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Abstract

MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by targeting mRNAs to trigger
either translation repression or mRNA degradation. miR-125b is down-regulated in human breast cancer cells compared
with the normal ones except highly metastatic tumor cells MDA-MB-231. However, few functional studies were designed to
investigate metastatic potential of miR-125b. In this study, the effects of miR-125b on metastasis in human breast cancer
cells were studied, and the targets of miR-125b were also explored. Transwell migration assay, cell wound healing assay,
adhesion assay and nude mice model of metastasis were utilized to investigate the effects of miR-125b on metastasis
potential in vitro and in vivo. In addition, it was implied STARD13 (DLC2) was a direct target of miR-125b by Target-Scan
analysis, luciferase reporter assay and western blot. Furthermore, activation of STARD13 was identified responsible for
metastasis induced by miR-125b through a siRNA targeting STARD13. qRT-PCR, immunofluorescent assay and western blot
was used to observe the variation of Vimentin and a-SMA in breast cancer cells. In summary, our study provided new
insights into the function of miR-125b during the metastasis of breat cancer cells and also suggested the role of miR-125b in
pro-metastasis by targeting STARD13.
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Introduction

MicroRNAs (miRNAs), a series of endogenous, non-coding and

single-strand RNA approximately containing 22 nucleotides,

regulate messenger RNAs at the post-transcriptional level through

binding to complementary sequences in un-translated regions

(UTR) of target mRNAs bearing fully complementary target sites,

inducing their degradation or repressing translation. [1,2]

miRNAs target abundant genes which regulate a great variety of

biological effects, including proliferation, apoptosis, stem cell self-

renewal and differentiation. [3,4] Moreover, expression of miRNA

is significantly modulated in a tissue- and developmental stage-

specific manner. [5] Recent studies analyzed miRNA profiles and

functions in cancer provided valuable information on the

molecular pathogenesis of several tumor types, including breast,

lung, colon and prostate cancer, hepatocellular carcinoma and

glioblastoma [6,7,8]. It is widely accepted that miRNAs play an

important role in all steps of tumorigenesis.

miR-125b, a human homologue of lin-4, downregulated in

bladder, ovarian and breast tumors with functions as a tumor

suppressor. [9,10,11,12] However, miR-125b not only over-

expresses in pancreatic cancer, oligodendroglial tumors, prostate

cancer, myelodysplastic syndromes and acute myeloid leukemia,

but also promotes cell proliferation in prostate cancer cells,

enhances invasive potential in urothelial carcinomas and sup-

presses p53-dependent apoptosis in human neuroblastoma cells.

[13,14,15,16] Latest report identified miR-125b as a basal-like

microRNAs and was significantly elevated in highly tumorigenic

human breast cancer stem cells [17] and malignant myoepithe-

lioma breast cancer cells. [18] Even though great evidence

indicated the important roles of miR-125b in the biological

properties of breast cancer, few reports to date studied the

relationship between miR-125b and the metastatic potential of

breast cancer. The expression of miR-125b was low in most breast

cancer cell lines MCF-7, T47D, SK-BR3, BT-20 and MDA-MB-

175 compared to mammary epithelial cell MCF-10A, but high in

MDA-MB-231 which is a highly metastatic breast cancer cells.

[19] Based on the evidence above, it is theoretically proposed that

the expression of miR-125b is closely related to the metastatic

activity of tumor cells.

Tumor metastasis is the most prominent problem in clinical

treatment of cancer, as most cancer mortality is associated with

disseminated disease rather than the primary tumor. There are

two leading theories about the origin of metastasis, Epithelial to

mesenchymal transition (EMT) hypothesis [20,21,22] and cancer

stem cell hypothesis. [23] EMT, characterized as loss of polarity

and epithelial markers (including junctional and cell-cell adhensive

proteins), [24] plays a role in cellular differentiation and tumor

invasion. Cancer stem cell hypothesis suggests that cancer stem

cells could initiate a primary tumor, and thus be able to initiate

metastasis. It is well known that breast cancer stem cells have

mesenchymal features and correlate with metastasis and poor

prognosis. [25] Markers are used to define the mesenchymal

phenotype such as vimentin, a-SMA (smooth muscle alpha-actin),

N-cadherin and loss of E-cadherin. [21] To fully elaborate the
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influences of miR-125b on the mesenchymal features of breast

cancer cells will provide important information on the mechanisms

of tumor metastasis.

Although miR-125b has been implicated with functions as

a tumor suppressor in breast tumors, its functional role in

metastasis has not been clearly described. In the present study,

we began by examining the function of miR-125b on cell

migration. Interestingly, we found that miR-125b has a role of

pro-metastasis in vitro. To further validate this pro-metastasis role,

we designed a node mice model and the same result has been

obtained. In addition, we investigated the mechanisms of pro-

metastasis for miR-125b and found that STARD13, (StAR-related

lipid transfer domain containing 13) also known as DLC2 (deleted

in liver cancer cells) with a Rho-GAPase-activating protein

(RhoGAP), [26] was a target protein of miR-125b. The activation

of STARD13 was responsible for MCF-7 metastasis induced by

miR-125b was also validated. Further examination of the

consequences of gain- and loss-of-function of miR-125b in breast

cancer cells, we investigated the influence of miR-125b on the

expression of a-SMA and vimentin, two classical mesenchymal

phenotype markers and provided new insights into the function of

miR-125b in cancer metastasis.

Materials and Methods

Reagents, Cell Culture, and Treatment
MCF-7, MDA-MB-231, MDA-MB-435, MCF-10A, MCF-7/

ADR and HEK-29 cells were obtained from the ATCC

(Manassas, Virginia, USA). MCF-7 and MCF-7/ADR were

cultured in RPMI 1640 medium (Gibco/BRL, Grand Island,

NY) containing 10% calf serum (CS); MDA-MB-231 was cultured

in L-15 medium containing 10% fetal bovine serum (FBS); MDA-

MB-435, MCF-10A and HEK-293 was cultured in complete

medium DMEM (Gibco) containing 10% fetal bovine serum (FBS)

with 1 mM L-glutamine. All medium used in the study were

supplemented with penicillin and streptomycin. miRNA over-

expression and inhibition: miR-125b-mimics, inhibitors (59-

ucacaaguuagggucucaggga-39 ) and Normal Control (NC) were

designed through the reference of miRbase Database (www.

miRbase.org and ) and synthesized in Biomics Biotechnology Inc

(Biomics, Jiang Su, China) with OMe modification, 50 nM of

which were transfected into cells using Lipofectamine 2000

(Invitrogen, Carlsbad, CA). STARD13 antibody (sc-67843) were

purchased from Santa Cruz Biotechnology Inc (Santa Cruz,

California, USA), vimentin antibody (catalog#2707-1) and a-
SMA antibody (catalog#1184-1) form Epitomics Inc (Epitomics,

California, USA).

mRNA and miRNA Quantification
Total RNA was extracted using Trizol reagent (Invitrogen,

USA). Reverse transcription-PCR was performed with M-MLV

(Promega, USA ) following standard protocols.

For miRNA qPCR, the miR-125b primer, U6 primer and

EzOmics SYBR qPCR kit were purchased from Biomics. Ampli-

fication procedure was as follows: 94uC for 5 min, followed by 30

cycles at 94uC for 30 s, 61uC for 45 s, finally by 72uC for 10 min. For

RT-PCR, The primer sequences of various genes were demen-

strated as follows: GAPDH: 59-AAGGTCGGAGTCAACG-

GATT-39, and 59-CTGGAAGATGGTGATGGGATT-39;

STARD13: 59-AGCCCCTGCCTCAAAGTATT-39, and 59-

ATGGGCGTCATCTGATTCTC-39; Vimentin: 59-

CCCTCACCTGTGAAGTGGAT-39, and 59-TCCAG-

CAGCTTCCTGTAGGT-39; a-SMA: 59-CATCATGCGTCTG-

GATCTGG-39, and 59-GGACAATCTCACGCTCAGCA-39.

Amplification procedure was 94uC for 5 min, followed by 30 cycles

at 94uC for 30 s, 57uC for 45 s, 72uC for 45 s, finally by 72uC for

10 min.

Adhesion Assay
Cell adhesion assay was assayed as described previously with

sight modifications. [27] Microtiter wells were coated with

fibronectin (Sigma, St. Louis, Missuouri) overnight. The wells

were blocked for 30 min with 0.5% BSA in PBS. Cells were

trypsinized and suspended at a final concentration of 56105 cells/

ml in serum-free medium. miR-125b-mimics, miR-125b-inhibitor

and NC were transfected into the cells for 24 h prior to seeding.

The colorimetric MTT-assay was used to determine the number

of remaining cells (adherent cells).

Wound Healing Assay
MCF-7 cells were seeded into a 6-well plate and allowed to grow

to 70% confluency in complete medium. Cell monolayers were

wounded by a plastic tip (1 mm) that touched the plate as

described previously. [28] Wounded monolayers were then

washed for several times with PBS to remove cell debris and

transfected with miR-125b-mimics and miR-125b-inhibitor and

incubated for 24 h. Cells migrated into wound surface and the

average distance of migrating cells was determined under an

inverted microscopy at designated time points.

Transwell Migration Assay
Transwell migration assays were carried out using 24-well

MILLIcell Hanging Cell Culture inserts 8 mm PET(MILLIPORE)

as described previously. [29] Briefly, Cells harvested 48 h after

transfection using 5 mM EDTA in PBS, were added (1.256105

cells/well) in serum-free medium to triplicate wells of BD

BioCoatTM MatrigelTM Invasion Chambers (BD Bioscience)

and complete medium containing 10% FBS or CS was added to

the lower chamber. The invasion chambers were processed for

24 h followed the manufacturer’s protocols, and migrated cells

were stained using methanol and viola crystalline solution. Five

random fields from each of the triplicate invasion assays were

counted using phase contrast microscopy.

Plasmid Construction and Establishment of Stable miR-
125b Over-expressing Cells
The procedure of pre-microRNA plasmid construction was

referred to the method described by Galardi et al. [30] In brief, the

pre-miR-125b sequences were amplified by PCR from human

genomic DNA using the following primers: forward/HindIII, 59-

GGC AAG CTT AAC ATT GTT G CGC TCC TCT CA-39;

reverse/BamHI, 59-TAT GGA TCC TTC CAG GATGCA AAA

GCA CGA-39. After being digested with HindIII and BamHI, the

PCR product was cloned into pSilencer 4.1 vector (Ambion,

Austin, USA) and the constructs were verified by DNA

sequencing. Expression of miR-125b was detected by qRT-PCR

analysis after 48 h from transfection pSilencer-125b and pSilen-

cer-control plasmid into human breast cancer cells MCF-7 for

48 h. Positive cells were selected with 2 ug/ml G418 was

confirmed by qRT-PCR.

Animal Models
Five- to six-week-old female athymic BALB/c nude mice were

purchased from Hospital of Nanjing Military Region (Jiang Su,

China). All experimental protocols were approved by Ethics

Committee for Animal Experimentation of China Pharmaceuti-

cal University. Experimental metastasis assays: 16106 cells (for
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MCF-7 or MCF-7-125b) suspended in 100 ml of serum-free

medium were injected into the lateral vein of six-week-old female

athymic BALB/c nude mice. The NIR-imaging model was

referred to the method described by Liu F and et al. [31] For

NIR near infrared imaging, 3 weeks after the injection cells, each

mouse was injected via tail vein with 200 ml folate-polyethylene
glycol. The subjected mouse was firstly anesthetized and imaged

in NIR-imaging system at predetermined intervals of 0 h and

4 h. To further confirm the pathological changes in NIR

metastasis model, the mice were euthanized after injection for

24 h. The lungs, liver and kidney were dissected out, photo-

graphed, fixed in 4% PFA overnight, cry-protected in 30%

sucrose in PBS and frozen in OTC embedding media (Tissue

Tek) and stained with H&E.

Luciferase miRNA Target Reporter Assay
pMiR-Report Fluc vectors (Ambion) was used to introduce the

portion of the 3’ UTR of STARD13 mRNA containing the

putative binding site for miR-125b. Both sense and antisense

oligonucleotide templates were synthesized as 59-mer and

annealed as described. The annealed oligonucleotides were

digested and ligated at HindIII and SpeI sites into pMiR-Report.

The sequences used in these studies were:

STARD13-wt:

59-CTAGTTTTTGCCCAGTGTGACATCAAACTCAGG-

GAAGAGGAAGCTAAAGTGACGAGTGA-39 59AGCTT-

CACTCGTCACTTTAGCTTCCTCTTCCCTGAGTTT-

GATGTCACACTGGGCAAAAA-39

STARD13-mut:

59-CTAGTTTTTGCCCAGTGTGACATCAAAACCGTAG-

GAGAGGAAGCTAAAGTGACGAGTGA -3 59-AGCTT-

CACTCGTCACTTTAGCTTCCTCTCCTACGGTTTT-

GATGTCACACTGGGCAAAAA-39

HEK 293T cells were co-transfected with the pMiR-Report

vectors containing the STARD13 3’UTR with wild-type (wt) or

mutant (mut) sequences and mimics-miR-125b, inhibitor or NC.

The cells were lysed and luciferase activity was measured using

a luminometer 48 h later. An expression cassette for Rluc was co-

transfected and used to normalize the Fluc values expressed from

the pMiR-Report constructs.

Western Blotting
After various treatments for indicated intervals, cells were lysed

in lysis buffer. The cells used for phospho-lysates were lysed with

lysis buffer enriched with protease inhibitors cocktail, 1 mM

sodium fluoride, and 1 mM sodium orthovanadate. Protein

(40 mg) were separated on a 12% SDS-polyacrylamide gel and

transferred electrophoretically onto polyvinylidene difluoride

membranes (Millipore, USA). The membranes were blocked with

10% milk in Tris-buffered saline/0.1% Tween 20 for 2 h,

subsequently blotted with primary antibodies then blotted with

horseradish peroxidase-conjugated secondary antibody for 1 h.

The protein bands were visualized with enhanced chemilumines-

cence detection system (Amersham, UK). Protein levels were

quantified by density analysis using Quantity One software

(BioRad).

Trnasfection of siRNA
Short interfering RNA against the human STARD13(DLC2)

sense: 59-CCCUGCCUCAAAGUAUUCAdTdT-39; anti-sense:

59-UGAAUACUUUGAGGCAGGGdTdT, and the universal

negative control siRNA were used. The siRNAs were transfected

into MCF-7 by using Lipofectamine2000 (Invitrogen, Carlsbad,

CA) per the manufacturer’s protocol.

Immunofluorescent Assay
Cells were seeded into a 6-well plate, after various treatments,

the cells at indicated intervals were fixed in 4% paraformaldehyde

for 20 min and blocked with 3%BSA in PBS for 1 h at room

temperature. Subsequently blotted with primary antibodies

(Vimentin antibody Epitomics catalog#2707-1) and then blotted

with FITC- conjugated secondary antibody for 1 h then blotted

with DAPI fluorescence for 1 h and observed with the confocal

laser scanning.

Statistical Analysis
The experimental results were shown as the mean 6 SEM for

each group. Data were assessed by analysis of variance (ANOVA).

If this analysis indicated significant differences between the group

means, then each group was compared with normal control group

(NC) by using the Dunnett t (2-sided) analysis. P,0.05 was

considered to be statistically significant.

Results

miR-125b Promoted Metastasis of MCF-7 and MDA-MB-
231 Cells
q-RT-PCR was used to test the expression of miR-125b in

different metastatic potential breast cancer cell lines of MCF-7,

MDA-MB-231, MCF-7/ADR MDA-MB-435, and MCF-10A.

Results in Fig.1A showed that the expression of miR-125b in

MDA-MB-231, highly metastatic tumor cells, was 5.35 folds more

than MCF-10A and 22.6 folds than MCF-7 (Figure 1A).

Cell motility was a measure of metastatic potential of cancer

cells. The motility of human breast cancer cells lines MCF-7 and

MDA-MB-231 were examined by wound healing assay when

treated with mimics, inhibitor and NC. Confluent monolayers of

cells were scratched to be wounded and cultured for 24 h or 36 h.

(Figure 1B) The treatment with miR-125b mimics led to

significantly increase of wound healing cell migration compared

to the treatment of NC and inhibitor of miR-125b in MCF-7 cells.

For miR-125b high-expression cell lines MDA-MB-231, cell

migration was inhibited when treated with miR-125b-inhibitor.

Adhension of tumor cells to extra-cellular matrix and basement

membranes were considered to be the initial step in the invasive

process for metastatic tumor cells. We examined the influence of

miR-125b on the adhension activities of breast cancer MCF-7 and

MDA-MB-231 cells to the substrates precoated with fibronectin,

which is a basement member component. After transfected with

mimics-miR-125b, the adhesion activity was increased about 1.42

fold in MCF-7; when treated with miR-125b inhibitors, the

adhesion activity was decreased compared with NC group and the

inhibition rate was about 45.8% (Figure.1C).

To investigate whether the differential expression of miR-125b

was correlated with tumor invasion, MCF-7 and MDA-MB-231

cells were transfected with mimics-miR-125b, inhibitor-miR-125b

and nonspecific control miRNA (NC) into MCF-7 and MDA-MB-

231 cells, transwell migration assay was used to investigate

metastasis activity. As shown from the images in Fig.2A, when

the expression of miR-125b was upregulated by mimics-miR-125b

in MCF-7 cell lines, the cells demonstrated high-migration

potentiality compared to cells treated with inhibitor-miR-125b

or NC. While the expression of miR-125b was down-regulated by

adding inhibitor-miR-125b in MDA-MB-231 cell line, the cells

migration ability was decreased significantly (P,0.001). Interest-

ingly, miR-125b showed a pro-metastasis function in human

breast cancer cell lines MCF-7 and MDA-MB-231. qRT-PCR was

used to analyzed the expression of miR-125b when treated with

mimics, inhibitor and NC and the result showed that the

miR-125b Induces Metastasis by Targeting STARD13
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expression of miR-125b was positive correlation with the

migration ability of breast cancer cell lines MCF-7 and MDA-

MB-231 (Fig.2C).

To test whether miR-125b was pro-metastasis in vivo,

a metastasis animal model was designed. MCF-7-125b cells,

MCF-7-pSilencer-control and physiological saline were injected to

BALB/c nude mice and after 3 weeks injected folate-polyethylene

glycol to diagnose metastatic focus. As shown in Figure 3A, in the

group of up-regulated miR-125b expression, it was found that 4

cases had kidney metastasis, 1 case had lung metastasis and one

had eye metastasis. To further confirm the pathological changes of

NIR metastasis model, the mice were euthanized 24 h post-

injection by pathologic examination. As shown in Figure 3B, we

found that all of metastasis focuses developed nucleus disorder

which were diagnosed by NIR metastasis model. We dissected the

mouse and found one case had liver metastasis (Figure 3C) and

further pathologic examination confirmed this liver metastasis

arising from the metabolism of NIR probe Folate-Polyethylene

Glycol was through hepato-enteric circulation.

miR-125b Directly Targeted the Tumor Suppressor gene
STARD13
It is generally accepted that miRNAs exert their function

through regulating the expression of their downstream target

gene(s). To investigate the target of miR-125b in breast cancer,

systemic bioinformatic publicly available algorithms were used to

analyze and identify potential targets. We found that human

STARD13 39-UTR contained putative miR-125b complementary

sites. A complementary site for the seed region of miR-125b was

contained by STARD13 39-UTR (Figure 4A).

To validate whether STARD13 is a bona fide target of miR-

125b, a human STARD13 3’UTR fragment containing wild-type

or mutant miR-125b-biding sequences was sub-cloned to the

downstream of the Renilla luciferase reporter gene. When miR-

125b-mimics or miR-125b-inhibitor were cotransfected with the

reporter plasmid, the relative luciferase activity of the reporter

containing wild-type STARD13 3’-UTR was obviously suppressed

while the luciferase activity of the reporter containing mutant

STARD13 3’-UTR was unaltered. It indicated that miR-125b

may downregulate expression of STARD13 gene expression

through miR-125b-biding sequences at the 3’UTR of STARD13

gene (Figure 4B).

To further study the relationship between miR-125b and the

expression of STARD13, qRT-PCR and western bolt were

performed to examine the effect of over-expression or down-

regulated of miR-125b on the mRNA and protein levels of

STARD13 in cancer cells. It showed that there were significant

inverse correlations between the expression of miR-125b and

STARD13 protein (Figure 4D and E,) for breast cancer cells.

However, there was no correlation between miR-125b and the

STARD13 expression in mRNA level (Figure 4C).

miR-125b Promoted Metastasis by Targeting STARD13 in
MCF-7
We validated that miR-125b promoted breast cancer metastasis

in vivo and in vitro and that STARD13 was one of miR-125b

targets was also validated in previous results. To further explore

whether miR-125b promoted metastasis by targeting STARD13,

a siRNA targeting STARD13 was designed. It was shown in

Figure 5A, we got an expected inhibition effect after transfected

with siRNA-STARD13 for 72 h. In addition, the motility of

Figure 1. Effects of miR-125b on cell migration in MCF-7 and MDA-MB-231 in vitro. (A) Expression of miR-125b in MCF-7, MDA-MB-435,
MCF-7/ADR, MDA-MB-231and MCF-10A cells measured by real-time RT-PCR. The normalized miR-125b expression for MCF-10A was set 1. Data were
present as mean 6 SEM, n = 3, *p,0.05, **p,0.01 vs. MCF-10A. (B) Effects of miR-125b on MCF-7 cell migration in vitro. Movement of MCF-7 and
MDA-MB-231 cells into the wound was shown for mimics,inhibitor tranfected and untranfected cells and quantification of the wound healing assay.
Data are presented as mean6SEM of three separate experiments, n = 3**p,0.01 vs. control group. (C) Effects of miR-125b on adhesion to fibronectin
of MCF-7 and MDA-MB-231 cells. Data were present as mean 6 SEM, n= 3, *p,0.05 vs. NC group in MCF-7 and #p,0.05 vs. NC group in MDA-MB-
231 cell lines.
doi:10.1371/journal.pone.0035435.g001
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human breast cancer cells lines MCF-7 was examined by wound

healing assay (Figure 5B). Confluent monolayers of cells were

scratched to be wounded and cultured for 36 h. The treatment

with siRNA-STARD13 led to significantly increased wound

healing cell migration compared to the treatment of NC or

Normal group in MCF-7 cells.

Further we investigated the relationship between STARD13

and invasion potential in breast cancer cells by transwell migration

assay with co-transfection of siRNA-STARD13, miR-125b mimics

and siRNA-STARD13, miR-125b inhibitor and siRNA-

STARD13 and NC group. It was shown in Figure 5C, cells

showed high-migration potentiality compared to cells of NC or

Normal group when down-regulated STARD13 by siRNA-

STARD13 (Figure 5D); the group which cotransfected with

siRNA-STARD13 and miR-125b mimics displayed significantly

difference compared with siRNA-STARD13 group, while the

siRNA+miR-125b- group had no significant difference compared

to siRNA-STARD13 group. Interestingly, these results suggested

that miR-125b regulated metastasis not only by targeting

STARD13 but also by some other unknown mechanisms.

Earlier Scott et al. restored that miR-125b expression in

SKBR3 cells which over-express ERBB2 [32]and reported

a decreased cell migration due to targeting of ERBB2 by miR-

125b. We investigated the influence of miR-125b on HER2

signaling pathway in ERBB2-negative breast cancer cell lines

MCF-7. [33] Western blotting for phosphorylated ERK1/2 and

AKT, downstream targets of ERBB2, demonstrated that there was

no significant decrease in MCF-7(Figure 5E). These results

indicated that HER2 signaling pathway did not play an important

role in miR-125b regulated ERBB2-negative breast cancer

metastasis.

Vimentin and a-SMA were Involved in miR-125b
Regulated Metastasis
Epithelial to mesenchymal transition (EMT), characterized as

loss of polarity and epithelial markers (including junctional and

cell-cell adhesion proteins), has long been known to play a role in

cellular metastasis and tumor invasion. Markers used to define the

mesenchymal phenotype include the upregulation of vimentin, a-
SMA and N-cadherin, and loss of E-cadherin. To further examine

whether miR-125b would induce EMT, breast cancer cell lines

MDA-MB-231 and MCF-7/ADR were used to observe the

variation of vimentin and a-SMA because MCF-7 is vimentin-

negative cell line. Consistent with metastasis ability, after transient

transfection with miR-125b-mimics in MCF-7/ADR, both

vimentin and a-SMA mRNA levels were increased by 5.2 and

6.34 fold compared to NC group (Figure 6A). Protein levels of

vimentin and a-SMA were also increased (Figure 6B) by 2.70 and

1.92 fold (Figure 6C). In contrast, mRNA and protein levels of

Figure 2. Effects of miR-125b on cell invasion in MCF-7 and MDA-MB-231 in vitro. (A) Photographs of the cell invasion through the
polycarbonate membrane stain by crystal violet. The migratory cell numbers of both cell lines transfected with miR-125b mimics were significantly
more than that of cells transfected with inhibitor respectively. (B) OD570 of stain crystal violet. Data were present as mean 6 SEM, n = 3, *p,0.05,
**p,0.01 vs. NC group. (C) Real-time PCR analysis of the expression of miR-125b with transfected miR-125b-mimics, miR-125b inhibitors, NC and
untranfected one in MCF-7 and MDA-MB-231 cells. 2DDCt =2 (Ctx-CtU6x)-(CtNCx-CtU6NC). Data were present as mean 6 SEM, n = 3, **P,0.01 vs.
NC group in MCF-7, ##P,0.01 vs. NC group in MDA-MB-231.
doi:10.1371/journal.pone.0035435.g002
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Vimentin and a-SMA were reduced by 97.4%, 98.15% and 64.72,

34.66% in MDA-MB-231 with miR-125b-inhibitor transient

transfection.In sum, the results indicated that mRNA and protein

levels of vimentin and a-SMA were positively correlated with the

expression of miR-125b. It suggested that miR-125b was

important in regulating reorganization of actin cytoskeleton and

the maintenance of cell morphology.

Immunofluorescent assay was used to investigate the effect of

miR-125b on expression and distribution of vimentin in breast

cancer cell lines MDA-MB-231 and MCF-7/ADR. The expres-

Figure 3. Effects of miR-125b on breast tumor metastasis in vivo. (A) Photographs of diagnosed tumor metastasis by NIR-imaging system, 3
weeks after injection breast cancer cells MCF-7 and MCF-7-125b NIR probe Folate-Polyethylene Glycol was injected to BALB/c nude mice and
formation of imaged at 0 h and 4 h after injection of NIR-probe. (B) Images of metastatic focuses in patho-histological examination stained with H&E.
(C) Images of representative liver dissected from mouse and patho-histological examination stained with H&E.
doi:10.1371/journal.pone.0035435.g003
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Figure 4. miR-125b directly target STARD13 mRNA. (A) MiR-125b directly target human STARD13. (A) The miR-125b targets on STARD13 were
predicted using Targetscan 5.1. (A) pMiR-Report vectors containing the wt or mut miR-125b binding site from the 39UTR of STARD13 mRNA, and miR-
125b-mimics or NC, as well as an expression cassette for Rluc were co-transfected into HEK-293T cells. Two days later Fluc activity in cells was
measured and normalized to Rluc activities two days after. Data were present as the mean 6 SEM, n = 3, *p,0.05 vs. NC group. (C) Breast cancer cell
lines of MCF-7 and MDA-MB-231 cells were transfected with miR-mimics, miR-125b-inhibitors and control miRNA, the gene expression of STARD13
was detected by real-time RT-PCR after 48 h. Data were present as the mean6 SEM, n = 3 DDp,0.001 NC group in MDA-MB-231 vs. NC group in MCF-
7; (D) Breast cancer cell lines of MCF-7 and MDA-MB-231 cells were transfected with miR-mimics, miR-125b-inhibitors and control miRNA, STARD13
protein and b-actin after 72 h were detected by western blot. (E) Quantitative data of densitometric analyses. The ratio of STARD13 protein and
mRNA levels to b-actin and GAPDH were displayed as mean6 SEM, n = 3, *p,0.05, **p,0.01 vs. NC group; DDp,0.001 NC group in MDA-MB-231 vs.
NC group in MCF-7.
doi:10.1371/journal.pone.0035435.g004
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sion of vimentin was up-regulated in MCF-7/ADR cells when

treated with miR-125b-mimics; (Figure 7A) while the expression

was down-regulated compared with NC or normal control group

in MDA-MB-231 cells (Figure 7B). Meanwhile, the morphology of

cells treated with miR-125b-inhibitor changed from long shuttle-

shape to spherical.

Figure 5. miR-125b regulated breast cancer metastasis by targeting STARD13. (A) Expression of STARD13 and b-actin were detected by
western blot treated with siRNA-STARD13 and NC. (B) Effects of STARD13 on MCF-7 cell migration in vitro. Wound healing assay for MCF-7 cells was
carried out by adding siRNA-STARD13 and NC and photographed at 0 h and 36 h. (C) Effects of miR-125b and STARD13 on cell invasion in MCF-7 cells
in vitro. Photographs of the cell invasion through the polycarbonate membrane stained with crystal violet and DAPI. (D) OD570 of stain crystal violet.
Data were present as mean 6 SEM, n= 3, *p,0.05, **p,0.01 vs NC group; Dp,0.05, group of cotransfected with siRNA-STARD13 and miR-125b
mimics vs group of treatment with siRNA-STARD13. (E) Effects of miR-125b on ERK1/2 and AKT phosphorylation. MCF-7 cells were transfected with
miR-125b- mimics, miR-125b-inhibitors and control RNA. After 48 h, the phosphorylation of ERK1/2 and AKT was detected by western blot.
doi:10.1371/journal.pone.0035435.g005
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miR-125b Regulated a-SMA by STARD13-RhoA-ROCK
Signaling Pathway
STARD13 (DLC2), a tumor suppressor protein, has growth-

suppressive and anti-metastatic effects on breast cancer cell lines

MCF-7/ADR and can inhibit the activity of RhoA. [34] We

found that miR-125b targeted STARD13 and miR-125b might

play a role in regulating vimentin and a-SMA expression.

Therefore, we speculated that inhibition of RhoA-ROCK in

MCF-7/ADR might affect the regulation function of miR-125b

on vimentin and a-SMA expression. To confirm these ideas we

used an inhibitor of ROCK to study the expression of vimentin

and a-SMA. When MCF-7/ADR and MDA-MB-231 cells were

treated with Y-27632 (inhibitor of ROCK) after transient

transfection with miR-125b-mimics, it completely blocked the

upregulation of a-SMA induced by miR-125b rather than the

regulation of vimentin (Figure 8). It suggested that miR-125b

regulated a-SMA in MCF-7 cells through STARD13-RhoA-

ROCK signaling pathway.

Figure 6. miR-125b affected vimentin and a-SMA at gene level and protein level. (A) MCF-7/ADR and MDA-MB-231 cells were transfected
with miR-125b-mimics, miR-125b-inhibitors and control RNA. After 48 h, the expression of vimentin anda-SMA was detected by real-time RT-PCR.
Data were present as mean6 SEM, n = 3, *P,0.05,**P,0.01 vs. NC group in MCF-7/ADR; #P,0.05,##P,0.01 vs. NC group in MDA-MB-231; DDP,0.01
NC group in MDA-MB-231 vs. NC group in MCF-7/ADR. (B) Expression of vimentin and a-SMA by western blot with got or lost functions of miR-125b.
(C) Representative quantitative data of densitometric analyses. The ratios of vimentin and a-SMA to b-actin were present as mean 6 SEM, n= 3,
*p,0.05, **p,0.01 vs. NC group.
doi:10.1371/journal.pone.0035435.g006

miR-125b Induces Metastasis by Targeting STARD13

PLoS ONE | www.plosone.org 9 May 2012 | Volume 7 | Issue 5 | e35435



Figure 7. Immunofluorescence analysis of vimentin expression. miR-125b-mimics, inhibitor and NC were transfected into MDA-MB-231 and
MCF-7/ADR, respectively. Green, vimentin was immunostained with anti-vimentin; blue, nuclei were stained with DAPI.
doi:10.1371/journal.pone.0035435.g007
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Discussion

MicroRNAs are known to regulate the expression of genes

involved in the control of tumor development, proliferation,

apoptosis and stress response. [35,36,37,38] It has been demon-

strated that miRNAs aberrantly expressed in many human

cancers, including breast cancers, but their functions and

mechanisms in tumorigenesis isn’t explicit. Our results obtained

from gain-of-function and loss-of-function approaches indicated

that miR-125b was positively correlated with the invasive and

migratory abilities of breast cancer cells in vitro. For human breast

cancer cell lines MCF-7 with low metastatic ability and low

expression of miR-125b, up-regulation of the expression of miR-

125b permitted MCF-7 cell lines to gain a high metastasis

potentiality (Figure1B 2A and Figure 3). In MDA-MB-231 cell

lines with high expression of miR-125b, the cells migration ability

was decreased significantly with down-regulation of the expression

of miR-125b by the miR-125b inhibitor (Figure2A). In the study of

nude mice model, we validated that miR-125b had a role of pro-

metastasis in vivo by a probe for NIR-imaging. (Figure 3) Using

tumor targeting probe could to determine metastasis focuses

widely, conveniently, accurately compared to traditional metasta-

sis experiment.

miRNAs regulate functions of their target genes by binding to

the complementary regions of messenger transcripts to repress

their translation or to regulate their degradation. STARD13

encodes a protein that contains a sterile alpha motif domain in the

N-terminus, an ATP/GTP-binding motif, a GTPase-activating

protein domain, and a STAR-related lipid transfer domain in the

C-terminus [26,39] STARD13, a putative tumor suppressor gene

located at chromosome 13q12.3 that has loss of heterozygosity in

hepatic cancer. Recombinant DLC2 showed GAP activity which

is specific for small GTPases RhoA and CDC42 (cell division cycle

42). STARD13 is lower expressed in breast cancer cell lines

compared with normal cells. It suppresses cell growth and

migration via the regulation of Raf-1-ERK1/2-p70S6K signaling

pathway in Hepatocellular carcinoma cells [34,40]. For the first

time, we identified STARD13 as a target of miR-125b (Figure 4)

and miR-125b would promote breast cancer cells migration via

regulating STARD13 expression (Figure 5B and 5C) by a siRNA

targeting STARD13. Interestingly, our results(Figure 5C and

8)showed that MCF-7 cells got a higher metastasis potentiality

compared to siRNA group when co-transfected with miR-125b-

mimics and siRNA-STARD13. It may suggest that miR-125b

regulate metastasis not only through targeting STARD13 but

through also by some other unknown mechanisms.

The question of whether miR-125b is a proto-oncogene or anti-

oncogene in breast cancers is controversial. Scott et al. reported

that oncogene ERBB2 was a target of miR-125b [32] but in

another report, Zhou et al. found that miR-125b down-regulated

the expression of pro-apoptotic BCL-2 antagonist killer1 (Bak1)

and miR-125b have no influence on expression of ERBB2 in

Figure 8. Effects of miR-125b on vimentin and a-SMA expression in MCF-7/ADR and MDA-MB-231 with ROCK inhibitor in vitro. (A B)
Effects of miR-125b and Y-27632 on a-SMA and Vimentin expression. MCF-7/ADR and MDA-MB-231 cells were transfected with miR-125bmimics or
control RNA respectively. After 24 h, cells were incubated with or without Y-27632; after 72 h, a-SMA protein, vimentin and b-actin were detected by
western blot. (C D) Quantitative data of densitometric analyses. The ratio of a-SMA protein to b-actin were present as mean6 SEM, n = 3, *p,0.05, vs.
NC group of a-SMA expression #p,0.05, vs. group of cotransfected with miR-125b and Y-27632 of a-SMA expression.
doi:10.1371/journal.pone.0035435.g008
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breast cell lines BT-474, BT-474M1 and SKBr3. [41] For a long

time, miR-125b was considered as an anti-oncogene because of

miR-125b was down-regulated in breast cancer. But lasted

research shown that miR-125b was a basal-like microRNAs [18]

and was significantly elevated in highly tumorigenic human breast

cancer stem cells. [17] Patients with triple-negative tumors have

a relatively poor outcome and cannot be treated with endocrine

therapy or therapies targeted to human epidermal growth factor

receptor type 2 (HER2). [42] Most basal-like breast cancers was

characterized by an absence or low levels of expression of ER, an

absence of HER2 and often display gene-expression patterns that

are consistent with those of cells undergoing EMT. In this study,

a luminal subtype HER2-negative breast cancer cell lines MCF-7

[33]was used to investigate the influence of miR-125b on HER2

signal pathway. Our results shown that miR-125b has no

significant to decrease phosphorylation of ERK1/2 and AKT

which downstream targets of ERBB2 in HER2-negative breast

cancer cell lines MCF-7 (Fig.5E).

Cell migration occurs in the course of development of different

tissues and in several diseases including cancer and fibrosis by

inducing the expression of a-SMA and vimentin. Our results

demonstrated that miR-125b was a novel regulator for a-SMA

and vimentin in breast cancer cells (Fig.6). We found that miR-

125b significantly upregulated vimentin and a-SMA expression

while another EMT marker E-Cadherin had no significantly

changed (data not shown). Elevating vimentin and a-SMA

expression lead to a high metastasis potentiality and some

mesenchymal cell characteristics in breast cancer cells (Fig.6).

TGF-b1-induced EMT and apoptosis are closely related to the cell

cycle stage: apoptosis is induced mostly in cells at G2/M phase,

whereas EMT is only induced in cells at G1/S phase. [43] miR-

125b regulated G1/S transition through E2F3-Cyclin A2 signaling

pathway and kept cells at G1/S phase [10] may indicate an

important role of miR-125b in TGFb1-indunced EMT. Further-

more, by knockdown of miR-125b in MDA-MB-231, expression

of vimentin and a-SMA was downregulated by knockdown of

miR-125b in MDA-MB-231 (Figure.6 and 7), the cell morphology

was changed from long shuttle-shape to spherical and the cell

migration was significantly inhibited (Figure 7B and 2A). It

indicated that miR-125b was a key molecule in adjusting

reorganization of actin cytoskeleton. Elevated expression of miR-

125b induces luminal-like breast cancer cells to obtain post-EMT

or basal-like properties, which has an aggressive phenotype

characterized by high cell migration and poor clinical outcome.

[44] Semblable results were reported in latest research that the

content of miR-125b was significantly increased in basal-like

breast cells compared to luminal cells. [18] Taken together, miR-

125b plays an important role in keeping basal-like and post-EMT

properties.

Expression of the STARD13 GAP domain inhibited Rho-

mediated formation of actin stress fibers and suppressed Ras

signaling and Ras-induced cellular transformation in a GAP-

dependent manner. [45] Introduction of human STARD13 into

mouse fibroblasts showed the establishment of cell–cell contacts

and of cell–matrix interactions was crucial to obtain a fully

polarized epithelial state. [46] Rho GTPase is required for both

the establishment of a fully polarized state and a motile phenotype

upon EMT. [47,48] it can produce several factors which may

stimulate proliferation of cancer cells and facilitate their in-

filtration. The role of miR-125b in adjusting the ultrastructure and

cytoskeleton protein expression of breast cancer cell lines MDA-

MB-231 is possibly through attenuating the phosphorylation of

Rho-GTPases by silencing STARD13, as our results showed that

miR-125b promoted metastasis by downstream signaling trans-

duction pathways of STARD13. Rho family GTPases are greatly

over-expressed in breast tumors and RhoA is necessary for Ras-

mediated transformation and metastatic spread. [49,50] To

further demonstrate the mechanisms that miR-125b regulated

vimentin and a-SMA, we used an inhibitor of ROCK to

investigate RhoA-ROCK signal pathway. We identified that

miR-125b regulated a-SMA expression through STARD13-

RhoA-ROCK signaling pathway (Fig.8). miR-125b may induce

the phosphorylation of Rho-GTPases ROCK by silencing

STARD13, while the mechanisms of miR-125b regulating

vimentin expression need to be further studied.

Conclusions
In this study, we found that miR-125b played a critical role in

breast cancer metastasis. The expression of miR-125b affected the

metastatic activities of breast cancer cells in vivo and in vitro. In

addition, we found that tumor suppressor gene STARD13 was

a target protein of miR-125b. Over-expression of miR-125b

induced breast cancer cells to obtain epithelial and mesenchymal

characteristics while regulating the reorganization of actin

cytoskeleton. miR-125b up-regulated the expression of vimentin

and a-SMA both at mRNA and protein levels. The regulation of

a-SMA by miR-125b was dependent on STARD13-RhoA-

ROCK signaling pathway. Therefore, our results supported the

hypothesis that miR-125b is critical in breast cancer cells

metastasis.
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