while the number of MCP-1 positive cells was significantly less in

IFN-c KO mice (Figure 4B). We next determined the MCP-1

expression at protein and mRNA levels in heart tissue by CBA

Flex set assays and quantitative real-time PCR. As shown in

Figure 4C&D, the Ang II-induced increase in MCP-1 expression

in WT mice was significantly reduced in IFN-c-KO mice.

Therefore, in the absence of IFN-c, MCP-1 expression is impaired

and this may be responsible for reduced leukocytes infiltrating into

cardiac tissues.

Figure 1. Interferon-c (IFN-c) expression is increased and primarily produced by T cells in angiotensin (Ang) II-infused mouse
hearts. A, Immunohistochemical staining of IFN-c in wild type (WT) mice after infusion of Ang II (1500 ng/kg/min) or saline for 7 days. Bar graph
shows semi-quantitative analysis of IFN-c+ cells (n = 4). Magnification: 6200. B, Real-time PCR analysis of IFN-c mRNA expression in WT mice after
saline or Ang II infusion for 1, 3 and 7 days. Data are mean6SEM. * p,0.05 versus WT saline control. C, Inflammatory cells infiltrated very early after
Ang II infusion in WT mice. Flow cytometry analysis of (top panel) CD45+, (bottom panel) CD3e+ cells infiltration of control and Ang II-treated WT at
day 1 and day 7. Results are expressed as the number of CD45+ and CD3e+ cells in 56105 heart cells and represent the means6SEM (right panel;
n = 4). D, T cells are primary sources for IFN-c production. Showed are bar graphs of flow cytometry analysis of cell source of IFN-c in Ang II-treated
hearts using antibodies against CD45, CD3e, F4/80, CD4 or CD8. Data are expressed as means6SEM (n = 5).
doi:10.1371/journal.pone.0035506.g001

Table 1. Body weight, systolic BP and HW/BW ratios.

WT KO WT+Ang II KO+Ang II

Parameters (n = 7) (n = 7) (n = 9) (n = 9)

BW, g 23.0860.47 21.8860.60 21.8560.54 19.8062.49

HW, mg 145.0065.00 130.00610.00 148.5064.63 137.6065.55

BP, mmHg 101.3463.96 110.5561.65 156.2066.13* 149.80614.86*

HW/BW, mg/g6.3160.52 6.4760.61 6.7860.49 7.3660.67

*p,0.05 versus saline-treated group (one-way ANOVA).
Ang II, angiotensin II; BP, blood pressure; BW, body weight; HW, heart weight;
WT, wild type; KO, IFN-c knockout. Data are mean6SEM.
doi:10.1371/journal.pone.0035506.t001
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Figure 2. Knockout of IFN-c reduces Ang II-induced cardiac fibrosis in mouse hearts. A, Representative Masson trichrome staining of heart
sections from WT and IFN-c-knockout (IFN-c-KO) mice (left panel). Bar graph shows quantification of fibrotic areas in histological sections (right panel;
n = 8). Magnification: 640 & 6200. B–C, Immunohistochemistry of protein expression of (B) a-smooth muscle actin (a-SMA) and (C) collagen I in WT
and IFN-c-KO hearts. Bar graph shows quantification of areas of positive cells (right panel; n = 8). Data are mean6SEM. Magnification: 6400. D, Real-
time PCR analysis of a-SMA mRNA expression (n = 5). E, Real-time PCR analysis of collagen I mRNA expression (n = 5). F, Western blots analysis of a-
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Macrophage Stimulates Expression of IFN-c in T cells
That Is Essential for Macrophage Migration

As we showed IFN-c was primarily expressed in T cells, we next

to determine how IFN-c expression is regulated in T cells.

Macrophages and T cells were isolated from WT or IFN-c KO

mice, and used for co-culture experiments. As shown in Figure 5A,

T cells or macrophages alone did not express IFN-c, however, co-

culture of WT T cells and macrophages significantly increased

IFN-c expression (19.860.95 folds, vs. WT macrophage, p,0.001;

20.962.09 folds, vs. WT T cells, p,0.001). Co-culture of IFN-c-

KO T cells with WT macrophages produced significantly lower

level of IFN-c ( p,0.01). These results indicate that IFN-c is

produced by T cells and this process requires macrophages. To

investigate whether macrophage promotes the IFN-c production

of T cells by directly acting on T cells or by secreting soluble

mediators, we incubated T cells either with the supernatant of WT

macrophages (SN Mw) or with WT macrophages (Figure 5A).

Compared with T cells coculture with WT macrophages, SN Mw
produced much lower than IFN-c secretion in T cells, suggesting

direct cell interaction between macrophages and T cells promotes

the expression of IFN-c.

To determine the role of IFN-c in inflammatory cells

infiltration, we performed transwell migration assays (Figure 5B,

up panel) to investigate if IFN-c deficiency reduces macrophage

infiltration. As shown in Figure 5B, T cells or macrophages alone

did not stimulated macrophage migration. Co-culture of WT T

cells with WT macrophages increased macrophage migration

significantly (2.560.8 folds, co-culture of WT T cells and

macrophage vs. co-culture of IFN-c-KO T cells and macrophage,

p,0.01), however co-culture of IFN-c-KO T cells with WT

macrophages failed to stimulate macrophage migration.

IFN-c in T Cells Augments the Expression of MCP-1
Because MCP-1 production was decreased in IFN-c-KO mice,

we therefore determined if IFN-c-producing-T cells regulate

chemokines expression that stimulates macrophage migration,

we measured the chemokines production in the co-culture of T

cells with macrophages. Similar to the results found in vivo, MCP-1

production, but not CCL5 production was significantly increased

in co-culture of WT T cells with WT macrophages (Figure 5C and

5D). In co-culture of IFN-c-KO T cells and WT macrophages,

MCP-1 production was significantly lower than that in co-culture

of WT T cells and WT macrophages (95.861.2%, p,0.05)

(Figure 5C). MCP-1 production was decreased significantly when

T cells and macrophages were separated or incubating purified T

cells with SN Mw (Figure 5C, column b, d, h). Whereas WT

macrophage inbutated with SN T probably produced more

CCL5, indicating that some factors derived from T cells acting on

macrophage to promote the CCL5 production (Figure 5D,

column i). Since T cells express AT-1R, we test if Ang II directly

stimulate IFN-c expression in T cells, thymus T cells were treated

with Ang II (100 nM) for 24 hrs, and mRNA of IFN-c was

measured by RT-PCR. As shown in new Figure S3, Ang II

treatment did not significantly increased the expression of IFN-c
compared to that of the untreated T cells.

Discussion

The inflammatory response plays a critical role in hypertension-

induced cardiac remodeling; however, how inflammatory respons-

es are activated and their specific roles in cardiac remodeling

remain unclear. We showed that knockout of IFN-c significantly

reduced Ang II infusion-induced inflammation and cardiac fibrosis

in mice. T cells infiltration in mouse hearts was a major source of

IFN-c production, and contact-mediated effect between IFN-c-

producing T cells and macrophage stimulated macrophages

production of MCP-1, which recruited more macrophages and

fueled an inflammatory-positive feedback loop.

Ang II can affect the immune responses by amplifying the

expression of cytokines and chemokines in macrophages, regulat-

ing dendritic cell differentiation, and promoting lymphocyte

proliferation [20]. Inflammation is regulated by the presence of

immune cells such as T cells and macrophages and released

inflammatory mediators such as cytokines and chemokines.

Cytokines are critical regulators of immunity and inflammation

and regulate stages of hypertension [5,21]. Cytokines such as IL-1,

IL-6, IL-10, IFN-c, TNF-a or TGF-b have high expression in Ang

II-treated vascular systems and exhibit pro- and anti-fibrosis

actions [21,22]. Ang II-induced fibrosis in the heart and kidneys is

mediated by blood pressure and calcineurin-dependent pathways

[23]. We demonstrated that Ang II infusion rapidly induced the

expression of the cytokine IFN-c in hearts (Figure 1). Moreover,

we found there is no IFN-c expression in cardiomyocytes and

fibroblasts (data not shown), our result is consistent with previous

studies that has documented the production of IFN-c is primarily

by T cells and natural killer (NK) cells, possibly by antigen-

presenting cells (e.g. macrophages and dendritic cells) in response

to IL-12 but not other type of cells [24,25,26].

Fairweather et al reported that IFN-c deficiency increased

chronic myocarditis, pericarditis and fibrosis after CB3 virus

infection. Interestingly, they also found that IFN-c deficiency

didn’t significantly alter myocardial inflammation during acute

myocarditis at day 12 after CB3 infection, although which reduced

viral replication in the heart [27,28]. In contrast to infection,

studies of an Ang II-accelerated atherosclerotic model have

suggested IFN-c is a key factor in the pathogenesis of

atherosclerosis [29]. Our results indicated that IFN-c has a key

role in the progression of Ang II-induced cardiac inflammation

and fibrosis (Figure 2 & 3). Although knockout of IFN-c did not

prevent the increase in systolic blood pressure after Ang II infusion

(Table 1), it prevented acute Ang II-induced inflammation (day 7

after infusion) such as macrophages and T cells infiltration in

cardiac tissues and expression of TNF-a (Figure 3). In agreement

with our results, neutralization of IFN-c during challenge with

antigen plus IL-18 inhibited the combination of eoainophilic

infiltration, lung fibrosis, and periostin deposition or the

combination of neutrophilic infiltration and airway hyperrespon-

siveness, respectively [12].

Our results showed that T cells accumulated and produced

IFN-c in the mouse hearts with Ang II infusion (Figure 1C–D &

3A–B). Furthermore, the contact-mediated effect between macro-

phages and T cells stimulated MCP-1 production and macrophage

migration in WT mice (Figure 5), which was reduced in IFN-c-

KO mice (Figure 4). We demonstrated that IFN-c-producing T

cells is essential for the infiltration of macrophages in Ang II-

treated hearts (Figure 5). It is known that T cells play a major role

in mediating inflammatory disorders by contributing to or causing

tissue damage through the release of IFN-c. Several reports

showed that CD4+ T cells producing IFN-c controlled the

differentiation, migration and activation of macrophage lineage

SMA protein levels in WT and IFN-c-KO hearts with anti-a-SMA antibody. Representative protein bands (top panel) and quantitative analysis (bottom
panel; n = 5). * p,0.05, **p,0.01 versus saline control; # p,0.05, ## p,0.01 versus Ang II-infused WT mice.
doi:10.1371/journal.pone.0035506.g002

Interferon-Î3 Amplifies MCP-1 Expression

PLoS ONE | www.plosone.org 5 May 2012 | Volume 7 | Issue 5 | e35506



Figure 3. Knockout of IFN-c suppresses Ang II infusion-induced inflammatory cells infiltration and cytokines expression in hearts.
A–C, Flow cytometry analysis of (A) CD45+, (B) CD3e+, (C) F4/80+ cells infiltration in Ang II-treated WT and IFN-c-KO hearts. Bar graph shows
quantification of different inflammatory cells in hearts (n = 5). D, Immunohistochemistry of expression of Mac-2 in WT and IFN-c-KO hearts with saline
or Ang II treatment: hematoxylin and eosin (HE) staining (top panel) and antibodies against Mac-2 (bottom panel). Bar graph shows quantification of
areas of Mac-2+ cells. Magnification: 6200. E–F, Real-time PCR analysis of (E) tumor necrosis factor (TNF)-a Mrna and (F) macrophage inflammatory
protein (MIP)-1a expression in both WT and IFN-c KO mice at baseline and day 3, day 7 after Ang II infusion. Data are mean 6 SEM (n = 5). * p,0.05, **
p,0.01 versus saline control; # p,0.05 versus Ang II-infused WT mice.
doi:10.1371/journal.pone.0035506.g003
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cells in myocarditis, central nervous system and Ang II-induced

kidney injury [30,31,32]. CD8+ T cells and adipose tissue interact

with each other to recruit macrophages and activate a local

inflammatory cascade to mediate aortic aneurysm [33].

We found MCP-1 expression was increased in Ang II-treated

hearts, and when IFN-c is deleted, MCP-1 production was

significantly reduced (Figure 4 & 5C). Previous works from others

and us demonstrated that MCP-1 is necessary to induce Ang II-

mediated fibrosis in the myocardium [14,34], which expression in

macrophage, endothelium, vascular smooth muscle cells and

glomerular endothelial and epithelial cells [35,36]. We found that

WT macrophages interacting directly with WT T cells stimulated

more MCP-1 production than WT macrophages interacting with

IFN-c-KO T cells (Figure 5C), providing an explanation of how

IFN-c is responsible for amplifying the expression of MCP-1.

Therefore, our findings established an interaction between T cell

produced IFN-c and macrophage production of MCP-1. Lin et al

used transgenic mice, called ‘‘macrophages insensitive to interfer-

on-c’’ mice to assess the effects of IFN-c signaling on macrophage

lineage cells in response to infection of lymphocytic choriomen-

ingitis virus, they reported that CD4+ T-cell production of IFN-c
promotes signaling in macrophage lineage cells, which control the

production of chemokines i.e., MCP-1, and the recruitment of

macrophages to the central neuron system [31]. Coelho et al

reported that priming of macrophage with IFN-c stimulated

production of MCP-1, which may drive tissue chemokine

Figure 4. IFN-c deficiency decreases MCP-1 expression in Ang II-treated mouse hearts. A, Immunoflourescence staning for a-SMA (red),
MCP-1 (green) and DAPI (blue) in the Ang-II-infused hearts of WT mice. Arrowhead indicate a-SMA–/MCP-1+ cells. B, The cryosections of heart were
analyzed by double-immunofluorescence staining with antibodies against MCP-1 (green) and F4/80 (red, monocytes/macrophages). DAPI (blue)
indicates nuclear staining. Magnification: 6400. **p,0.01 versus saline control; # p,0.05 versus Ang II-infused WT mice. C, MCP-1 protein level (by
CBA) in WT and IFN-c-KO hearts treated with saline or Ang II for 7 days (n = 5). D, Real-time PCR quantitative analysis of MCP-1 mRNA expression
(n = 5).
doi:10.1371/journal.pone.0035506.g004
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production and inflammation and bear a significant role in the

pathogenesis of Chagas disease [19]. When this manuscript is

under review, Pore et al reported that a similar observation of that

coincubation with outer membrane protein A of Shigella flexneri

2a -pretreated macrophages enhances the production of IFN-c by

the outer membrane protein A-primed CD4+ T cells, representing

that outer membrane protein A may enhance IFN-c expression in

CD4+ T cells through the induction of IL-12 production in

macrophages. They demonstrated that TLR2 activation and

Figure 5. Crosstalk between IFN-c-producing T cells and macrophages augments IFN-c and MCP-1 expression and macrophage
migration. A, IFN-c expression was determined by incubating T cells either with macrophages isolated from and WT or IFN-c-KO mice or with the
supernatant of macrophages. Bar graph represents the quantification of IFN-c level in the supernatant of the cell culture. B, Transwell assay of
macrophages migration. WT macrophages were plated on the upper chambers of transwell inserts. The lower chamber was consisted of co-cultured
WT or IFN-c-KO T cells with WT macrophage (as described in A, upper panel). Macrophages that had migrated to the lower chamber were counted by
DAPI staining. Bar graph represents the cell numbers that migrated into the lower chamber. C–D, Quantification of (C) MCP-1 or (D) CCL5 levels in the
supernatant of the cell cultures as described in A. * p,0.05, **p,0.01 versus co-culture of IFN-c-KO T cells with WT macrophages. Mw, macrophage.
doi:10.1371/journal.pone.0035506.g005

Interferon-Î3 Amplifies MCP-1 Expression
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antigen presentation is responsible for the optimum production of

IFN-c by macrophages:CD4+ T cells coculture [37].

We found that another CC-chemokine–macrophage inflamma-

tory protein 1a (MIP-1a)–expression did not differ between WT

and IFN-c KO mice at day 7 after Ang II-infusion (Figure 3E).

Although MCP-1 and MIP-a are belong to CC chemokine family,

Natasa et al revealed that MCP-1 expression was unregulated

significantly in patients of intermediate uveitis (IU) and there is no

difference in MIP-1a between IU and control patients in

intraocular levels [38].

Our results reveal an important role of IFN-c in Ang II-

infusion-induced inflammation and cardiac fibrosis, which is

summarized in Figure 6. IFN-c is essential for inflammatory cell

infiltration, expression of pro-inflammatory cytokines, and cardiac

fibrosis in Ang II-treated mouse hearts. Our results demonstrate

that there is a reciprocal interaction between infiltrated T cells and

macrophages in heart where IFN-c produced by T cells stimulates

the macrophage expression of MCP-1, which causes the

recruitment of macrophages and leukocytes and cardiac inflam-

mation and fibrosis.

Materials and Methods

Animals and Ethics Statement
B6.129S7-Ifngtm1Ts/J (IFN-c2/2) mice and wild-type litter-

mates were purchased from the Jackson Laboratory [39]. Mice

were maintained under specific-pathogen-free conditions in the

animal facility at the Beijing Heart Lung and Blood Vessel

Diseases Institute. The mice were given a standard diet. The

investigations conformed to the US National Institutes of Health

Guide for the Care and Use of Laboratory Animals (publication

no. 85–23, 1996) and were approved by the Animal Care and Use

Committee of Capital Medical University.

Mouse Model of Ang II Infusion-induced Cardiac Fibrosis
Hypertensive cardiac fibrosis was induced in 6–8 week old IFN-

c-knockout (IFN-c–KO) mice and littermate wild-type (WT) mice

by subcutaneous infusion of Ang II (Sigma-Aldrich St. Louis, MO)

at a dose of 1500 ng/kg/minute using osmotic minipumps (Alzet

MODEL 1007D; DURECT, Cupertino, CA) as we described

before [14]. We also infused mice for different days to investigate

the time course effect. Systolic blood pressure was measured by the

tail-cuff system (Softron BP-98A; Softron, Tokyo, Japan), and

values were derived from a mean of 10–20 measurements per

animal at each time point. All animals were euthanized by

overdose pentobarbital (100 mg/kg) at the end of each treatment

period.

Histopathology and Immunohistochemistry
Hearts from WT and IFN-c mice fixed in 10% formalin were

processed and paraffin embedded. Heart sections (4 mm) were

then stained with hematoxylin and eosin (H & E) and Masson’s

trichrome reagent [40]. The percent of fibrosis (blue staining) to

total tissue was analyzed and calculated by a NIS-ELEMENTS

quantitative automatic program (Nikon, Tokyo, Japan) with the

average value of at least 8 images per heart in double-blind

fashion. Serial, transverse cryosections (7 mm thick) of hearts were

cut by use of a CM1950 Frigocut (Leica, Wetzlar, Germany) at

220uC and were kept at 280uC.

Immunohistochemical staining was performed as described

[41]. Heart sections were stained with anti-rabbit antibodies

against Mac-2 (1:500 dilution, Santa Cruz Biotechnology, Santa

Cruz, CA), collagen I (1:1000), and a-smooth muscle actin (a-

SMA, 1:200; all Abcam, Cambridge, MA), and rabbit IgG or

rabbit serum instead of primary antibody was used as negative

control (Figure S2). Peroxidase activity was visualized with use of

diaminobenzidine, and sections were counterstained with hema-

toxylin. Images were obtained by the use of a CCD camera under

a microscope (ECLIPSE80i/90i, Nikon, Japan) with a 6200 lens,

and 10–20 fields/section were chosen randomly. Cryosections

(7 mm) of hearts were stained with anti-IFN-c (1:50 dilution,

Abcam), anti-MCP-1 (1:100 dilution, Santa Cruz), anti-F4/80

(1:100 dilution, Abcam) and anti-Troponin I (1:100 dilution, Santa

Cruz) specific antibodies, followed by IgG specific, peroxidase- or

fluorescence-conjugated secondary antibodies as described. For

each mouse, 8 slices (4 apical and 4 proximal to the aortic valve on

septum and free wall) were analyzed in double-blind fashion.

Figure 6. Summarize of the role of IFN-c in angiotensin II-induced cardiac fibrosis and inflammation. Hypertension or Ang II induce the
infiltration of IFN-c producing T cells (1); that interact directly with macrophages and release IFN-c (2); which activates marcrophages and increases
the production of MCP-1 (3); which recruits more macrophages to heart (4); then fuels inflammation and fibrosis (5).
doi:10.1371/journal.pone.0035506.g006
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TUNEL Staining
The TUNEL procedure was performed with the In Situ

Apoptosis Kit (Promega, Madison, MI). Five micron thick frozen

sections are cut and airdried at 4uC for 48 hours. Following a cold

acetone fixation for 10 minutes, the slides are airdried for

2 minutes before 3 rinses in PBS. The slides are then rinsed in

16 TdT buffer for 5 minutes before careful application of the

TdT reation mix to the tissue sections on each slide, which are

then incubated in a humid chamber at 37uC for 60 minutes,

followed by 3 PBS washes. The slides are then stained with DAPI

and coverslipped using Vectashield for viewing on the Nikon

epifluorescent microscope.

Flow Cytometry
Hearts were harvested and cardiac cell suspensions were

prepared as described [42]. Briefly, hearts were harvested, then

minced cardiac tissue was digested with 0.1% collagenase B and

2.4 U/mL dispase II (both Roche Molecular Biochemicals) at

37uC for 30 min. The dissolved tissue was then passed through a

70 mm sterile filter (Falcon, BD, Franklin Lakes, NJ) yielding a

single cell suspension. Cells were washed twice with Hanks’

balanced salt solution (HBSS) buffer with 2% FBS, then

underwent cell-surface and intra-cellular antigen staining with

fluorochrome-conjugated monoclonal rat anti-mouse antibodies

against CD45, CD3e, CD4, CD8, F4/80 or IFN-c (all BioLegend,

San Diego, CA) at 4uC for 30 min.

Flow cytometry was used to characterize the infiltration of T

cells and macrophages into hearts of saline and Ang II–treated

mice and the cell source of IFN-c involved by use of Epics XL

equipment (Beckman Coulter, Miami, FL). Data were analyzed by

use of Summit software (Beckman Coulter).

Real-time PCR
Total ventricular RNA was extracted by use of TRIzol reagent

(Invitrogen, Carlsbad, CA) according to the manufacturer’s

protocol. PCR amplification involved use of the iQ5 Real-Time

PCR Detection System (Bio-Rad, Hercules, CA) with SYBR

Green JumpStartTM Taq ReadyMixTM (Takara, Otsu, Shiga,

Japan) and primers for mouse IFN-c, Collagen I, a-SMA, TNF-a,

MCP-1, MIP-1a and GAPDH. Melting curve analysis was

performed at the end of each PCR reaction. The housekeeping

gene GAPDH was used as control: the expression of those genes

was expressed as a ratio to that of GAPDH. Primer sequences

were as follows: Collagen I, forward 59-GAGCGGAGAG-

TACTGGATCG-39 and reverse 59-TACTCGAACGGGAATC-

CATC-39; MCP-1, forward 59-GTCTGTGCTGACCCCAA-

GAAG-39 and reverse 59- TGGTTCCGATCCAGGTTTTTA-

39; MIP-1a, forward 59-GCTGACAAGCTCA CCCTCTGT-39

and reverse 59-GGCAGTGGTGGAGACCTTCA-39; IFN-c,

forward 59-TGCTGATGGGAGGAGATGTCT-39 and reverse

59- TTTCTTTCAGGGACAGCCTGTT-39; and a-SMA, for-

ward 59- CCCACCCAGAGTGGAGAA-39 and reverse 59-

ACATAGCTGGAGCAGCGTCT-39;and GAPDH, forward 59-

CCTGGAGAAACCTGCCAAGTATGA-39 and reverse 59-

TTGAAGTCACAGGAGACAACCTGG-39.

Western Blot Analysis
Heart tissues were harvested at the end of each treatment

period, immediately frozen in liquid nitrogen, and then homog-

enized in lysis buffer. Western blot analysis was performed as

described [21].

Cytokine Measurements
To analyze the effect of Ang II on cytokine and chemokine

production in hearts, heart tissue were harvested at the end of

experiment, immediately frozen in liquid nitrogen, and then

homogenized in lysis buffer. After centrifugation, the supernatants

of tissue were collected and analyzed using the Cytometric Bead

Array Flex Set system (BD Biosciences, San Jose, CA) to measure

secreted MCP-1. To measure the concentration of IFN-c, MCP-1,

and CCL5 in cell culture media, 50 mL supernatant from each

sample was incubated with the CBA Flex Set beads assay for 2 hr.

The fluorescence produced by the beads was measured on a FACS

Calibur flow cytometer (BD Biosciences) and analyzed by the

associated software.

Isolation of Naı̂ve T Cells and Macrophages
The thymus and attached blood vessels were removed from 6-

to 8-week-old mice and washed in phosphate buffered saline (PBS)

and ground by use of frosted glass in RPMI 1640 medium

(HyClone; Thermo Fisher Scientific, Waltham, MA). Suspensions

were cleared of connective tissue by filtration and then underwent

Ficoll-gradient centrifugation (HaoYang, TianJin, China) to clear

residual erythrocytes and non-lymphocytes. T cells were cultured

in RPMI 1640 medium containing 10% fetal bovine serum (FBS),

1 mg/mL anti-CD3e (eBioscience, San Diego, CA), 1 mg/mL anti-

CD28 (BioLegend, San Diego, CA), penicillin and streptomycin.

Macrophages were isolated from bone marrow of mice and

grown in macrophage colony-stimulating factor (M-CSF; Pepro-

Tech, Rocky Hill, NJ) as we described [43] with minor

modification. Briefly, bone-marrow cells were isolated from femurs

and tibias of 8- to 12-week-old mice. Suspensions were cleared of

adipose tissue and connective tissue by filtration and then

underwent Ficoll-gradient centrifugation to clear residual eryth-

rocytes and non-lymphocytes. Myeloid origin macrophage were

cultured in DMEM medium (HyClone, Waltham, MA) supple-

mented with 10% heat-inactivated FBS in the presence of 50 ng/

mL M-CSF.

In Vitro Migration Assay
Cell migration was quantitated in duplicate by use of 24-well

Transwell inserts with polycarbonate filters (8-mm pore size)

(Corning Costar, Acon, MA). Macrophage (2.56103 in 250 mL

DMEM high-glucose medium/10% FBS) was added to the upper

chamber of the insert. The lower chamber contained macrophage

(1.06105) and/or activated T cells (1.06106) in 1 mL RPMI 1640

medium/10% FBS isolated from WT and IFN-c–KO mice. The

plates were incubated at 37uC in 5% CO2 for 12 hr. Cells that had

migrated were counted by use of DAPI staining.

Statistical Analysis
All data are expressed as the means6the SEM. The unpaired 2-

tailed t-test was used to compare the 2 groups. Comparisons

between the wild-type (WT) group and IFN-c KO group were

performed using one-way ANOVA by Newman-Keuls multiple

comparison test from GraphPad Prism (GraphPad Software).

When any significant difference (p,0.05) was seen in the main

effect (group differences), the comparison was analyzed by the

unpaired 2-tailed t-test. For the other comparisons, we determined

the significance of difference between the means of the groups by

one-way ANOVA. The difference was considered statistically

significant at p,0.05.
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Supporting Information

Figure S1 TUNEL assay in Ang-II-infused hearts. A.
Apoptic cells were found in the hearts of both WT and IFN-c KO

mice. At 7 days after Ang II infusion, serial slides of the hearts

were examined. Apoptotic positive cells were stained by TUNEL

staining; The cell types of the TUNEL positive cells were

analysised by HE staining. Bar graph shows semi-quantification

of ratio of TUNEL+ cells to total cells. Arrows indicate positive

TUNEL staining cells. Magnification:6200. B. Apoptosis was not

found in cardiomyocytes after Ang II infusion. Dual immunoflu-

orescence staining for Troponin I (red, cardiomyocyte), TUNEL

(green) and DAPI (blue, nuclei). Arrows indicate positive TUNEL

staining cells. Magnification: 6400.

(TIF)

Figure S2 Negative antibody was replaced by rabbit
IgG. Heart sections were stained with anti-rabbit antibodies

against Mac-2, collagen I, and a-SMA, and rabbit IgG or rabbit

serum instead of primary antibody was used as negative control.

Magnification: 6400.

(TIF)

Figure S3 No difference of expression of IFN-c between
Ang II-treated T cells and untreated T cells. Thymus T

cells were treated with Ang II (100 nM) for 24 hr, the mRNA of

IFN-c was measured by RT-PCR. Bar graph show that Ang II

treatment did not significantly increased compared to that of the

untreated T cells.

(TIF)
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