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Abstract

Background: Excessive exposure to light enhances the progression and severity of some human retinal degenerative
diseases. While retinal microglia are likely to be important in neuron damage associated with these diseases, the
relationship between photoreceptor damage and microglial activation remains poorly understood. Some recent studies
have indicated that the chemokine fractalkine is involved in the pathogenesis of many neurodegenerative diseases. The
present study was performed to investigate the cross-talk between injured photoreceptors and activated retinal microglia,
focusing on the role of fractalkine and its receptor CX3CR1 in light-induced photoreceptor degeneration.

Methodology/Principal Findings: Both in vivo and in vitro experiments were involved in the research. In vivo, Sprague–
Dawley rats were exposed to blue light for 24 hours. In vitro, the co-culture of primary retinal microglia and a photoreceptor
cell line (661W cell) was exposed to blue light for five hours. Some cultures were pretreated by the addition of anti-CX3CR1
neutralizing antibody or recombinant fractalkine. Expression of fractalkine/CX3CR1 and inflammatory cytokines was
detected by immunofluorescence, real-time PCR, Western immunoblot analysis, and ELISA assay. TUNEL method was used
to detect cell apoptosis. In addition, chemotaxis assay was performed to evaluate the impact of soluble fractalkine on
microglial migration. Our results showed that the expression of fractalkine that was significantly upregulated after exposure
to light, located mainly at the photoreceptors. The extent of photoreceptor degeneration and microglial migration
paralleled the increased level of fractalkine/CX3CR1. Compared with the control, the expression of inflammatory cytokines
was significantly downregulated in the anti-CX3CR1 neutralizing antibody-treated group, and the number of
photoreceptors was also well preserved. The addition of recombinant full-length fractalkine or soluble fractalkine resulted
in fewer TUNEL-positive photoreceptors and an increased number of migratory microglia respectively.

Conclusions/Significance: These findings demonstrate that fractalkine/CX3CR1 interaction may play an important role in
the photoreceptor-microglia cross-talk in light-induced photoreceptor degeneration.
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Introduction

Excessive exposure to light enhances the progression and

severity of some human retinal degenerative diseases, such as age-

related macular degeneration, and some forms of retinitis

pigmentosa due to irreversible photoreceptor apoptosis [1].

Understanding the process of photoreceptor apoptosis might

provide evidence for how to interfere with photoreceptor loss and

therefore loss of vision in these diseases.

Microglia located in the inner retina are defined as the resident

macrophages of the central nervous system (CNS) [2]. Some

evidence indicates that microglial activation contributes to neuron

damage in neurodegenerative diseases [3–5]. In response to

certain environmental changes, microglia can become over-

activated and therefore exert detrimental neurotoxic effects by

the excess production of cytotoxic factors [6–8]. Our previous

finding suggests that inhibition of microglial activation by

naloxone is neuroprotective in a model of light-induced photore-

ceptor degeneration [9]. Although the involvement of microglia is

certain, the relationship between photoreceptor damage and

microglial activation remains poorly understood [10].

Recently, an increasing number of studies have focused on the

signal cross-talk between neurons and microglia [11]. Chemokines

are a family of relatively low molecular mass proteins that chemo-

attract and activate inflammatory cells [12]. Different from most

other chemokines, fractalkine is a peculiar chemokine belonging to

the CX3C subfamily that exists as both soluble and membrane-

bound forms [13]. It is constitutively expressed by neurons

throughout the CNS, whereas its sole receptor, CX3CR1, is

restricted to major microglia in the CNS [14–16]. Under
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stimulation, the membrane-bound form of fractalkine on neurons

can be cleaved into the soluble form by the activation of

metalloproteases [17–18]. This pattern of expression makes the

ligand–receptor pair fractalkine/CX3CR1 appear to be an ideal

candidate to mediate neural/microglial interaction [19].

Recent studies show that fractalkine is involved in the

pathogenesis of many clinical diseases including pancreatitis

[20], rheumatoid arthritis [21], AIDS [22], atherosclerosis

[23,24], age-related macular degeneration [25–27], neuropathic

pain [28–30], and cancer [31–33]. It is also suggested that the

fractalkine/CX3CR1 in the CNS not only modulates the

recruitment/activation of immune cells [34,35], but might also

exert multiple effects on neurons [36–38]. Indeed, the role of

fractalkine/CX3CR1 is still quite controversial. For example,

CX3CR1-deficient mice showed reduced inflammation and injury

in models of cerebral ischemia [39–41], Alzheimer’s disease (AD)

[42], and mutant tau/APP-associated neurodegeneration [43]. On

the other hand, loss of CX3CR1 exaggerates neuron apoptosis in

Parkinson’s disease [27], amyotrophic lateral sclerosis [27], and

encephalomyelitis [44]. This indicates that fractalkine/CX3CR1

might play different and even opposite roles in different disease

models [36].

In contrast to a tremendous amount of research on the brain,

little is known about the role of fractalkine/CX3CR1 in light-

induced photoreceptor degeneration. We hypothesized that

photoreceptor damage due to excessive light exposure would

result in membrane-bound form fractalkine cleavage into soluble

form and then enhanced microglial activation, which would be

driven by the further loss of photoreceptors throughout the

degenerative process.

Therefore, the purpose of this study was to determine the role of

fractalkine/CX3CR1 interaction in light-induced photoreceptor

apoptosis. In this work, we investigated the changes in fractalkine/

CX3CR1 expression after light damage, as well as the regulation

of microglial functions mediated by the fractalkine/CX3CR1

ligand/receptor pair, in both the in vivo type I retinal photic injury

model and the in vitro photoreceptor/microglia co-culture system.

Our data show that the alteration in the forms of fractalkine

protein expressed due to light damage exacerbates retinal

inflammation and photoreceptor apoptosis by increased recruit-

ment of activated microglia and excess production of inflamma-

tory cytokines. In addition, the blockade of soluble-form fractalk-

ine activity by means of a neutralizing monoclonal antibody partly

delayed the degenerative process of photoreceptors and, in

contrast, exogenous membrane-bound form fractalkine adminis-

tration promoted photoreceptor survival, suggesting that the

equilibrium between membrane-bound and soluble-form fractalk-

ine plays an important role in the biological activity of fractalkine/

CX3CR1. Taken together, these findings suggest that fractalkine/

CX3CR1 represents a potential novel therapeutic target to

regulate inflammation and photoreceptor survival in light-induced

retinal degeneration.

Materials and Methods

Animals
All procedures were conducted in accordance with the ARVO

statement for the Use of Animals in Ophthalmic and Vision

Research, and the study was approved by the Animal Ethics

Committee of the Eye and ENT Hospital of Fudan University.

Adult male Sprague–Dawley rats, each weighing 200 to 230 g,

were maintained in a 12-hour light/12-hour dark cycle. They

were fed ad libitum and had free access to water.

Cell Culture
Primary retinal microglia culture. Retinas were isolated

from newborn Sprague-Dawley rats by mechanical dissociation

and then incubated in 0.25% trypsin, 1 mM EDTA (Invitrogen,

Carlsbad, CA) to generate single cell suspension. The enzyme-

treated tissues were then triturated with a pipette and the trypsin

was inactivated by fetal bovine serum (FBS) (Gibco, Carlsbad,

CA). Cells were collected by centrifugation and re-suspended in

DMEM/F-12 medium (Gibco, Carlsbad, CA) containing 10%

FBS and 1% penicillin/streptomycin (Sigma-Aldrich, St. Louis,

MO). The cells were seeded in 75 cm2 culture flasks and incubated

at 37uC in a humidified 5% CO2 atmosphere. After two or three

weeks of growth, mixed glial cells were shaken at 250 rpm for

4 hours and the supernatant containing an enriched microglia

were harvested to reseed.

661W cell culture. The 661W photoreceptor cell line was

kindly provided by Dr. Muayyad Al-Ubaidi (University of

Oklahoma Health Sciences Center, Oklahoma City, OK) [45]

and maintained in DMEM/High glucose medium (Gibco,

Carlsbad, CA) containing 10% FBS and 1% penicillin/

streptomycin at 37uC in a humidified 5% CO2 atmosphere.

Co-culture of retinal microglial cells with 661W

cells. Freshly collected microglia were reseeded onto 6 well

transwell collagen-coated membrane inserts (Corning, Corning,

NY). Separately, 661W cells were grown to confluence in a 6 well

plate. After 24 hours incubation in their basal medium respectively,

the previously prepared transwell inserts containing retinal

microglia were then placed into wells with 661W cells. Before light

exposure, some inserts of microglia were pretreated by the addition

of anti-CX3CR1 neutralizing antibody (Torrey Pines Biolab, La

Jolla, CA) or recombinant full-length fractalkine (R&D Systems,

Minneapolis, MN) for 5 hours. Then microglia-661W cell co-

cultures and controls undergone the light exposure. The 0.4 um

pore size of the transwell prevents direct cell–cell interactions but

allows the diffusion of soluble factors through themembrane (Fig. 1).

Light exposure of the SD rats. SD rats were anesthetized by

intraperitoneal injection of ketamine (50 mg/kg) and xylazine

(10 mg/kg). Pupils were fully dilated with 1% atropine. The rats

were placed separately in cages. After 24 hours’ dark adaptation,

they were exposed to blue light at an intensity of 2500 lux for

24 hours. After that, they were placed in darkness for another

24 hours and then were returned to the normal light/dark cycle.

Light exposure of the 661W cells. The 661W cells were

seeded in a 6 or 12 well culture plate (Corning, Corning, NY) for

24 hours followed by 5 hours of intense blue light exposure set at

6000 lux in a light box which was equipped with 16 blue LED

lamps fixed on the superior and inferior side. The temperature was

maintained at 37uC and the control cells were shielded from light

and were kept under conditions similar to those for the cells in the

light exposure.

Figure 1. Illustration of the transwell co-culture system and the
chemotaxis assay. The transwell consists of two chambers separated
by a porous membrane. The 661W cells were placed on the bottom of
the lower chamber while the microglial cells were placed on the
membrane of the upper chamber.
doi:10.1371/journal.pone.0035446.g001

Fractalkine/CX3CR1 in Photoreceptor Degeneration

PLoS ONE | www.plosone.org 2 April 2012 | Volume 7 | Issue 4 | e35446



Histopathology and Immunohistochemistry
Anesthetized rats were transcardially perfused with 0.9% saline,

followed by 4% paraformaldehyde (PFA) solution in 0.1 M

phosphate buffer. The eyes were enucleated and postfixed in 4%

PFA for 2 hours, then transferred to formalin overnight. The eyes

were paraffin embedded and sectioned at 5-um thickness.

Histopathological evaluation was performed on sections of the

ones through optic nerves using hematoxylin and eosin (HE)

staining. Three defined regions were selected in the superior

hemisphere for measurements: two were located at points 450 mm
away from the ora serrata and the optic nerve head, while the

third was chosen at the midpoint. Five 100-mm consecutive

sections were measured for each region. The thickness of the outer

nuclear layer (ONL) was determined by an image-analysis system.

For immunohistochemical studies of retinal sections, after

postfixation, the eyecups without anterior segments were trans-

ferred to 20%–30% graded sucrose solutions overnight at 4uC and

then embedded in OCT compound. Frozen sections were cut at

10 mm thick with a cryostat and the sections were kept in a220uC
freezer until use. The retinal sections or cells were fixed with 4%

PFA for 30 min. After being washed with PBS, they were

permeabilized with 0.5% Triton for 15 min followed by blocking

with 10% goat serum in PBS for 1 hour at room temperature.

Subsequently, they were incubated with primary antibodies

overnight at 4uC. The following antibodies were used: fractalkine

and CX3CR1 antibody (1:150, Torrey Pines Biolab, La Jolla, CA),

OX-42 antibody (1:200, Abcam, MA, USA), recoverin antibody

(1:200, Santa Cruz Biotechnology, Santa Cruz, CA). After rinsing

with PBS, the sections or cells were incubated with appropriate

secondary antibodies (Invitrogen, Carlsbad, CA) for 1 hour.

Finally they were counterstained with DAPI (Sigma-Aldrich, St.

Louis, MO) and examined by laser confocal microscope (Leica

Microsystems).

TUNEL staining
TUNEL was performed using a fluorescent DNA fragmentation

detection kit (Roche, Nutley, NJ) according to the manufacturer’s

instructions. The field was chosen randomly, and nine fields were

chosen for every specimen. The number of TUNEL-positive cells

was counted to obtain the ratio of TUNEL positivity to the total

number of cells.

Western Blot Analysis
SD rats were sacrificed 2 hours, 6 hours, 1, 3, 5 or 7 days after

the light damage. Six retinas were used for each time point. The

retinas were homogenized using ultrasound. Equal amounts of

proteins were then loaded and separated on SDS-PAGE and were

transferred to PVDF membranes (Millipore, Billerica, MA). The

membranes were blocked in 5% nonfat milk TBST (20 mM Tris,

150 mM NaCl, 0.1% Tween, pH 7.4) for 30 min and sub-

sequently incubated in primary antibodies overnight at 4uC. After
washing, the secondary antibodies were added, and then the

labeled proteins were revealed. Quantitative measurement of band

intensity was made and normalized against internal controls

Real-time PCR
The total RNA was extracted using trizol RNA extraction

reagent (Invitrogen, Carlsbad, CA), according to the manufac-

turer’s instructions. One microgram of total RNA was reverse-

transcribed into cDNA. Real-time PCR was performed using the

ABI Prism 7900 Sequence Detection system (Applied Biosystems).

The primers for amplifications of fractalkine, CX3CR1, TNF-

a,IL-1b were synthesized by Shenggong (Shanghai) company. The

reactions were set up with 10 ul SYBR Green PCR Master Mix

(Takara, Shuzo, Kyoto, Japan), 1.0 ul 10 umol primer mixture,

and 2 ul cDNA template. The real-time PCR was performed

following the conditions: 95uC for 10 seconds followed by 35

cycles of indicated temperature and 72uC for 30 seconds. Relative

mRNA levels of target genes were normalized to beta-actin.

Figure 2. Hematoxylin–eosin and TUNEL staining of SD rat
retinas showed progressive changes in the ONL thickness and
photoreceptor apoptosis in the in vivo light-induced photore-
ceptor degeneration model. (A–E) Compared with the normal
group, the photoreceptor number and ONL thickness decreased
markedly at different time points after exposure to light (black arrow).
(F–I) A few hours after exposure to light, TUNEL-positive cells began to
appear in the ONL. (J–K) At 1 day, the number of TUNEL-positive cells
reached a peak in the ONL. (L–O) TUNEL-positive cells gradually
decreased at 3 and 5 days. (P–Q) At 7 days, TUNEL fluorescence was
almost completely absent.
doi:10.1371/journal.pone.0035446.g002
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ELISA
After light exposure was performed on the cell cultures, the

supernatants were collected at 6, 12, 24, 36, 48 hours for enzyme-

linked immunosorbent assay (ELISA) measurement. The levels of

soluble fractalkine, TNF-a,IL-1b and IL-10 were evaluated with

the sandwich ELISA Kit according to manufacturer’s instructions

(R&D Systems, Minneapolis, MN). Working concentrations of

capture and detection antibodies were optimized to increase assay

sensitivity. Colorimetric analysis was performed using an Elisa

reader. Absorbance was obtained by subtracting readings at

540 nm from readings at 450 nm.

Chemotaxis assay
The microglial chemotaxis assay was performed with a chemo-

taxis apparatus that consists of two 12-well chambers separated by

a membrane containing 8-mm pores (BD Biosciences, San Jose,

CA) (Fig. 1). This assay is based on the premise of providing

a gradient of the chemotactic agent and allowing the cells to

migrate through a porous membrane toward the chemotactic

agent. Briefly, microglia were placed on the membrane of the

upper chamber (2.56105cells/well) while 661W cells were placed

on the bottom of the lower chamber (36105 cells/well). Cells were

allowed to adhere to the membranes or plates for 24 hours. To

assess the impact of soluble fractalkine on chemotaxis, microglia

were pretreated with anti-CX3CR1 antibody for 2 hours in some

wells, whereas recombinant soluble fractalkine was added in the

lower chamber of some other wells, prior to light exposure. After

Figure 3. The effect of intense blue light on 661W photoreceptor cell morphology and apoptosis. (A) In the normal control, 661W had
a flattened appearance with few intercellular spaces. (B) After light exposure, the cells became spindled with large intercellular spaces. (C–E) 661W
photoreceptors underwent apoptosis, as determined by TUNEL assay. (F) Statistical analysis showed that the TUNEL positivity was significantly
increased at 0 hour, 24 hours and 48 hours after light exposure.
doi:10.1371/journal.pone.0035446.g003

Figure 4. Immunolabeling with the OX42 antibody showed the
activation and migration of retinal microglia. (A) In normal
retinas, labeled microglia existed only in the GCL and IPL. (B) At 3 days
after exposure to light, plenty of microglia migrated to the outer retina.
(C–D) The microglial morphology changed from the resting ramified
state with long processes to the activated amoeboid appearance at 3
days after photic injury.
doi:10.1371/journal.pone.0035446.g004
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photic injury for 5 hours, the cells were allowed to migrate

through the pores for an additional 1, 7, or 19 hours (6, 12,

24 hours from the beginning of light exposure). Microglial cells are

adherent cells which are more likely to attach to the underside of

the membrane, so the cells that did not migrate and remained on

the upper surface of the membrane were removed with a cotton

swab, and the ones that had migrated to the underside of the

membrane were stained with DAPI and counted. In at least three

independent experiments, three wells per treatment were counted

in nine random fields at 506magnification per well. The number

of microglial cells that migrated in response to injured 661W cells

was compared to the number of cells that migrated randomly in

the control group.

Statistical Analysis
All results are presented as mean6standard error. Data were

analyzed with Student’s t tests for comparisons between two

groups and with ANOVA for multiple comparisons (GraphPad

Prism 5). A value of P,0.05 were considered statistically

significant.

Results

Light-induced photoreceptor degeneration
After 24 hours of blue light exposure, SD rats showed

progressive photoreceptor cell loss and a decrease in the ONL

thickness, with disorganization of the inner and outer segments of

the photoreceptors (Fig. 2A–E). At 7 days after light exposure, the

photoreceptors in the posterior retina were almost completely lost,

Figure 5. Immunofluorescence analysis of fractalkine in the retina at different time points after exposure to light. (A) In the normal
retina, fractalkine immunoreactivity showed a weak but widely distributed fluorescence. (B–F) At 6 hours, 1, 3, 5, 7 days after light exposure,
fractalkine staining increased in the photoreceptors.
doi:10.1371/journal.pone.0035446.g005

Figure 6. Double immunofluorescence analysis of CX3CR1 and
fractalkine at the 3-day time point after light exposure. (A–C)
Double staining for OX42 and CX3CR1 revealed that CX3CR1-positive
cells were reactive for the microglial marker. (D–I) Photoreceptors were
labeled by recoverin antibody and microglial cells were labeled by OX42
antibody. The two merged images showed that photoreceptors were
the source of increased fractalkine as well as the direction of microglial
migration.
doi:10.1371/journal.pone.0035446.g006
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with only one row of cells remaining, and the average ONL

thickness was significantly decreased compared with that of

normal rats (Fig. 2E). Detection of cell apoptosis during the

light-damage process was performed by TUNEL assay. Positive

cells were seen in the ONL as early as 2 hours after light exposure

and peaked at 1 day (Fig. 2F–K), and then the number of

TUNEL-positive cells gradually decreased due to photoreceptor

loss (Fig. 2L–Q). In the in vitro experiment, the appearance of

661W cells changed from flat with small intercellular spaces to

spindled with large intercellular spaces after exposure to blue light

for 5 hours (Fig. 3A–B), and 70% to 80% of them succumbed to

apoptosis (Fig. 3C–F).

Retinal microglial activation and migration in photic
injury
In normal retina, OX42-labeled microglial cells were found

only in the inner part of the retina, such as in the ganglion cell

layer (GCL), the inner plexiform layer (IPL), and the inner nuclear

layer (INL) (Fig. 4A). After 24 hours of light exposure, an

increasing number of microglia began to migrate into the ONL

and the subretinal space (Fig. 4B), appearing to change their

morphology from cells with long dendrites to amoeboid cells with

retracted processes as they became activated in retinal whole

mounts [46] (Fig. 4C–D).

Expression of fractalkine and CX3CR1 in the retina
The complementary expression of fractalkine on neurons and

CX3CR1 on microglia establishes a unique communication

whereby neurons constitutively express and release fractalkine to

regulate the function of microglia in various models of central

neurodegenerative diseases. This evidence led us to hypothesize

that the fractalkine–CX3CR1 axis participates in retinal de-

generation. We first confirmed the cellular source of fractalkine

and its receptor CX3CR1 in the retina. The level of fractalkine

immunoreactivity was low (Fig. 5A), but still clearly detectable

throughout the normal control retina, and double-labeled

immunofluorescence indicated that CX3CR1-positive cells were

exclusively microglia, due to their co-expression of the microglial

marker OX-42 (Fig. 6A–C). Next, to investigate whether

fractalkine and its receptor CX3CR1 were involved in retinal

photic injury, their mRNA and protein expression were examined

in the retina at 2 hours, 6 hours, 1, 3, 5, and 7 days after light

exposure. The results indicated that CX3CR1 expression was up-

regulated (P,0.05) (Fig. 7A, C, E). Similarly, compared with the

weak level of expression observed in the normal retina, fractalkine

Figure 7. Western blot and real-time PCR analyses for fractalkine/CX3CR1 expression in the retinas after exposure to light. (A–C) The
protein expressions of fractalkine and CX3CR1 began to increase at two hours after exposure to light and peaked at 1 day and 3 days respectively,
then decreased. (D–E) The mRNA results were normalized relative to levels in the normal control retinas.
doi:10.1371/journal.pone.0035446.g007
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expression, located mainly at the photoreceptor segments and the

ONL, was also significantly up-regulated after light damage

(Fig. 5B–F, 7A, B, D). At 6 hours and 1 day, its expression began

to upregulate at the segment layer first, whereas it appeared

mainly at the ONL layer at 3, 5, and 7 days. In photoreceptor–

microglia transwell co-cultures, light-damaged 661W photorecep-

tors resulted in microglial activation and subsequent further

degeneration of the remaining photoreceptors (Fig. 8A–H). We

then analyzed whether soluble fractalkine was released from light-

damaged 661W photoreceptors by evaluating its levels in the cell

supernatants. Results from the ELISA assay indicated that the

soluble fractalkine was not detected in the single microglial culture

group. However, in the co-culture group and the 661W control

group, soluble fractalkine was released over time after photic

injury, reaching a maximum concentration of about 2.8 ng/ml at

24 hours in the co-culture group (Fig. 9). From this we can

conclude that 661W cells were the cellular sources of soluble

fractalkine. This evidence also suggested that there is a close spatial

and temporal relationship among photoreceptor apoptosis,

fractalkine/CX3CR1 impairment, and microglial activation/

migration (Fig. 6D–I), indicating that the fractalkine/CX3CR1

ligand-receptor pair might be crucial for photoreceptor-microglial

cross-talk.

Up-regulated IL-1b and TNF-a expression after photic
injury
Activated microglia are known to produce pro-inflammatory

cytokines such as IL-1b and TNF-a that result in local

inflammatory responses and neurodegeneration [47,48]. There-

fore, we examined the levels of IL-1b and TNF-a at different time

points after exposure to light. Compared with the low levels in the

control retinas, the expressions of both IL-1b and TNF-a were up-

regulated in a time-dependent manner (Fig. 10A–E). ELISA

analysis also revealed that the levels of these factors were increased

in the co-culture cell supernatants (Fig. 10F–G).

Inhibition of light-induced IL-1b and TNF-a release by the
anti-CX3CR1 antibody
The increased release of soluble fractalkine after light exposure

prompted us to investigate whether it plays an active role in

microglial activation combined with enhanced pro-inflammatory

properties. Microglia were pretreated with a neutralizing antibody

against CX3CR1 for 6 hours, followed by measurement of the

expression of inflammatory cytokines. As a result, the partial

blockade of CX3CR1 function markedly reduced the production

of IL-1b and TNF-a (Fig. 10H–I). In addition, morphometric

analysis showed that the CX3CR1 antibody treated co-cultures

had significantly higher numbers of photoreceptors remaining

than did the untreated ones (data not shown). Also the result of

TUNEL assay indicated that the CX3CR1 antibody treated co-

cultures had lower percentage of TUNEL-positive photoreceptors

than did the untreated ones at 24 hours after exposure. (Fig. 11)

Soluble fractalkine-induced migration of microglia
Chemotaxis assays were performed in the microglia-photore-

ceptor co-cultures. Our data show that microglia exhibited

stronger migratory activity in the cultures with additional

recombinant soluble fractalkine, suggesting that soluble fractalkine

released by photoreceptors after photic injury contributes to the

migratory behavior of microglia in vitro (Fig. 12). When microglia

were pretreated with neutralizing antibody against CX3CR1 for

2 hours, the effect of soluble fractalkine on migration was partly

attenuated (Fig. 12). These findings suggest that the fractalkine/

Figure 8. The changes in microglial morphology in the co-
cultures after exposure to light. (A, C, E, G) Primary retinal microglia
grown in basal media showed ramified shapes with processes. (B, D, F,
H) After exposure to light, the microglia in the co-cultures became
rounder and took on a characteristic amoeboid shape as they were
activated.
doi:10.1371/journal.pone.0035446.g008

Figure 9. The soluble fractalkine release after exposure to
light. ELISA analysis revealed that the levels of soluble fractalkine were
increased in the 661W control group and the 661W+MG co-culture
group. The difference between them is not statistically significant at 6-
hour and 12-hour time points. At other time points, the release of
soluble fractalkine in the 661W control group was less than that of the
co-culture group due to the further degeneration of remaining
photoreceptors caused by activated microglia.
doi:10.1371/journal.pone.0035446.g009

Fractalkine/CX3CR1 in Photoreceptor Degeneration
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Figure 10. The expression of IL-1b and TNF-a after exposure to light. (A–C) The protein expressions of IL-1b and TNF-a in the retina began to
increase at 6 hours after exposure to light and peaked at 3 days. (D–E) The mRNA expression of IL-1b and TNF-a in the retina was increased, and

Fractalkine/CX3CR1 in Photoreceptor Degeneration
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CX3CR1 axis is involved in microglia migration. In addition,

TUNEL assay showed that the soluble fractalkine treated co-

cultures had higher percentage of TUNEL-positive photoreceptors

than did the untreated ones at 24 hours after exposure (Fig. 11).

This might be due to the reason that the increased level of soluble

fractalkine leads to increased recruitment of activated microglia

and excess production of inflammatory cytokines, which will cause

inflammation-mediated neurodegeneration of the remaining

photoreceptors.

Neuroprotective effect of membrane-bound fractalkine
against light-induced toxicity in microglia/photoreceptor
co-cultures
To test whether membrane-bound fractalkine upregulation has

any role in neuroprotection after photic injury, as suggested by

previous studies [49,22], we applied recombinant full-length

fractalkine to the upper chamber. Light-induced cell death was

attenuated in the cultures pretreated with exogenous fractalkine

compared with controls. This protection was further confirmed by

TUNEL assay at 24 hours after exposure (Fig. 13A–F). Statistical

analysis showed that the percentage of TUNEL-positive 661W

cells was significantly lower in the fractalkine treated (51.963.7%)

than in the control group (78.265%, P,0.05) (Fig. 11). Moreover,

the expression of IL-10, one of the anti-inflammatory cytokines

[50], was increased in the full-length fractalkine treated co-

cultures, as measured by ELISA assay (Fig. 13G).

Discussion

In the present study, we sought to determine whether fractalkine

and its sole receptor CX3CR1 were involved in photoreceptor-

microglia cross-talk after blue photic injury, resulting in microglial

activation as well as migration, and subsequently contributing to

the further apoptosis of remaining photoreceptors. First we

confirmed the constitutive expression of fractalkine/CX3CR1 by

photoreceptors and microglia respectively in the retina under

normal and light-damaged conditions. Moreover, the extent of

photoreceptor degeneration and microglial migration paralleled

the increased level of fractalkine/CX3CR1. In addition, we noted

that soluble fractalkine seemed to play a certain role in enhancing

the release of inflammatory cytokines and facilitating microglial

migration. However, recombinant full-length fractalkine might

exert anti-inflammatory effects via IL-10 release and potential

control of microglial activation.

Microglia are the resident immune cells in the CNS that

perform dynamic immune surveillance [51]. In the physiological

state, microglia exist in a resting appearance characterized by

a ramified morphology with protruding processes surveying and

monitoring their microenvironment [52,53]. In response to

pathological stimuli, microglia undergo rapid activation and

quickly migrate to the damaged site to perform the function of

macrophages, including providing innate immunity, phagocytosis,

cellular maintenance, and neurotrophic secretions [54,55].

However, microglia can also promote inflammation and act as

contributors to progressive neuron damage in several neurode-

generative diseases [56]. Substantive evidence indicates that

microglial cells in the retina play an important role in the

development of retinal degenerative diseases [57]. The current

research confirmed that light-induced photoreceptor apoptosis is

often accompanied by microglial activation and migration from

the inner retinal layer to the outer retina and even the subretinal

space, combined with the upregulated expression of pro-in-

flammatory factors including IL-1b and TNF-a [58]. Further-

more, we showed a neuroprotective effect of naloxone against

light-induced photoreceptor degeneration through inhibition of

retinal microglial activation [9]. These observations suggest that

injured photoreceptors must release certain signaling molecules

that attract and activate microglia, resulting in further de-

generation of remaining photoreceptors. Although the interaction

between neurons and microglia are likely critical in regulating

their function and survival, knowledge of the relevant signaling

peaked at 1 day after photic injury as detected by real-time PCR. (F–G) ELISA assay detected the upregulated secretion of IL-1b and TNF-a in the
661W/microglia co-culture supernatant. (H–I) Compared with untreated co-cultures, the group pretreated with neutralizing CX3CR1 antibody showed
significantly decreased expression of IL-1b at 12 hours and 24 hours after exposure to light. For TNF-a, statistical analysis showed significantly
reduced production in the treated cultures at 12 hours. No difference was found between treated and untreated co-cultures at 24 hours.
doi:10.1371/journal.pone.0035446.g010

Figure 11. Statistical analysis of TUNEL assay in different co-
culture groups at 24 hours after exposure to light.
doi:10.1371/journal.pone.0035446.g011

Figure 12. Soluble fractalkine-induced microglial migration in
the co-culture of retinal microglial cells with 661W cells. Results
are presented as numbers of migratory cells. Microglia exhibited
stronger migratory activity in the co-cultures with additional soluble
fractalkine than in other groups and there was a significant reduction of
microglial migration in the co-cultures with neutralizing CX3CR1
antibody at most time points. The most obvious result was obtained
at the 6-hour time point after the beginning of light exposure.
doi:10.1371/journal.pone.0035446.g012
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cytokines needs to be further clarified.

Fractalkine is a relatively new member of the chemokine family

that is reported to be constitutively expressed by neurons, whereas

its sole receptor, CX3CR1, is mainly expressed by microglia in the

CNS [59]. Different from many other chemokines, fractalkine is

synthesized as a transmembrane protein, which can be cleaved

into a soluble form in certain pathological conditions [60]. This

specific expression pattern implies a role in mediating neuron-

microglia cross-talk. In the present research, we first established

a rat photic injury model to investigate whether there was a change

in fractalkine/CX3CR1 expression in the retina, and whether the

migration of microglia to the injured neurons was associated with

fractalkine/CX3CR1 expression. Western blot and real-time PCR

analysis revealed that the levels of fractalkine/CX3CR1 were

elevated after light exposure, with the increased expression site of

fractalkine exclusively in the photoreceptors. Then, in an in vitro

cell co-culture study, increased soluble fractalkine accumulation

was detected by ELISA assay. This means that part of the

membrane-bound form fractalkine was cleaved and released as

soluble protein. We also noted that the apoptotic peak of

photoreceptors at 1 day was consistent with that of the elevated

level of fractalkine, and both were ahead of the peak of microglial

infiltration at 3 days. Taken together, these findings suggest the

possibility that, after exposure to intense blue light, soluble

fractalkine is initially released by injured photoreceptors, and

thereby causes the migration of microglia into the ONL via

CX3CR1. Moreover, these microglia produce toxic agents which

in turn exacerbate the progressive neurotoxic consequences.

Interestingly, it seems to be organ- and disease-specific for

fractalkine/CX3CR1 to exert either a toxic or a protective effect

[61–62]. On one hand, inactivation of fractalkine or CX3CR1

reduces the severity of some diseases [24,63]. On the other hand,

fractalkine/CX3CR1 signaling represents a potential protective

effect on neurons in many degenerative CNS diseases [22,61]. For

instance, CX3CR1 deficiency dysregulates microglial responses,

resulting in neurotoxicity in models of Parkinson’s disease and

amyotrophic lateral sclerosis [54]. Moreover, adding extra

fractalkine protects hippocampal neurons from glutamate- and

HIV-1-induced neurotoxicity [49,22].

Figure 13. The effect of membrane-bound fractalkine on 661W photoreceptor survival. (A–C) At 24 hours after exposure to light, a large
number of TUNEL-positive photoreceptors was detected in the untreated co-culture. (D–F) TUNEL-positive cells were less abundant in the co-culture
treated with exogenous membrane-bound fractalkine. (G) The expression of anti-inflammatory cytokine, IL-10, was increased in the recombinant full-
length fractalkine treated groups.
doi:10.1371/journal.pone.0035446.g013
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In ocular tissues, reports on the role of fractalkine/CX3CR1

signaling are also controversial. In one study, CX3CR1 deficiency

showed reduced macrophage accumulation but severe neovascu-

larization after alkali injury in the cornea [64]. However, in some

other studies, the same CX3CR1 deficiency conversely led to

microglia accumulation in the ONL and subsequent neuronal

degeneration and neovascularization in an AMD model [65], as

well as in experimental autoimmune uveitis, resulting in

a significant increase in neuron apoptosis and prolonged in-

flammatory response [66]. In this regard, it was our interest to

determine whether fractalkine/CX3CR1 signaling has potential

neurotoxic or neuroprotective effects on light-induced photore-

ceptor degeneration. In the photoreceptor-microglial transwell co-

cultures, we showed that blockade of fractalkine/CX3CR1

interaction by neutralizing antibody against CX3CR1 ameliorated

the microglial inflammatory response to damaged photoreceptors

and improved the photoreceptor survival rate. In addition,

microglial migration was found to be attenuated by this antibody.

Our data also showed a significant increase in microglial migration

and production of TNF-a and IL-1b in vitro in response to

exogenous recombinant soluble fractalkine adding, suggesting that

soluble fractalkine cleavage and distribution in the retina could

affect activation and migration of microglia in vivo. In contrast,

the pretreatment of exogenous full-length fractalkine likely exerted

neuroprotective action on 661W photoreceptors. This effect might

be mediated by promotion of microglial anti-inflammatory

cytokine IL-10 release or by other mechanisms that remain to

be studied.

Taken together, these results strongly suggest that fractalkine/

CX3CR1 signaling exerts multiple effects on the cross-talk

between microglia and photoreceptors. The soluble form of

fractalkine released from photoreceptors may function as a che-

motactic factor to cause the activation and migration of retinal

microglia, while fractalkine in low concentrations in the mem-

brane-bound form may exist as a regulator of the beneficial

balance between microglia and photoreceptors. The reasons for

these differences are not quite clear, but it has been hypothesized

that CX3CR1 activates different signaling pathways in different

situations [65]. However, these intricate effects of fractalkine/

CX3CR1 in the co-cultures reported herein need extensive

investigation in animal models.

In conclusion, changes in the expression of fractalkine/

CX3CR1 in response to intense blue light injury that we have

documented strongly suggest that this ligand–receptor signaling

pathway may play a role in the process of retinal microglial

activation and migration in light-induced photoreceptor degener-

ation. Our results indicate that blockage of soluble fractalkine

represents a decreased inflammatory response, whereas over-

expression of full-length fractalkine suggests a role in photorecep-

tor survival. In this regard, we will further explore potential

downstream intracellular signal transduction pathways in the

future work.
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