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Abstract

Nonsense-mediated decay (NMD) is an mRNA surveillance pathway that selectively recognizes and degrades defective
mRNAs carrying premature translation-termination codons. However, several studies have shown that NMD also targets
physiological transcripts that encode full-length proteins, modulating their expression. Indeed, some features of
physiological mRNAs can render them NMD-sensitive. Human HFE is a MHC class I protein mainly expressed in the liver that,
when mutated, can cause hereditary hemochromatosis, a common genetic disorder of iron metabolism. The HFE gene
structure comprises seven exons; although the sixth exon is 1056 base pairs (bp) long, only the first 41 bp encode for amino
acids. Thus, the remaining downstream 1015 bp sequence corresponds to the HFE 39 untranslated region (UTR), along with
exon seven. Therefore, this 39 UTR encompasses an exon/exon junction, a feature that can make the corresponding
physiological transcript NMD-sensitive. Here, we demonstrate that in UPF1-depleted or in cycloheximide-treated HeLa and
HepG2 cells the HFE transcripts are clearly upregulated, meaning that the physiological HFE mRNA is in fact an NMD-target.
This role of NMD in controlling the HFE expression levels was further confirmed in HeLa cells transiently expressing the HFE
human gene. Besides, we show, by 39-RACE analysis in several human tissues that HFE mRNA expression results from
alternative cleavage and polyadenylation at four different sites – two were previously described and two are novel
polyadenylation sites: one located at exon six, which confers NMD-resistance to the corresponding transcripts, and another
located at exon seven. In addition, we show that the amount of HFE mRNA isoforms resulting from cleavage and
polyadenylation at exon seven, although present in both cell lines, is higher in HepG2 cells. These results reveal that NMD
and alternative polyadenylation may act coordinately to control HFE mRNA levels, possibly varying its protein expression
according to the physiological cellular requirements.
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Introduction

It has been estimated that one third of hereditary genetic

diseases, as well as many forms of cancer, are caused by mutations

that lead to the generation of transcripts bearing a premature

translation-termination codon (PTC). Most of these PTC-contain-

ing mRNAs are targets for the nonsense-mediated mRNA decay

(NMD) pathway [1–3]. NMD is an evolutionarily-conserved post-

transcriptional surveillance mechanism that selectively detects and

degrades transcripts bearing PTCs. PTCs or nonsense codons can

either be generated by various types of germline/somatic

alterations in the DNA, or originate as a result of routine errors

in gene expression. Nevertheless, PTCs can also arise as a

consequence of non-faulty regulated processes of the mRNA

metabolism such as somatic rearrangements in the DNA,

alternative splicing or utilization of alternative AUG initiation

sites. In mammalian cells, NMD depends on the interaction of the

translation termination complex with a dynamic multiprotein

assembly, the so-called exon junction complex (EJC) [4,5]. These

protein complexes can assist to discriminate a premature

translation termination event from a normal one. According to

the classical model for mammalian NMD, the EJC, or a critical

subset of EJC components, is deposited 20–24 nucleotides (nts)

upstream of the exon-exon junction(s) during splicing and remains

associated with the mRNA during its transport to the cytoplasm

[6]. Translating ribosomes subsequently displace EJCs from the

open reading frame (ORF) during the initial (‘‘pioneer’’) round of

translation [7,8]. However, if an mRNA contains a PTC located

more than 50–54 nts upstream of at least one exon-exon junction,

the ribosome will fail to displace these distal EJC(s). In this case,

when the ribosome reaches the PTC, the eukaryotic translation

release factors eRF1 and eRF3 at the PTC interact in cis with the

retained EJC(s) via a multiprotein bridge [9]. Of central

importance in this reaction is the interaction of UPF1 with the
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terminating complex and with the UPF2/UPF3 components of

the retained EJC(s) [9]. This interaction marks the mRNA for

rapid decay. Nevertheless, the recognition of a stop codon as a

PTC depends on the physical distance between the PTC and the

cytoplasmic poly(A)-binding protein 1 (PABPC1), as PABPC1 and

UPF1 both compete for the interaction with the eRF3 at the

terminating ribosome – if PABPC1 is in close proximity to the

PTC, it seems to function as an NMD repressor; on the other

hand, when the interaction between PABPC1 and the termination

complex is not favorable, UPF1 can interact with eRF3 in the

termination complex to induce NMD [10–14].

NMD is an important contributor to the fidelity of gene

expression as it prevents translation of potentially harmful

truncated proteins from faulty mRNAs. Nevertheless, it has

become clear during recent years that many physiological mRNAs

are also NMD substrates, indicating a role for NMD beyond

mRNA quality control, as a translation-dependent post-transcrip-

tional regulator of gene expression [15–17]. In effect, a group of

NMD substrates includes physiological transcripts that encode

functional full-length proteins, as shown in several genome-wide

RNA microarray expression profile studies [15–17]. Actually, the

comparison of mRNA levels of normal with NMD-deficient cells

revealed that the expression of approximately 10% of the human

transcriptome is regulated by NMD [15–17]. These physiological

substrates have one feature in common with their pathological

counterparts: they possess a translation termination codon that is,

by NMD standards, conceived as premature. This applies, for

example, to the termination codons of upstream ORFs, to

termination codons that are introduced into an ORF as the result

of somatic DNA rearrangements, alternative splicing, ribosomal

frameshifting, mRNA editing or to termination codons that are

followed by splice events in the 39 untranslated region (UTR). In

some cases, these features are exploited for self-regulatory

mechanisms. For example, when a gene product induces the

alternative splicing of its own transcript, a PTC may be introduced

into its ORF or a splice junction may be generated 39 to the

termination codon, thus directing the resulting alternative

transcript to NMD. Moreover, it is suspected that potentially

NMD-sensitive physiological transcripts can stand at crossing

points of pathways or networks and thus modulate such pathways

as a whole. A common feature of all these processes is that NMD

can potentially be used to adapt protein expression to the cellular

physiological needs. The large and diverse repertoire of transcripts

controlled by NMD reflects the significant influence of NMD on

the cell metabolism and consequently in many human diseases

[18].

When mutated, the human HFE gene may be involved in

hereditary hemochromatosis, a common autosomal recessive

genetic disorder of iron metabolism characterized by excessive

intestinal iron absorption that leads to iron deposition in cells and

subsequent dysfunction of several organs [19,20]. HFE protein has

been recognized as a key component of human iron homeostasis

machinery but its precise role is still unknown. HFE is capable of

forming protein complexes with both transferrin receptors 1

(TfR1) and 2 (TfR2) in the hepatocyte membrane [21,22]. It was

recently proposed that HFE is partitioned between TfR1 and

TfR2, and under increasing iron concentrations, HFE should shift

away from TfR1 towards TfR2, disengaging the signalling

transduction pathway that leads to the induction of the iron

regulatory hormone hepcidin [23,24].

The HFE genomic structure is similar to other human MHC

class I-like molecules. Each of the first six exons of the

corresponding mRNA encode for one of the six distinct protein

domains: a signal sequence, three extracellular domains (alpha1,

alpha2, and alpha3) a transmembrane region, and a short

cytoplasmatic tail [20]. Although the sixth exon is 1056 base

pairs (bp) long, only the first 41 bp are translated to amino acids.

In fact, the native translation termination codon is located at the

59-part of this exon and the remaining downstream 1015 bp

correspond to the HFE 39 UTR, along with exon seven, which is

1943 bp long [20,25]. The HFE transcript is about 4.2 kb long,

being essentially expressed in the liver, duodenum, small intestine,

spleen and heart. In addition, several additional alternative HFE

transcripts are also present in a plethora of human tissues [20,25–

29]. All mRNA isoforms are expressed at low levels and HFE gene

expression seems to be modestly influenced by changes in cellular

iron status [30–32]. The above-mentioned alternative HFE

transcript species have been attributed to alternative splicing

events or alternative usage of two polyadenylation [poly(A)] signals

located within exon seven, at 1455 and 2958 nts downstream of

the stop codon [25,28,29]. Nonetheless, the identification of HFE

alternative transcripts, their tissue-specificity and abundance, as

well as the biological significance of the corresponding isoforms,

remain to be completely clarified.

As indicated above, previously published data regarding the

specific architecture of the human HFE mRNA have shown that it

comprises seven exons, and the native translation termination

codon is located in exon six at more than 50–54 nts upstream of

the exon six/exon seven junction [25,28], which is a feature that

could make this transcript a physiological target for NMD. In

addition, the fact that it presents a long 39 UTR might also result

in mRNA destabilization due to NMD, as it was already shown for

other transcripts [12,13]. To explore these hypotheses, we first

analysed in several human tissues, the HFE mRNA 39-end

processing to characterize the potential alternative polyadenyla-

tion isoforms. This analysis revealed the usage of two novel

alternative polyadenylation sites, located at exons six and seven,

besides the two sites previously described in exon seven. Then, we

demonstrated that those HFE isoforms specifically using poly(A)

signals at exon seven are in fact physiological NMD-targets. Our

data support the conclusion that both post-transcriptional

mechanisms of alternative polyadenylation and NMD can

coordinately regulate cellular HFE mRNA levels.

Results

Usage of two novel alternative polyadenylation sites in
the human HFE transcripts, located at exons six and
seven

Besides the two alternative polyadenylation signals, previously

identified as being recognized for 39-end cleavage and polyade-

nylation of the human HFE mRNA [25], this transcript contains

several potential polyadenylation signals downstream of the native

translation termination codon. To determine which poly(A) signals

are in fact active in the human HFE transcript 39-end processing,

we carried out 39 rapid amplification of cDNA ends (39-RACE)

experiments (Fig. 1) using nested forward primers located at HFE

exons six and seven (Fig. 1A). This analysis was conducted in

several human tissues, using total RNA from small intestine,

spleen, liver, testis, ovary, duodenum, heart, kidney and peripheral

blood mononuclear cells (PBMCs). After cloning and sequencing

of the obtained fragments, we were able to confirm that all primers

generated 39-RACE products containing poly(A) tracts that begin

4 to 23 bp downstream of a polyadenylation signal (Fig. 1C),

which are not present in genomic DNA. More specifically, a

primer located at the 59-part of exon six (primer EX6F; Fig. 1A)

generated two HFE specific 39-RACE products with a size of 679

and 1277 bp, respectively (Fig. 1B). These correspond to

HFE mRNA Regulation by NMD and Alternative Poly(A)
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transcripts where the poly(A) signals GAUAAA and AAUAAA are

recognized, respectively inducing polyadenylation at 857 and

1455 nts downstream of the stop codon [poly(A) signals 1 and 2;

Fig. 1C]. The usage of the first polyadenylation signal was

observed in transcripts isolated from duodenum, liver, heart,

PBMCs, kidney, spleen and small intestine, whereas the usage of

the second polyadenylation signal was observed in mRNA

extracted from all tissues, except from PBMCs (Fig. 1C and

Supplemental Fig. S1A–H). The primer located at the 39-part of

exon six (primer EX6G; Fig. 1A) allowed the detection of only one

specific 39-RACE product with a size of 483 bp (Fig. 1B). This

product corresponds to transcripts in which the second poly(A)

signal is recognized to induce 39-end cleavage and polyadenylation

at 1455 nts downstream of the stop codon (Fig. 1C). These results

confirm those obtained with primer EX6F in what concerns the

usage of the second polyadenylation signal located at 1455 nts

downstream of the stop codon. Primer located at the 59-part of

exon seven (primer EX7G; Fig. 1A) generated a 39-RACE product

of 1231 bp (Fig. 1B) which corresponds to a HFE transcript where

the poly(A) signal 4 (AUUAAA) is recognized, inducing 39-end

cleavage and polyadenylation at 2958 nts downstream of the stop

codon (Fig. 1A and C). This poly(A) signal recognition was

confirmed in the 39-RACE analysis performed with primer EX7H

(Fig. 1A). Here, we found two specific products with 255 and

593 bp length (Fig. 1B): the longest fragment corresponds to the

recognition of poly(A) signal 4; the smallest product corresponds to

the recognition of an additional AUUAAA poly(A) signal [poly(A)

signal 3; Fig. 1A], which allows processing of HFE mRNAs with

39-end cleavage and polyadenylation at 2620 nts downstream of

the stop codon (Fig. 1B and C). Moreover, we have observed that

poly(A) signal 3 is recognized in HFE transcripts expressed in liver,

kidney and ovary (Fig. 1C and Supplemental Fig. S1A–H). On the

other hand, poly(A) signal 4 is recognized in mRNAs isolated from

all tissues studied (Fig. 1C and Supplemental Fig. S1A–H), which

might confirm previous results showing that this signal is the main

HFE poly(A) signal [20,25]. In addition to the four identified and

characterized 39-RACE products, some other fragments were also

obtained (Fig. 1B and Supplemental Fig. S1A–H). However, the

corresponding sequencing analysis has shown that these fragments

do not support HFE polyadenylated mRNA (File S1). These

amplifications might reflect the presence of many A+T-rich

sequences in the 39 UTR HFE [25]. Comparing our data with

previously described data [20,25], showing the usage of two

poly(A) signals at 1455 and 2958 nts downstream of the stop

codon of the human HFE transcript, we can conclude that its 39-

end processing machinery also recognizes two novel poly(A) signals

– poly(A) signals 1 and 3, respectively located at exon six and seven

– which allow 39-end cleavage and polyadenylation at 857 and

2620 nts downstream of the stop codon (Fig. 1). Although these

two novel polyadenylation signals are recognized in mRNA from

several tissues, the polyadenylation site 3 is used at a much lower

frequency than sites 1, 2 and 4.

The physiological human HFE mRNA is a natural NMD-
target

NMD is an mRNA surveillance mechanism that rapidly

degrades mRNAs carrying PTCs [2,3,18,33]. In addition to its

important role in mRNA quality control, it has become clear that

the NMD mechanism also plays a role in regulating the steady-

state level of a set of wild-type transcripts [14–16,34,35]. These

physiological NMD substrates structurally mimic nonsense

transcripts as they possess a translation termination codon that is

recognized as premature. In face of this knowledge, and

considering the position of the human HFE poly(A) signals that

are used for its 39-end processing (Fig. 1), it seems evident that a

percentage of the alternatively-polyadenylated human HFE

mRNA species – those using the poly(A) signals 2, 3 or 4 (Fig. 1)

– will comprise an exon/exon junction located more than 55 nts

downstream of the natural stop codon, a context that can be

sufficient to define the natural stop codon as a ‘‘premature stop

codon’’ and to induce NMD. On the other hand, those transcripts

resulting from cleavage and polyadenylation by usage of the

poly(A) signal 1 must be NMD-resistant as no splicing event occurs

downstream of the stop codon. To examine whether HFE

transcripts could be physiological substrates for the UPF1-

dependent NMD pathway, we quantified the endogenous HFE

mRNA levels after short interfering RNA (siRNA)-mediated

depletion of UPF1 in HeLa and HepG2 cells. All results were

compared to those obtained in NMD-competent cells transfected

with nonspecific control (Luciferase) siRNAs (Fig. 2A–C). At three

different time points (twenty-four, forty-eight and seventy-two

hours) after siRNAs transfection, the Western blot analysis

demonstrated a decrease in UPF1 protein levels induced by

siRNA of about 65–80% or 60–65%, in HeLa or HepG2 cells

respectively, when compared with results obtained after treatment

with Luciferase siRNAs (Fig. 2A). Under these conditions, the

HFE mRNA levels were quantified by reverse transcription-

coupled quantitative PCR (RT-qPCR) assays, relative to the HFE

mRNA levels obtained in cells treated with the control siRNA

(Luciferase siRNA). To exclusively measure the subset of HFE

transcripts that could represent natural NMD-targets, we used

oligonucleotides for qPCRs that specifically hybridize to the 59-end

of HFE exon seven (Fig. 2B). Our data have shown that depletion

of UPF1 for seventy-two hours in HeLa cells, results in a 1.6-fold

increase of the abundance of those HFE mRNAs using poly(A)

signals 2, 3 or 4. The same analysis in HepG2 cells resulted in a

2.6-fold increase of the abundance of the same HFE mRNAs.

These results are consistent with the mRNAs using poly(A) signals

2, 3 or 4 being natural substrates for NMD in both cell lines.

However, it is interesting to note that in hepatic HepG2 cells, there

is a higher amount of HFE NMD-targets, relatively to what occurs

in HeLa cells, which might indicate that regulation of physiolog-

ical levels of HFE mRNA by NMD is controlled in a tissue-specific

manner.

To examine if the effect of the UPF1-dependent mechanism

that modulates levels of HFE mRNA species using poly(A) signals

2, 3 or 4, is important in the context of the total amount of HFE

mRNAs, we have also measured levels of HFE mRNA by RT-

qPCR, using specific primers located at exon six upstream of the

poly(A) signal 1 (Fig. 2C). This approach allowed quantification of

all mRNAs polyadenylated at any one of the four signals. As in the

previous experiment, the increase in HFE mRNA levels was

greater after seventy-two hours of UPF1 siRNAs treatment. Under

these conditions and in agreement with the preceding experiment,

the expression of endogenous HFE mRNA, in both cell lines

treated with UPF1 siRNAs, was significantly increased to about

1.3- and 1.6-fold, relative to the corresponding levels observed in

cells treated with Luciferase siRNAs, in HeLa and HepG2 cells

respectively (Fig. 2C). Although the amount of the total HFE

mRNA species increased upon UPF1 siRNAs treatment (Fig. 2C),

they did not reach the high levels of those HFE mRNAs

specifically using poly(A) signal 2, 3 or 4, found to be upregulated

in the previous experiment (Fig. 2B). These data corroborate the

presence of the NMD-resistant HFE mRNA isoforms resulting

from 39-end cleavage and polyadenylation at exon six.

To confirm that the extent of UPF1 knockdown achieved in the

previous experiments (Fig. 2A–C) is robust enough to reverse the

effect of NMD on the expression of endogenous human HFE

HFE mRNA Regulation by NMD and Alternative Poly(A)
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mRNA, an independent and well-characterized NMD-target

transcript was analyzed at the same experimental conditions,

functioning as a positive control to normalize for the extent of

NMD inhibition. For that, HeLa cells were treated with Luciferase

or UPF1 siRNAs as previously. Twenty-four hours later, cells were

transiently transfected with a plasmid expressing the human b-

globin gene carrying a nonsense mutation at codon 39 (b39),

which was previously shown to induce NMD [36,37]. Twenty-four

hours later, the Western blot analysis demonstrated a decrease in

UPF1 protein levels induced by siRNA to about 37%, when

compared with results obtained after treatment with Luciferase

siRNAs (Fig. 2D). Under these conditions, the b39 mRNA levels,

as well as the endogenous HFE mRNA levels were quantified by

RT-qPCR assays as in Fig. 2B, relative to the corresponding

mRNA levels obtained in cells treated with the control Luciferase

siRNA (Fig. 2E). Our data show that the UPF1 depletion resulted

in an expected 1.8-fold increase in b39 mRNA levels [37]; an

equivalent increase (1.9-fold increase) occurred also for HFE

transcripts, meaning that the extent of UPF1 knockdown achieved

in the previous experiments (Fig. 2A) is appropriate to analyze its

impact on endogenous HFE mRNA expression.

To further prove by an independent assay that endogenous

HFE mRNA is, in fact, a substrate for the NMD mechanism, and

knowing that NMD mechanism is also translation-dependent, we

examined the effect of inhibiting translation on HFE mRNA levels,

by treating the HeLa and HepG2 cells with cycloheximide. HFE

mRNA species using a poly(A) signal at exon seven were

specifically quantified, as before. Results show that the expression

of these endogenous HFE mRNA isoforms, increased to about 1.8-

or 2.1-fold, respectively, in HeLa or HepG2 cell lines upon

treatment with cycloheximide, relative to the levels observed in the

corresponding untreated cells (Fig. 3A). Then, and to confirm the

effect of NMD in the context of the total amount of HFE mRNA,

we also measured levels of HFE mRNA, using the specific primers

Figure 1. Usage of four alternative poly(A) sites for 39-end cleavage and polyadenylation of human HFE transcripts. (A) The diagram
represents the human HFE 39 untranslated region comprising exons (Ex) six and seven. The length of the exons is shown in base pairs (bp). The
position of native translation termination codon (STOP) is represented. Arrows above the diagram indicate the relative position of the four different
forward primers (EX6F; EX6G; EX7G and EX7H) used in 39-RACE experiments. The vertical black bars represent the poly(A) signals (numbered from 1 to
4) that were found to be used in the HFE mRNA 39-end processing. Their sequence is also shown. Below, the thin lines represent the 39-RACE products
obtained by each primer (indicated on the left). The correspondence between each 39-RACE product, its polyadenylation site and its length in bp is
also represented. (B) Representative agarose gel electrophoresis showing 39-RACE products from human liver total RNA, obtained by nested PCR
using forward primers specified above each lane, the universal primer and the master mix provided by the BD SMART RACE cDNA Amplification Kit
(BD Biosciences Clontech). The molecular weight marker (M) is the 1 kb DNA ladder (Invitrogen). (C) Schematic representation of the four human HFE
39 untranslated regions identified and characterized by cloning and sequencing of the 39-RACE products obtained from total RNA, isolated from
duodenum, liver, heart, peripheral blood mononuclear cells (PBMCs), kidney, testis, spleen, small intestine and ovary. Again, vertical black bars
represent the polyadenylation signal that is used in each isoform, with the corresponding sequence depicted and the distance from the poly(A) signal
to the cleavage site given in nucleotides (nts). The size of each 39 untranslated region is shown in nts, below each diagram. Each isoform is numbered
from 1 to 4 according to the usage of the corresponding poly(A) signal, as depict above in A. (A)n represents the poly(A) tail. The table on the right
shows the presence (3) or absence (2) of each HFE alternative polyadenylation isoform in each tissue analyzed.
doi:10.1371/journal.pone.0035461.g001
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Figure 2. Downregulating UPF1 from HeLa or HepG2 cells results in an upregulation of the endogenous HFE transcripts which
indicates that the physiological human HFE mRNA is a natural NMD-target. HeLa cells were transiently transfected with synthetic small-
interfering RNA (siRNA) duplexes directed to human UPF1 or to a non-endogenous target (Luciferase; Luc) used as control. Twenty-four (24 h), forty-
eight (48 h) and seventy-two hours (72 h) after siRNA treatment, cells were harvested and protein and RNA were isolated. (A) Representative Western
blot analysis of the HeLa and HepG2 cells extracts transfected with human UPF1 siRNA. Immunoblotting was performed using a human UPF1 specific
antibody and a a-tubulin specific antibody to control for variations in protein loading. The percentage (%) of UPF1 protein remaining expressed in the
cells after siRNA treatment is indicated below each lane and was achieved by densitometric analysis using ImageJ software. (B) Relative changes in
HFE mRNA levels were analyzed by quantitative reverse transcription-coupled real-time PCR (RT-qPCR), normalized to the levels of endogenous G
protein pathway suppressor 1 (GPS1) mRNA. For that, cDNA was synthesized from total RNA and then, each cDNA sample was used as template for
qPCR, which was performed using the SYBR Green Master Mix (Applied Biosystems) and primers that specifically hybridize to the 59-end of HFE exon
seven. Quantification of the transcript levels was performed by the absolute quantification method. Levels of HFE mRNA obtained after cellular UPF1
siRNA treatment were compared to those obtained after Luciferase siRNA treatment at the same conditions (defined as 1; arbitrary units). The
histogram shows the mean and standard deviations from three independent experiments, corresponding to three independent transfections.
Statistical analysis was performed using Student’s t test (unpaired, two tailed). Below the histograms, there is a schematic representation of the
human HFE mRNA showing its seven exons and the position of the polyadenylation [poly(A)] signals used in its 39-end processing. The location of the
initiation (AUG) and termination (STOP) codons is also represented. The double arrow represents the coordinates of the amplicon obtained in the
qPCR. (C) Relative changes in HFE mRNA levels were quantified by RT-qPCR as in B but using primers that specifically hybridize to the 59-end of the
HFE exon six. Quantification of the transcript levels was performed by the absolute quantification method. Levels of HFE mRNA obtained after cellular
UPF1 siRNA treatment were compared to those obtained after Luciferase siRNA treatment at the same conditions (defined as 1; arbitrary units). The
histogram shows the mean and standard deviations from three independent experiments, corresponding to three independent transfections.
Statistical analysis was performed as in B. Below the histograms, there is a schematic representation of the human HFE mRNA showing its seven exons
and the position of the polyadenylation [poly(A)] signals used in its 39-end processing. The location of the initiation (AUG) and termination (STOP)
codons is also represented. Arrows represent the position of primers used in the qPCR. (D) Representative Western blot analysis of HeLa cells extracts
transfected with human UPF1 siRNA or with a control Luciferase siRNA target. Twenty-four hours after siRNA treatment, cells were transfected with
the b-globin reporter constructs (b39). Twenty-four hours post transfection, protein and RNA were isolated from the cells for analysis.
Immunoblotting to confirm UPF1 knockdown was carried out with anti-UPF1 and with anti-a-tubulin antibodies (as a loading control). Identification
of each band is on the right. The percentage (%) of UPF1 protein remaining expressed in the cells after siRNA treatment is indicated below each lane

HFE mRNA Regulation by NMD and Alternative Poly(A)
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located at exon six upstream of the poly(A) signal 1 (Fig. 3B).

Results have shown that after 2 hours of cycloheximide treatment,

the level of total HFE mRNA also increases to about 1.7- or 1.6-

fold relative to the levels observed in untreated HeLa or HepG2

cells, respectively. In agreement with the previous experiment

performed in UPF1 knockdown cells, we observe a lower response

to cycloheximide treatment when total mRNA species are

quantified than when HFE mRNA species using a poly(A) signal

at exon seven were specifically quantified.

Taken together, results from Fig. 2 and 3 demonstrate that

human HFE mRNAs with polyadenylation at exon six are in fact

expressed in HeLa and HepG2 cells and their levels contribute for

the total amount of the cellular HFE mRNA. On the other hand, it

seems that the amount of HFE mRNA isoforms resulting from

and was achieved as in A. (E) Relative b-globin mRNA levels in UPF1-depleted HeLa cells, normalized to the levels of puromycin resistance mRNA
(plasmids carrying the reporter b-globin gene also contain the Puror gene), were determined by quantitative RT-qPCR and compared to the
corresponding b39 mRNA levels under control conditions (Luc siRNA-treated HeLa cells) (defined as 1; arbitrary units). Using the same RNA samples,
relative changes in HFE mRNA levels were also quantified by RT-qPCR, using experimental conditions as in B. Levels of HFE mRNA obtained after
cellular UPF1 siRNA treatment were compared to those obtained after Luciferase siRNA treatment (defined as 1; arbitrary units). The histogram shows
the mean and standard deviations from three independent experiments, corresponding to three independent transfections. Statistical analysis was
performed as in B.
doi:10.1371/journal.pone.0035461.g002

Figure 3. Cycloheximide treatment of HeLa or HepG2 cells results in an upregulation of the endogenous HFE transcripts, confirming
our previous conclusion that the physiological human HFE mRNA is a natural NMD-target. HeLa or HepG2 cells were untreated (0 mmol/
L) or treated with cycloheximide (200 mmol/L) during two hours. Then, cells were harvested and RNA was isolated. (A) Relative changes in HFE mRNA
levels carrying polyadenylation at exon seven were analyzed by RT-qPCR, as previously in Figure 2B. Levels of HFE mRNA obtained after cellular
cycloheximide treatment were compared to those obtained in untreated cells (defined as 1; arbitrary units). The histograms show the mean and
standard deviations from three independent experiments. Below the histograms, there is a schematic representation of the human HFE mRNA (as in
Figure 2). The double arrow represents the coordinates of the amplicon obtained in the qPCR. (B) Relative changes in total HFE mRNA levels were
quantified by RT-qPCR as in A but using primers that specifically hybridize to the 59-end of the HFE exon six, as shown in the diagram of the human
HFE mRNA represented below the histograms.
doi:10.1371/journal.pone.0035461.g003
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cleavage and polyadenylation at exon seven, although present in

both cell lines, is more abundant in HepG2 cells. Nevertheless, it is

noteworthy that the physiological HFE mRNA isoforms resulting

from 39-end cleavage and polyadenylation at exon seven behave as

natural targets for the UPF1- and translation-dependent NMD

mechanism, both in HeLa and HepG2 cells.

The HFE transcripts carrying a nonsense mutation are
also committed to NMD

The preceding study has revealed that the expression of

physiological human HFE transcripts, specifically those species

with 39-end cleavage and polyadenylation at exon seven, are

down-regulated by the NMD mechanism. To determine whether

human HFE mRNAs carrying a nonsense mutation show a

parallel NMD profile, we investigated the effect of the TACR
TAG nonsense mutation at codon 138 (Y138X) of the human

HFE gene. This mutation had been previously described in

compound heterozygosity with the C282Y mutation and associ-

ated with an iron overload phenotype in a Portuguese individual

[38]. With that aim, we first cloned, into the mammalian

expression pcDNA3 vector, a normal (WT) HFE minigene that

encompasses all exons and introns 4, 5 and 6 of the human HFE

gene (Fig. 4A). In addition, a minigene similar to the normal HFE

construct in which intron 6 was deleted by site-directed

mutagenesis (see Materials and Methods; Del_IVS6_WT mini-

gene; Fig. 4A) was also cloned. The corresponding transcript

functions as a negative control for NMD-commitment because

splicing is abrogated downstream of the native translation

termination codon, and thus it has the potential to be NMD-

resistant. Then, by using each one of these HFE minigenes as

template for site-directed mutagenesis (see Materials and Meth-

ods), we introduced the Y138X mutation to create the Y138X and

the Del_IVS6_Y138X minigenes, respectively (Fig. 4A). In view of

the higher transfection efficiency observed in HeLa cells, as

compared with that obtained in HepG2 cells, the former cell line

was chosen for these studies. Thus, one day after treatment with

Luciferase or UPF1 siRNAs, plasmids harboring the minigenes

described above were transiently transfected into HeLa cells, (see

Materials and Methods). Twenty-four hours later, a Western blot

analysis showed a decrease of about 95% in UPF1 protein

expression induced by siRNA (Fig. 4B; lanes 2, 4, 6 and 8), when

compared with results obtained after treatment with the control

Luciferase siRNA (Fig. 4B; lanes 1, 3, 5 and 7). The HFE mRNA

levels expressed in UPF1-depleted cells were determined by RT-

qPCR, with specific primers for the 59 UTR that is transcribed by

the cytomegalovirus promoter of the pcDNA3 vector and is

specific for all mRNAs encoded from transfected HFE minigenes.

Expression of these genes was normalized to the expression of the

neomycin resistance gene and compared to those levels of mRNA

encoded by the corresponding minigene expressed in cells treated

with the control siRNA (Fig. 4C). Data from three independent

experiments show that cellular UPF1 depletion results in a

significant 1.3-fold increase in WT mRNA when compared to

its levels in control conditions (p = 0.0332), which shows that those

transcripts are sensitized to NMD. In addition, when HFE mRNA

carries a nonsense mutation at position 138 (Y138X mRNAs) and

is expressed in UPF1-depleted cells, we observe a more robust

effect: a 1.7-fold increase in Y138X mRNA, comparing to their

expression levels in control cells (p = 0.0010). On the contrary,

Del_IVS6_WT mRNA is expressed in UPF1-depleted cells at

about 0.9-fold its level in control cells, showing that expression of

this transcript is not significantly affected by the UPF1 depletion

(p = 0.3001), behaving NMD-resistant, as expected. However, if

this transcript carries a nonsense mutation at position 138

(Del_IVS6_Y138X mRNA), cellular depletion of UPF1 results in

a 1.6-fold increase in Del_IVS6_Y138X mRNA levels (Fig. 4C),

consistent with the blockade of the NMD pathway (p = 0.0010).

Taken together, these data show that the WT, Y138X and

Del_IVS6_Y138X transcripts, all are regulated by the NMD

mechanism. The fact that WT transcripts show a lower increase

(1.3-fold) than Y138X and Del_IVS6_Y138X (1.7 and 1.6-fold

respectively) mRNAs upon UPF1 depletion, may reflect the

presence of a proportion of WT HFE transcripts that use a poly(A)

signal at exon six for 39-end processing and thus, their NMD-

resistance. On the other hand, all isoforms of Y138X and

Del_IVS6_Y138X mRNAs are NMD-sensitive and thus they are

all relieved from decay upon UPF1 inhibition. Alternatively, the

lower levels of WT transcripts when NMD is inhibited might

suggest that some other mechanism is also reducing its expression.

Nevertheless, our data show that all alternatively polyadenylated

mRNA isoforms encoded from an HFE gene that carries a PTC

are down-regulated by the NMD mechanism. Physiologically, this

means that only those HFE transcripts resulting from 39-end

cleavage and polyadenylation at exon seven behave as NMD-

targets. The NMD mechanism therefore affects the levels of HFE

protein.

Discussion

The human HFE gene reference structure comprises seven

exons [20,25]. Although the sixth exon is 1056 bp long, only the

first 41 bp encode for amino acids, thus, the remaining

downstream 1015 bp sequence corresponds to the HFE 39

UTR, along with exon seven. The data presented in this study

show that the splicing event occurring in the 39 UTR of the HFE

transcript is in fact an attribute that makes the physiological

transcript NMD-sensitive. In addition, we also demonstrate that

besides the usage of the two polyadenylation signals for 39-end

cleavage and polyadenylation previously described [20,25], HFE

mRNA expression can also result from cleavage and polyadenyl-

ation at two other alternative sites – one located at exon six and

the other one located at exon seven. These results illustrate that

alternative polyadenylation has functional consequences, with the

shorter mRNA isoform exhibiting increased stability, as they lose

the feature that could make them physiological NMD-targets. Our

results show that alternative polyadenylation and nonsense-

mediated mRNA decay can coordinately act to control the human

HFE mRNA levels.

HFE protein has a well-recognized role in the regulation of iron

homeostasis. HFE is capable of forming protein complexes with

both TfR1 and TfR2 in the cellular membrane [21,22]. It was

recently proposed that HFE is partitioned between TfR1 and

TfR2, and under increasing iron concentrations, HFE should shift

away from TfR1 towards TfR2, triggering the signalling

transduction pathway that leads to induction of the iron regulatory

hormone hepcidin [23,24]. Here, we clearly show that, under

normal conditions, human HFE transcript expression is affected by

the NMD mechanism; in addition, a greater proportion of HFE

transcripts are normally subject to NMD in hepatic cells. This can

explain its relative low levels of expression observed in all tissues

studied, including in the liver cells [29,39]. To further corroborate

the importance of this post-transcriptional mechanism in the

regulation of HFE mRNA, there is the fact that the TfR2 mRNA,

which is thought to be the principal partner of HFE protein in the

regulation of the iron metabolism in the liver, is also a natural

target for NMD [16]. As a result, NMD might be used in a

concerted way to adapt HFE and TfR2 protein expression to the

iron physiological needs of the organism.

HFE mRNA Regulation by NMD and Alternative Poly(A)
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To our knowledge, there are few nonsense mutations reported

in the human HFE gene [38,40–42]. Yet, only one of these

mutations has been studied in what concerns its ability to commit

the mRNA to NMD [42]. This mutation consists in a single

nucleotide deletion (c.del478) causing a frameshift that introduces

a premature termination codon in exon four. The authors have

demonstrated that c.del478 allele accounts for only 2% of the total

cytoplasmic HFE mRNA showing that the mutant transcript is

degraded by NMD [42]. In the light of our results, since the HFE

mRNA containing exon seven is capable of, at some extent, escape

NMD, the introduction of a nonsense mutation could lead most of

the corresponding transcripts to NMD. The NMD induced by the

Y138X construct was seemingly less efficient because only a 1.7-

fold increase in transcript abundance was observed when subjected

to UPF1 depletion. This may reflect the overexpression system in

use. Moreover, it cannot be disregarded that, in the study by

Pointon et al. [42], the iron overload observed in the patient could

induce preferential polyadenylation at exon six and ultimately

would increase levels of the wild type transcripts relatively to those

of the mutated allele.

HFE mRNA metabolism has been poorly studied. Even the

description of the specific structure of its 39 UTR has been

disputed. It was shown by Northern blot analysis that the

human HFE gene is expressed as a 4.2 kb mRNA [20].

Nevertheless, the corresponding reported cDNA was only 2.7 kb

(GenBank U60319); in fact, the remaining 1.5 kb were later

described by Sanchez et al. [25] as being part of the HFE exon

seven. Also, these authors have demonstrated by 39-RACE

experiments that human HFE mRNA can result from the usage

of two alternative polyadenylation signals located at exon seven,

at 1455 and 2958 nts downstream of the stop codon [poly(A)

signals 2 and 4, Fig. 1] [25]. The observation that this 39 UTR

structure presents additional putative polyadenylation signals

downstream of the native translation termination codon, led us

to further investigate their possible usage for 39-end processing.

In fact, our results have shown that two novel poly(A) signals

are also recognized in several human tissues. These poly(A)

signals allow 39-end cleavage and polyadenylation at exon six or

seven, respectively at 857 or 2620 nts downstream of the stop

codon. These poly(A) signals are recognized in mRNA from

several tissues, including liver and duodenum, which are tissues

where HFE mRNA is mainly expressed and where HFE

protein has a key role in the regulation of the iron metabolism.

This observation might reflect their involvement in modulat-

Figure 4. Contrary to the transcript corresponding to the minigene lacking intron 6, normal and nonsense-mutated human HFE
transcripts are committed to NMD. (A) Schematic representation of the studied human HFE minigenes: normal (WT), nonsense-mutated (Y138X),
lacking intron six (Del_IVS6_WT) and nonsense-mutated lacking intron six minigene (Del_IVS6_Y138X). The position of the initiation (ATG) and
termination (STOP) codons is represented. The name of each minigene is indicated above each diagram. (B) Representative Western blot analysis of
HeLa cells extracts transfected with human UPF1 siRNA or a control siRNA target (siRNA Luciferase). Twenty-four hours after siRNA treatment, cells
were co-transfected with the plasmids encoding the above referred minigenes and with a second dose of siRNAs (UPF or Luciferase). Twenty-four
hours later, cells were harvested for protein and RNA. Immunoblotting was performed using a human UPF1 specific antibody and an a-tubulin
specific antibody to control for variations in protein loading. (C) HFE mRNA quantification was performed by RT-qPCR using primers specific for the
heterologous 59 UTR common to all transfected genes. Neomycin resistance transcript was used as a normalization control. Quantification of the
transcript levels was performed by the absolute quantification method. Levels of HFE mRNA obtained after cellular UPF1 siRNA treatment were
compared to those obtained after Luciferase siRNA treatment at the same conditions (defined as 1; arbitrary units). The histogram shows the mean
and standard deviations from three independent experiments, corresponding to three independent transfections. Statistical analysis was performed
using Student’s t test (unpaired, two tailed).
doi:10.1371/journal.pone.0035461.g004
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ing HFE mRNA levels in the tissues were it is specifically

expressed.

Cleavage and polyadenylation is required for the maturation of

most mRNA transcripts [43,44]. Usually, the formation of mature

mRNAs in vertebrates involves the cleavage and polyadenylation

of the pre-mRNA at about 10–30 nts downstream of an AAUAAA

or AUUAAA signal sequence. Although a strong polyadenylation

signal is usually located within the 39 UTR, in nearly all transcripts

there are single-base variants of the AAUAAA sequence that can

also be recognized as polyadenylation signals [45–48]. Large scale

analyses have shown that at least ten single-base variants of the

AAUAAA and AUUAAA sequences can also be found with a

highly significant occurrence rate potentially representing about

22% of all polyadenylation signals [45]. In addition, Tian and

colleagues have revealed that about 54% of the mRNAs display

two or more polyadenylation sites [45]. In these mRNAs, the

poly(A) signals proximal to the coding sequence tend to use variant

signals more often, while the 39-most sites tend to use a canonical

signal [46]. Also, it has been suggested that variant signals

(including the common AUUAAA) are processed less efficiently

than the canonical signal and could therefore be selected for

regulatory purposes [45,46]. In the present work, we show that the

human HFE mRNA constitutes an example of a transcript where

four poly(A) signals (one AAUAAA hexamer, two AUUAAA

hexamers, and one GAUAAA hexamer) can be recognized for its

39-end cleavage and polyadenylation. These results confirm those

obtained when we used the polyadq program (http://rulai.cshl.

org/tools/polyadq/polyadq_form.html) [49] to evaluate potential

poly(A) signals in the human HFE 39 UTR – this program

predicted that the AAUAAA and AUUAAA sites here described in

the HFE exon seven [poly(A) signals 2, 3 and 4; Fig. 1] would be

the active signals. It is interesting to note that in the HFE 39 UTR

there is the recognition of more non-canonical than canonical

AAUAAA poly(A) signals, which is according to the published data

[46]; in addition, the 59-most upstream poly(A) signal is, among

the four poly(A) signals that are alternatively recognized, the

hexamer least frequently recognized in mammalian cells [46]. The

data presented here is in fact in accordance with the usage of the

four described alternative poly(A) signals to control the HFE

mRNA levels.

The recognition of the non-canonical poly(A) signals by the 39-

end processing machinery is not completely understood. It is

currently believed that auxiliary sequences located either upstream

or downstream (DSEs) of the non-canonical poly(A) sites may be

able to compensate for a degenerated hexamer. Such sequences

may serve to stabilize the poly(A) complex assembly by providing

alternative binding for components of the 39-end processing

machinery [50]. A wide scale analysis of human poly(A) signals has

in fact shown that many non-canonical poly(A) signals contain

upstream A-rich sequences and tend to have a higher frequency of

U and GU nucleotides in their DSE compared with canonical

poly(A) signals [48]. Knowing that the human HFE 39 UTR has a

very high A+U content [25], probably the recognition of its non-

canonical poly(A) signals might indeed take advantage of potential

A-, U- and/or GU-rich elements.

As indicated above, it is known that mRNAs with multiple

poly(A) signals tend to use non-canonical polyadenylation signals

(including the common AUUAAA) more often than mRNAs with

a single poly(A) hexamer. It has been also shown that the

occurrence of non-canonical polyadenylation signals mediates

variation in polyadenylation efficiency, thus enabling develop-

mental, physiological and pathological regulation of gene

expression [46,51–53]. The occurrence of alternative polyadenyl-

ation can also enable gene expression response to physiological

stimuli [53,54]. Recently, it has been clearly shown that alternative

polyadenylation is actually a mechanism by which transcripts can

lose repressive 39 UTR elements which is associated to promotion

of oncogenic transformation or immune cell activation [55,56].

These authors have shown that states of increased proliferation are

associated with widespread reductions in the 39 UTRs by

alternative polyadenylation, with the shorter mRNA isoforms

exhibiting increased stability and typically producing more

protein, in part through the loss of microRNA-mediated

repression [55,56]. It was recently shown that the liver-specific

microRNA miR-122 clearly affects HFE expression, as well as

expression of other iron-related genes [57]. In fact, two miR-122

recognition sites were found to be present in the HFE 39 UTR, at

about 60 and 260 nts downstream the stop codon, respectively

[57]. Nevertheless, these sites are located upstream of the four

alternative polyadenylation sites found in the present work and

thus they are expected to affect the abundance of the four

polyadenylation HFE isoforms in a similar fashion.

Our data show that the human HFE mRNA expression results

from alternative polyadenylation at a GAUAAA non-canonical

poly(A) signal at exon six, or at two AUUAAA sites or one

AAUAAA site located at exon seven of the HFE 39 UTR. The

extended HFE 39 UTR isoforms encompass an intron located

more than 55 nts downstream of the native stop codon, which is a

feature that induces mRNA destabilization by the NMD

mechanism. The present work provides an example of how

shortening the 39 UTR by alternative cleavage and polyadenyl-

ation can have the functional consequence of increasing mRNA

levels through the loss of the feature that can make this transcript

an NMD-target. The hypothesis that alternative polyadenylation

and NMD respond to cellular stimuli to coordinately regulate HFE

mRNA levels in human cells will be the subject of future studies.

Materials and Methods

39 Rapid amplification of cDNA ends (39-RACE)
39-RACE experiments were performed using the BD

SMARTTM RACE cDNA Amplification Kit (BD Biosciences

Clontech) according to the manufacturer’s instructions. Briefly,

one microgram of total RNA from each tissue was retrotranscribed

using 39-RACE CDS Primer A together with the kit specific

components for cDNA synthesis (90 min at 42uC). To cover the

entire human HFE 39 UTR, four parallel PCR reactions were

performed with a HFE specific forward primer (primer #1, #2,

#3, or #4; Table 1) and the universal primer of the 39-RACE

amplification kit, as reverse primer. A touchdown PCR program

was done as indicated in the user manual. Then, a nested PCR

was performed by using primers one forward internal primer

(primer #5: EX6F; primer #6: EX6G; primer #7: EX7G; primer

#8: EX7H; Fig. 1A and Table 1) and the nested universal primer

from the kit. The PCR products from the nested PCR were

separated on agarose gels, cloned into the pCRH2.1-TOPO

(Invitrogen) and sequenced with BigDye terminator v1.1 sequenc-

ing standard kit (Applied Biosystems), using M13 forward and

reverse primers and analysed with the ABI Prism 3100 automatic

sequencer (Applied Biosystems).

Plasmid constructs
The HFE minigenes used in this work comprise all human HFE

exons and introns 4, 5 and 6. The normal HFE minigene (WT)

was obtained by sequentially cloning and ligating three distinct

human HFE fragments. The first fragment, encompassing exon 1

from AUG codon to exon 4, was PCR amplified from HFE cDNA

by using primers #9 (with a NotI restriction site linker; Table 1)
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and #10 (with a ClaI restriction site linker; Table 1). An 812 bp

fragment was isolated on an agarose gel and cloned into the

pCRH2.1-TOPO vector (Invitrogen). Then, this fragment was

inserted into pTRE2pur (Clontech) using the NotI and ClaI

restriction enzymes. The second fragment of the HFE minigene

encompasses exon 4 to the 59-end of exon seven of the human

HFE gene. It was PCR amplified with the Expand Long Template

PCR System (Roche) and primers #11 and #12 (Table 1), using

human genomic DNA as template. The corresponding 4455 bp

fragment was purified and cloned into pCRH2.1-TOPO vector

and subsequently inserted into the pTRE2pur already containing

the first HFE fragment, by using BstBI (restriction site located in

HFE exon 4) and EcoRV (restriction site present in HFE exon

seven) enzymes. The third HFE fragment encompasses all exon

seven plus a 401 bp downstream fragment. It was PCR amplified

by using the Expand Long Template PCR System with primers

#13 and #14 (with a Kpn2I restriction site linker; Table 1) and

human genomic DNA as template. The resulting 2210 bp

fragment was isolated in an agarose gel and purified, cloned into

the pCRH2.1-TOPO vector and subsequently subcloned into the

pTRE2pur carrying the two previously cloned HFE fragments, by

using EcoRV and Kpn2I restriction enzymes (the Kpn2I site was

previously inserted into the original multicloning site of the

pTRE2pur vector at position 1770, by directed mutagenesis using

primers #15 and #16; Table 1). All cloned fragments were

confirmed through automated sequencing with several human

HFE specific primers. The NMD-resistant minigene (Del_IVS6)

was obtained from the wild-type minigene, by replacing the BsgI

and BsmI fragment containing intron 6 with the corresponding

BsgI/BsmI cDNA fragment. The nonsense-mutated minigenes

(Y138X) carrying the naturally-occurring nonsense mutation

TACRTAG at codon 138 [38] were obtained by site-directed

mutagenesis using primers #17 and #18 (Table 1) and the

QuickChangeH Site-Directed Mutagenesis Kit (Stratagene). All

the HFE minigenes where finally removed from the pTRE2pur

vector and subcloned into the pcDNA3 (Invitrogen) using

NotI and Kpn2I restriction enzymes. The Kpn2I site was

previously introduced into pcDNA3 vector at position 1310

by site-directed mutagenesis using primers #19 and #20

(Table 1), therefore removing the polyadenylation site of the

bovine growth hormone gene present in the vector. The b39 gene

was cloned into the pTRE2pur vector (BD Biosciences) as

previously described [37].

Cell culture and transfections
HepG2 cells (DSMZ, ACC 180) were grown in RPMI 1640

medium supplemented with 10% (v/v) fetal bovine serum (FBS).

HeLa cells (ATCC, CCL-2) were grown in Dulbecco’s modified

Eagle’s medium (DMEM) supplemented with 10% (v/v) FBS.

When appropriated, HeLa and HepG2 cells were treated with

cycloheximide (200 mmol/L) and harvested two hours later for

RNA isolation.

Transient transfections were performed in HeLa cells using

Lipofectamine 2000 Transfection Reagent (Invitrogen), following

the manufacturer’s instructions, in 35 mm plates, using 1 mg of the

test construct DNA and 1 mg of pEGFP vector (BD Biosciences) to

control for transfection efficiency. Cells were harvested for RNA

and protein lysates, twenty-four hours later.

Transient transfections of siRNAs
Transfections of HeLa cells with siRNAs were carried out using

Lipofectamine 2000 reagent (Invitrogen) according to the

manufacturer’s instructions, in 60 mm plates, using 200 pmol of

siRNA oligonucleotides and 10 ml of transfection reagent. Cells

were harvested for RNA and protein extracts at twenty-four, forty-

eight and seventy-two hours post-transfection. In the case cells

were also transiently transfected with plasmid constructs, siRNAs

transfections were performed at twenty-two hours (100 pmol of

siRNAs) and concomitantly (50 pmols of siRNAs) with the

plasmids transfections. The siRNA oligonucleotides used for

transfections [Luciferase (59-CGUACGCGGAAUACUUCGA-

39) and UPF1 (59-UUACCGCGUUCUGUGUGAA-39)] were

purchased as annealed, ready-to-use duplexes from MWG.

HepG2 cells were transfected with the same siRNAs using

200 pmol of each oligonucleotide and 10 ml of LipofectamineTM

RNAiMAX transfection reagent (Invitrogen), following the

reverse-transfection protocol indicated by the manufacturer.

Twenty-four, forty-eight and seventy-two hours later, cells were

collected for RNA and protein extracts.

Table 1. DNA oligonucleotides used in the current work.

Primer Sequence (59R39)

#1 AGT GAC ACG CAG CCT GCA GAC TCA C

#2 TGG TGC CTT CAT TTG GGA TGC TAC TC

#3 TTC AAC TGT GGT AGC CGA ATT AAT CGT G

#4 GAA TCA CAG GCC ATT GCT GAG CTG CC

#5 TTT CTG AGT TCC TGC ATG CCG GTG ATC C

#6 AGT GAA GTA GGC CGG GCA CGG TGG C

#7 GGC TTC ACT TAC TCT TCT ACC TCA TAA GG

#8 GAT TGA GGA CTG CTG AGA GGT ACA GGC C

#9 TTT TGC GGC CGC ATG GGC CCG CGA GCC AGG CCG

#10 TTT TAT CGA TAG GTC CCA TCC CCA TTG GGC

#11 GAA CAT CAC CAT GAA GTG GCT GAA GG

#12 GGG GTG TTT CTT GAA ATC TCA GCC C

#13 GAA GGG CAG GTG CTT CAG GAT ACC

#14 TTT TTC CGG AAC ATG GTA ACT GTT GCC

#15 GGG CGC TCT TCC GCT TCC TTC CGG ACG CTC ACT GAC GAC TCG

#16 GCG AGT CAG TGA GCG TCC GGA AGG AAG CGG AAG AGC GCC C

#17 CCG AGG GCT ACT GGA AGT AGG GGT ATG ATG GGC AGG

#18 CCT GCC CAT CAT ACC CCT ACT TCC AGT AGC CCT CGG

#19 GGG CTC TAG GGG GTA TCC TCC GGA CCA CGC GCC CTG TAG C

#20 GCT ACA GGG CGC GTG GTC CGG AGG ATA CCC CCT AGA GCC C

#21 CTA CGT CTT AGC TGAACG TGA GTG A

#22 TGT CTC CTT CCC ACA GTG AGT CT

#23 AAG CAT TCT GTC TTG AAG GGC A

#24 CTG AGC TGT ATA TGG TAT CCT GAA GC

#25 CGA GTC CAA GTA CGC CTC ATG

#26 GGT TGT CCT TCA TCT CGT CCA

#27 CCA CTG CTT ACT GGC TTA TCG A

#28 GGG TCT CCC TAT AGT GAG TCG TAT TA

#29 CGA CCA CCA AGC GAA ACA T

#30 GCT TCC ATC CGA GTA CGT GC

#31 GTG GAT CCT GAG AAC TTC AGG CT

#32 CAG CAC ACA GAC CAG CAC GT

#33 CGC AAC CTC CCC TTC TAC G

#34 GGT GAC GGT GAA GCC GAG

doi:10.1371/journal.pone.0035461.t001
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RNA isolation
Total RNA from small intestine, spleen, liver, testis, ovary,

duodenum, heart, kidney and peripheral blood mononuclear cells

(PBMCs) was purchased (BD Clontech or Ambion). RNA from

transfected cells was prepared using the RNeasy mini kit (Qiagen)

following the manufacturer’s indications. RNA samples were

treated with RNase-free DNase I (Ambion) and purified by

phenol:chloroform extraction. Before further analyses, mRNA

samples isolated from cultured cells transfected with test plasmids

were assessed by RT-PCR to reject the hypothesis of activation of

cryptic splicing pathway(s) that might affect the human HFE

mRNA sequence. From all the studied transcripts, a single full-

length product was amplified (data not shown), demonstrating a

normal splicing pattern.

Quantitative reverse transcription-coupled real-time PCR
(RT-qPCR)

Synthesis of cDNA was carried out using 3 mg of total RNA and

SuperScriptH III Reverse Transcriptase (Invitrogen), according to

the manufacturer’s instructions. Real-time PCR was performed in

an ABI Prism 7000 Sequence Detection System using SYBR

Green Master Mix (Applied Biosystems). Primers were designed

using the ABI Primer Express software. Primers were specific for

the following transcripts: HFE (Exon six: primers #21 and #22;

Exon seven: primers #23 and #24; Table 1); G protein pathway

suppressor 1 (primers #25 and #26; Table 1); Heterologous 59

UTR common to all transfected HFE minigenes (primers #27 and

#28, Table 1); Neomycin resistance gene (primers #29 and #30;

Table 1); b-globin gene (primers #31 and #32, Table 1);

Puromycin resistance gene (primers #33 and #34, Table 1). The

following cycling parameters were used: 10 min at 95uC, and

40 cycles (15 sec at 95uC and 1 min at 65uC) for all transcripts

except for b-globin and puromycin resistance transcripts. Quan-

tification of each transcript was performed by the absolute

quantification method using serial dilutions of plasmids carrying

the corresponding cDNA. These plasmids were generated by

introducing PCR fragments into pCRH2.1-TOPO vector. For b-

globin and puromycin resistance mRNAs, the parameters used

were: 10 min at 95uC, and 40 cycles (15 sec at 95uC and 1 min at

60uC); the quantification was performed using the relative

standard curve method (DDCt, Applied Biosystems).

SDS-PAGE and Western blotting
Protein lysates were resolved in 10% SDS-PAGE according to

standard protocols and transferred to PVDF membranes (Bio-

Rad). Membranes were probed using goat polyclonal anti-UPF1

(Bethyl Labs) at 1:250 dilution, or mouse monoclonal anti-a-

tubulin (as loading control; Sigma). Detection was carried out

using secondary peroxidase-conjugated anti-mouse IgG (Bio-Rad)

or anti-goat IgG (Sigma) antibodies followed by chemilumines-

cence assays. For densitometric analysis, films from at least three

independent experiments were digitalized and analyzed using

ImageJ software.

Statistical analysis
Results are expressed as mean 6 standard deviation. Student’s t

test was used for estimation of statistical significance. Significance

for statistical analysis was defined as a p,0.05.

Supporting Information

Figure S1 Representative agarose gel electrophoreses
showing 39-RACE products from total RNA from differ-
ent tissues: duodenum, heart, peripheral blood mononuclear

cells (PBMCs), kidney, testis, spleen, small intestine and ovary (A–

H, respectively). The 39-RACE products were obtained by nested

PCR using forward primers specified above each lane, the

universal primer and the master mix provided by the BD SMART

RACE cDNA Amplification Kit (BD Biosciences Clontech). The

molecular weight marker (M) is the 1 kb DNA ladder (Invitrogen).

(TIF)

File S1 39RACE amplicons that do not support HFE polyade-

nylated mRNA and the corresponding sequencing data.

(DOC)
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