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Abstract

Gene inactivation through RNA interference (RNAi) has proven to be a valuable tool for studying gene function in C. elegans.
When combined with tissue-specific gene inactivation methods, RNAi has the potential to shed light on the function of a
gene in distinct tissues. In this study we characterized C. elegans rrf-1 mutants to determine their ability to process RNAi in
various tissues. These mutants have been widely used in RNAi studies to assess the function of genes specifically in the C.
elegans germline. Upon closer analysis, we found that two rrf-1 mutants carrying different loss-of-function alleles were
capable of processing RNAi targeting several somatically expressed genes. Specifically, we observed that the intestine was
able to process RNAi triggers efficiently, whereas cells in the hypodermis showed partial susceptibility to RNAi in rrf-1
mutants. Other somatic tissues in rrf-1 mutants, such as the muscles and the somatic gonad, appeared resistant to RNAi. In
addition to these observations, we found that the rrf-1(pk1417) mutation induced the expression of several transgenic
arrays, including the FOXO transcription factor DAF-16. Unexpectedly, rrf-1(pk1417) mutants showed increased endogenous
expression of the DAF-16 target gene sod-3; however, the lifespan and thermo-tolerance of rrf-1(pk1417) mutants were
similar to those of wild-type animals. In sum, these data show that rrf-1 mutants display several phenotypes not previously
appreciated, including broader tissue-specific RNAi-processing capabilities, and our results underscore the need for careful
characterization of tissue-specific RNAi tools.
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Introduction

Double-stranded (ds) RNA-induced gene silencing, also called

RNA interference (RNAi), was initially discovered in the

nematode Caenorhabditis elegans as a defense mechanism against

viruses and transposable elements. Since then, RNAi has proven to

be a powerful experimental tool to gain insight into gene function

in multiple organisms [1]. During RNAi in C. elegans, dsRNA

serves as a trigger for sequence-specific degradation of mRNA as a

mechanism of gene silencing [2,3]. The dsRNA is first cleaved into

short-interfering (si) RNAs by a complex containing Dicer, an

RNase III family endoribonuclease. These siRNAs are then loaded

into the RNA-induced silencing complex (RISC) where they guide

recognition of the target-complementary mRNA, which is

subsequently cleaved and degraded. Intriguingly, only a few

molecules of dsRNA are sufficient to direct degradation of a much

larger population of mRNAs [4,5]. This is due to an amplification

process mediated by RNA-dependent RNA polymerases (RdRPs).

The RdRPs use siRNAs derived from Dicer-complex processing as

primers to produce more dsRNA, with the mature endogenous

mRNA as a template. These newly synthesized dsRNA molecules

may also feed back into the Dicer complex to be cleaved into

additional siRNA (for review, see [4,5]).

In C. elegans, four RdRP homologs have been identified to date:

EGO-1 and RRF-1, -2, and -3. EGO-1 and RRF-1 have been

implicated in the amplification of exogenous RNAi [6,7], whereas

RRF-3 is required for the production and/or stabilization of a

subset of endogenous siRNAs [7,8]. So far, no clear function has

been attributed to the fourth member of the RdRPs, RRF-2. As

regulators of the exogenous RNAi pathway, deletion of EGO-1

and RRF-1 leads to RNAi resistance, whereas deletion of RRF-3

results in an increased response to exogenous RNAi, likely due to

the reduced competition for resources between the endogenous

and exogenous RNAi pathways [8]. Importantly, EGO-1 and

RRF-1 have tissue-specific RNAi-processing capabilities. ego-1

mutants are only partially sensitive to RNAi directed against genes

expressed in the germline, but appear fully sensitive to the

inactivation of at least one gene, the Notch ligand LAG-2,

expressed in the somatic gonad. Moreover, EGO-1 is required for

germline development, and is reported to be primarily germline-

specific [6]. Based on these findings, the current hypothesis is that

EGO-1 is required for the RNAi response targeting germline-

specific genes. In contrast, RRF-1 is thought to be required for

amplification of the dsRNA signal in the somatic tissues [7]. The

known rrf-1 deletion mutants are viable, fertile, and indistinguish-

able from wild-type animals. These mutants are sensitive to RNAi
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against genes expressed in the germline, but are completely

resistant to muscle-specific RNAi triggers [7]. Based on these

RNAi experiments, the rrf-1 mutant strain has become the most

widely used tool in the C. elegans field for determining the site of

action of genes specifically in the germline. As an illustration, close

to 50 publications to date have used the rrf-1(pk1417) allele to

conclude that a gene of interest functions in the germline and not

in the soma. The initial analysis of the rrf-1 strain examined

muscle-expressed genes as examples of somatic gene expression,

and different genes predominantly expressed in the germline [7].

Here, we describe an analysis of somatic tissues besides muscles in

which rrf-1 could function.

Key advantages of using C. elegans as a model organism for

genetic studies is its experimental tractability while displaying

physiological complexity with multiple specialized tissues. The

study of tissue-specific functions of genes using RNAi techniques

requires robust tissue-selective tools. To address whether the rrf-1

mutant is an efficient tool for probing the function of genes

specifically in the germline, we have characterized the effect of

rrf-1 mutations on processing RNAi in various specialized tissues in

C. elegans. We confirmed that rrf-1 mutants are able to process

RNAi efficiently in the germline, and are resistant to RNAi in the

muscle, as reported previously [7]. However, we found that rrf-1

mutants are capable of processing RNAi in the intestinal soma

against several endogenous genes as well as GFP reporters

expressed in the intestine. We also used transgenic reporters to

assess the RNAi-processing capabilities of other somatic tissues in

rrf-1 mutants, and found that transgene reduction occurred in a

subset of hypodermal cells, the seam cells, whereas the somatic

gonad was resistant to gfp RNAi. In contrast, the hypodermis was

resistant to RNAi against at least two endogenous targets,

suggesting that this somatic tissue may be able to process RNAi

in some, but not all, cells. Taken together, these results show that

the rrf-1 mutants are sensitive to at least some RNAi triggers in

somatic tissues, most notably in the intestine. In addition to

imparting an ability to process somatic RNAi, we found that the

rrf-1(pk1417) mutation also increased the expression of some

transgenes in somatic tissues. Lastly, we discovered that the rrf-1

mutant displayed increased endogenous expression of the FOXO

transcription factor DAF-16 target gene sod-3, a superoxide

dismutase, suggesting that rrf-1 mutants may have increased

DAF-16 activity. While DAF-16 is a key modulator of C. elegans

longevity, the possible increase in its activity in rrf-1 mutants does

not translate into an extended lifespan or increased stress

resistance. Our characterization of the rrf-1 mutant highlights

the need for researchers to exercise caution in using this mutant as

a tissue-specific RNAi tool, including in the study of longevity

pathways with relevance to the FOXO transcription factor DAF-

16.

Results

RNAi is Processed in the Intestine of Two Different rrf-1
Mutants

Because we were interested in using the C. elegans rrf-1 strain as a

tool for tissue-specific RNAi experiments, we sought to charac-

terize the potency of RNAi in various tissues in this mutant. To

this end, we employed two different strategies. In the first, we

selected several RNAi clones reported to be exclusively or

primarily expressed in specific tissues and monitored their

corresponding tissue-specific phenotypes in C. elegans. We tested

these RNAi clones for effects in two different rrf-1 loss-of-function

alleles; rrf-1(pk1417) and rrf-1(ok589) [7]. The pk1417 allele

contains a large deletion that removes 400 amino acids in the

RRF-1 protein, including most of the conserved RdRP-specific

residues [7]. The ok589 allele similarly contains a 303-amino acid

deletion in RRF-1, which is also presumed to be a null mutation.

As a complementary approach, we crossed several transgenic

strains with different tissue-specific GFP expression with the

rrf-1(pk1417) loss-of-function mutant, and initiated RNAi by

feeding these new strains bacteria expressing gfp dsRNA. Using

these two approaches, we initially reexamined the two tissues that

previously had been investigated in rrf-1 mutants, namely the

germline and body-wall muscle [7]. As expected, we found that

both rrf-1 mutants were capable of processing endogenous and gfp

RNAi triggers in the germline (Figure S1) but not in the muscles

(Figure S2), as shown in [7].

We next tested the ability of the rrf-1 strain to process RNAi in

the intestine. The intestine is the tissue that takes up dsRNA when

delivered by ingestion of bacteria, and might therefore be

especially sensitive to RNAi by feeding. To test this, we searched

for genes that were expressed only in the intestine, and would

induce an easily detectable intestinal phenotype upon RNAi-

mediated silencing. The GATA-type transcription factor ELT-

2 fit these criteria as it is expressed exclusively in the intestine,

where it is required for intestinal differentiation [9]. Accordingly,

the elt-2 mutation is known to cause lethality at the L1 stage, with

animals displaying a blocked intestinal lumen [9,10]. Consistent

with a role for elt-2 in the intestine, we found that wild-type C.

elegans and rrf-3(pk1426) mutants (which display enhanced somatic

RNAi sensitivity due to a loss-of-function mutation in the RdRP

RRF-3 [8]), both experienced constricted and occluded intestines

and a clear appearance when subjected to elt-2 RNAi (Figure 1).

Moreover, we found that rde-1(ne219) mutants (which are resistant

to RNAi due to a loss-of-function mutation in the Argonaut

protein RDE-1, a key component of the RISC complex [11])

expressing RDE-1 under the intestinal nhx-2 promoter [12],

responded to elt-2 RNAi similarly to the wild-type animals

(Figure 1). As expected, a strain expressing RDE-1 in the

hypodermis (rde-1(ne219); lin-26p::rde-1) was unaffected by elt-2

RNAi [13] (Figure 1). Notably, when we subjected either

rrf-1(pk1417) or rrf-1(ok589) mutants to elt-2 RNAi, we observed

comparable phenotypes to those observed in wild-type animals

grown on bacteria expressing elt-2 dsRNA (Figure 1), implying

that rrf-1 mutants are capable of processing elt-2 RNAi.

We also investigated a second intestinal gene, pept-1, which

encodes an oligopeptide transporter expressed in the apical

membrane of the intestine. Inactivation of pept-1 abolishes the

uptake of peptides into the gut lumen, delays development, and

reduces body and brood size [14]. When we subjected wild-type or

rrf-3(pk1426) animals to pept-1 RNAi, they displayed a clear body

appearance indicative of reduced intestinal fat content [15]

(Figure S3A), as well as a reduced size (Figure S3B). Similar

phenotypes were observed in the intestinally rescued rde-1 strain,

as well as in the hypodermally rescued rde-1 strain (Figure S3),

suggesting that pept-1 may be expressed not only in the intestine

but also in the hypodermis. Importantly, when rrf-1(pk1417) and

rrf-1(ok589) mutants were subjected to pept-1 RNAi, they also

displayed a clear appearance (Figure S3A), and a smaller body

size (Figure S3B), consistent with rrf-1 mutants being at least

partially capable of processing pept-1 RNAi in somatic tissues such

as the intestine. Collectively, our analysis of endogenous genes

indicated that the intestine is capable of processing RNAi in rrf-1

mutants.

Somatic RNAi Effects in C. elegans rrf-1 Mutants
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RNAi is Processed in the Intestine of rrf-1(pk1417)
Mutants Expressing Different GFP Reporters

To further investigate the finding that rrf-1 mutants can process

RNAi in the intestine, we employed two different transgenic

strains with strong GFP expression in the intestine. The first strain

overexpresses a GFP-tagged version of the protein LGG-1, a

homolog of the mammalian protein LC3, with prominent

expression observed in the intestine, pharynx, hypodermis, and

somatic gonad [16]. When we fed bacteria expressing gfp dsRNA

to an rrf-1(pk1417) strain carrying the lgg-1 reporter, we observed a

strong reduction in intestinal GFP that was readily apparent by

day 1–2 of adulthood (Figure 2A). To exclude the possibility that

GFP silencing depended on the lgg-1 transgene, we used a second

reporter strain with strong intestinal GFP fluorescence. This strain

expresses the FOXO transcription factor DAF-16 with an N-

terminal GFP tag, under the control of the daf-16 promoter [17].

When we subjected the rrf-1(pk1417) strain carrying the daf-16

reporter construct to gfp RNAi, this treatment resulted in a

noticeable albeit partial loss of intestinal GFP expression

compared to wild-type animals (Figure 2B). Taken together,

our results demonstrate that C. elegans rrf-1 mutants are at least

partially capable of processing RNAi in the intestinal soma.

The Hypodermis of rrf-1 Mutants shows Mixed
Susceptibility to RNAi

To determine if other somatic tissues were able to process RNAi

in rrf-1 mutants, we next investigated the hypodermis, a tissue

comprised of multiple cell types that establish the basic body form

and which secretes the cuticle of the animal. We tested RNAi

processing in the hypodermis by inhibiting different genes that are

reported to be exclusively or primarily expressed in the

hypodermis. The dual oxidase BLI-3 generates hydrogen peroxide

required for the crosslinking of collagen dityrosines during cuticle

formation [18]. RNAi-induced reduction of the bli-3 gene,

reported to be expressed exclusively in the hypodermis, led to an

extreme molting defect in the rrf-3(pk1426) strain, in wild-type

animals as well as in hypodermally rescued rde-1 mutants

(Figure 3A). Interestingly, the intestinally rescued rde-1 mutant

was similarly affected by bli-3 dsRNA, suggesting that bli-3 may be

more broadly expressed than reported. Importantly, we observed

that the rrf-1(pk1417) and rrf-1(ok589) strains were largely

unaffected by bli-3 RNAi (Figure 3A and Figure S4A), even

when treated for multiple generations (data not shown). The rrf-1

strains were similarly resistant to RNAi against another gene

reported to be expressed exclusively in the hypodermis, the

membrane protein tetraspanin encoded by tsp-15 [19]. We found

that rrf-1 mutants subjected to tsp-15 RNAi were resistant to blister

formation and defects in body morphology, whereas tsp-15 RNAi-

treated wild-type animals were severely affected (data not shown).

Figure 1. Intestinal elt-2 RNAi induces prominent phenotypes in rrf-1 mutants. The indicated C. elegans strains were raised on bacteria
expressing elt-2 dsRNA and imaged by DIC microscopy on day 3 of adulthood. The rde-1 strain and the rde-1 strain expressing RDE-1 in the
hypodermis (lin-26p::rde-1) were unaffected by RNAi, whereas all other strains tested show growth defects, a clear appearance, and an abnormal
intestine. This experiment was repeated four times with ,100 worms per strain with similar results. WT: wild-type N2 (A – Hansen lab, B – Tuck lab),
rrf-1(pk1417).4x: rrf-1(pk1417) outcrossed 4 times to WT(A).
doi:10.1371/journal.pone.0035428.g001

Somatic RNAi Effects in C. elegans rrf-1 Mutants
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In contrast to our analysis of bli-3 and tsp-15, RNAi against two

other genes that are largely expressed in the hypodermis, bli-4

(subtilisin-like serine endoprotease) and die-1 (zinc finger protein),

induced comparable phenotypes in rrf-1 mutants and wild-type

animals (Figure S4A, B). However, the interpretation of these

results was compromised by the fact that bli-4 and die-1 are not

exclusively expressed in the hypodermis, but are also present in

other somatic tissues including the intestine. Consistent with this

notion, we found that both bli-4 and die-1 RNAi induced

phenotypes in both hypodermally and intestinally rescued rde-1

strains (Figure S4B and data not shown). Taken together, our

analysis of endogenous genes does not support an RNAi-

processing ability of the hypodermis.

To extend these findings, we analyzed RNAi processing in seam

cells, a specialized hypodermal cell type important for the

formation of cuticular structures called alae. For these studies,

we introduced a seam cell-specific GFP reporter into the

rrf-1(pk1417) mutant and compared the GFP signal in these

mutants and wild-type animals after they had been fed from

hatching with bacteria expressing gfp dsRNA. Interestingly, we

Figure 2. GFP reporters in the intestine of rrf-1 mutants are repressed by gfp RNAi. The indicated C. elegans strains were raised on bacteria
expressing gfp dsRNA, and imaged by DIC and fluorescence microscopy (overlays shown here) on day 1 of adulthood. rrf-1 mutants carried the
pk1417 allele. (A) The lgg-1p::gfp::lgg-1 reporter is expressed in the intestine, pharynx, somatic gonad, and hypodermis. GFP expression is dramatically
reduced upon treatment with gfp RNAi in both wild-type and rrf-1 animals. The exposure time for the GFP channel under control conditions was
15 ms and for gfp RNAi 25 ms. In the gfp RNAi micrographs, note that the pharynx appears largely unaffected by RNAi in both wild-type and in rrf-1
animals. See Figure S5B, D for additional information on transgene intensity. (B) The daf-16p::gfp::daf-16 reporter is expressed in the intestine, and
GFP expression is abolished in the wild-type and reduced in the rrf-1 background. The rrf-1 mutant shows visibly higher transgene expression levels
compared to the wild-type strain. The exposure time for the GFP channel was 200 ms. See Figure S7A, B for additional information on transgene
intensity. These experiments were repeated 2–3 times with 30–50 worms per strain and imaging of ,10 per experiment, with similar results.
doi:10.1371/journal.pone.0035428.g002
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Figure 3. rrf-1 mutants are resistant to RNAi against the hypodermal gene bli-3, but are able to process gfp RNAi in seam cells. The
indicated C. elegans strains were raised on bacteria expressing bli-3 dsRNA (A) and gfp dsRNA (B) and imaged by bright-field or fluorescence
microscopy, respectively, on day 1 of adulthood. (A) The rrf-1 mutants, as well as the RNAi-resistant rde-1 strain are unaffected by bli-3 RNAi, whereas
all other strains tested show severe molting defects and varying degrees of blister formation. See Figure S4A for additional information. This
experiment was repeated three times with 100–200 worms per strain with similar results, also for several generations. WT: wild-type N2 (A – Hansen
lab, B – Tuck lab), rrf-1(pk1417).4x: rrf-1(pk1417) outcrossed 4 times to WT(A). (B) The SCMp::gfp reporter is exclusively expressed in hypodermal seam
cells, which are denoted with arrows. GFP expression is abolished in the wild-type background and reduced in the rrf-1(pk1417) background. The rrf-1
mutant shows visibly higher GFP expression levels compared to the wild-type strain. The exposure time for the GFP channel was 100 ms. See Figure
S4C for quantification of transgene intensity. These experiments were repeated 3 times with 30–50 worms per strain and imaging of ,10 per
experiment, with similar results.
doi:10.1371/journal.pone.0035428.g003
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observed that, similar to wild-type animals, rrf-1(pk1417) mutants

had a significantly reduced GFP signal in their seam cells in

response to gfp RNAi (Figure 3B and Figure S4C). Thus, in our

transgenic analysis we observed that hypodermal seam cells were

at least partially capable of processing gfp RNAi, which was in

contrast to the results we obtained when analyzing endogenous

genes exclusively expressed in the hypodermis. Taken together,

these experiments highlight the possibility that a restricted subset

of cells in the hypodermis is able to process RNAi.

The Somatic Gonad is Resistant to RNAi in rrf-1(pk1417)
Mutants

Because the rrf-1(pk1417) mutant has been used in many studies

to determine whether a gonadal gene functions in the germline or

in the somatic gonad, we were specifically interested in determin-

ing if the somatic gonad of rrf-1 mutants was able to process RNAi.

To do this, we examined the persistence of GFP expression after

feeding gfp RNAi to the rrf-1(pk1417) strain carrying a lag-2p::gfp

transcriptional reporter strain that displays GFP fluorescence in

the distal tip cell (DTC) [20]. In the rrf-1 background, the GFP

signal in the DTC persisted upon treatment with gfp RNAi, which

is consistent with previous reports that somatic tissues of rrf-1

mutants are resistant to RNAi (Figure S5A). Moreover, GFP

fluorescence was maintained in the spermatheca and vulva when

rrf-1(pk1417) animals expressing the lgg-1p::gfp::lgg-1 reporter were

treated with gfp RNAi (Figure S5B). Taken together, these results

indicate that the somatic gonad may be resistant to RNAi in rrf-1

mutants.

Somatic RNAi Effects in rrf-1(pk1417) Mutants are not Due
to the Negative RNAi Regulator ERI-6/7

It is possible that the ability of rrf-1 mutants to process RNAi in

at least some somatic tissues is not an intrinsic feature of the rrf-1

mutation, but instead could be due to mutations in negative

regulators of the RNAi pathway in that strain [4]. For example,

disruption of the adjacent genes eri-6 and eri-7 can lead to an

enhanced RNAi response [4]. To exclude the possibility that

known eri-6/eri-7 background mutations have accumulated in the

rrf-1strains used in this study, we amplified and sequenced the

eri-6/eri-7 locus. Neither of the two rrf-1 alleles carried the

mutation mg441 (data not shown), a mutation that leads to an

enhanced RNAi response due to erroneous splicing and genomic

rearrangements in the eri-6/7 locus (Figure S6) [4]. In addition,

we designed primers flanking three other reported deletion

mutations (tm1887, tm1716, tm1917), and found no evidence that

the rrf-1 strains used in this study harbored any of these reported

eri-6/7 mutations (Figure S6). While this analysis does not

exclude the possibility that unidentified RNAi-enhancing muta-

tions exist in the rrf-1 mutant, our results are consistent with the

rrf-1 strain possessing an intrinsic ability to process dsRNA in

somatic tissues, in addition to the germline.

rrf-1(pk1417) Mutants Display Elevated Expression of
Transgenic Arrays

During the course of our experiments with the daf-16p::gfp::daf-16

reporter strain, we noticed a significantly higher expression of the

transgenic array in the rrf-1(pk1417) background compared to the

wild-type background (Figure 2B and Figure S7A, B). This

significant increase in GFP fluorescence is likely due to post-

translational regulation, since daf-16 mRNA levels were not

significantly elevated in rrf-1(pk1417) mutants (Figure S7C),

consistent with a previous report [24]. Notably, we also observed

significantly increased expression of GFP when driven by a seam

cell-specific promoter (Figure 3B and Figure S4C) and by the

DTC-specific lag-2 promoter (Figure S5C). These observations

suggest that the rrf-1(pk1417) mutation can cause a general increase

in the expression of transgenic arrays. However, we were not able to

detect an increase in transgene expression in rrf-1(pk1417) mutants

expressing GFP-tagged histone 2B under the germline-specific pie-1

promoter (Figure S1B), GFP::MYO-3 from the muscle-specific

myo-3 promoter (Figure S2), or GFP::LGG-1 from the lgg-1

promoter (Figure 2A and Figure S5D), suggesting that the rrf-1

mutation does not have these regulatory effects on all transgenic

arrays.

The Expression of DAF-16/FOXO Target Gene sod-3 is
Elevated in rrf-1(pk1417) Mutants

The FOXO transcription factor DAF-16 plays a major role in

modulating longevity in C. elegans, most notably through the

insulin/IGF-1 signaling pathway [21]. This is likely achieved by

the DAF-16–dependent expression of several genes involved in

critical biological processes, including stress resistance, metabo-

lism, and disease pathogenesis [21,22,23]. Since DAF-16 plays a

prominent role in longevity modulation, we investigated the role of

rrf-1 on daf-16/FOXO in more detail. Since we found that the

rrf-1(pk1417) mutation had no effect on daf-16 mRNA levels

(Figure S7C), we asked if rrf-1 mutations affect DAF-16 activity.

Superoxide dismutase sod-3 is a DAF-16 target gene that is often

used as a measure of transcriptional activation of DAF-16 [22,25].

We compared the expression of endogenous sod-3 levels in wild-

type animals and in rrf-1(pk1417) mutants by qPCR and

unexpectedly, we observed significantly elevated sod-3 mRNA

levels in rrf-1(pk1417) mutants compared to wild-type animals

(Figure 4A). Similarly, we found that rrf-1(pk1417) mutants

displayed increased expression of a sod-3p::gfp transcriptional

reporter (Figure S7D, E). While we recognize that the

rrf-1(pk1417) mutation could directly affect expression of the

transgene, as noted above, this result is consistent with the qPCR

data measuring endogenous sod-3 levels. Because DAF-16 is a

major transcriptional regulator of sod-3 expression in C. elegans,

these observations raise the possibility that DAF-16 activity is

elevated in rrf-1 mutants.

rrf-1(pk1417) Mutants do not show Extended Lifespan or
Increased Thermo-tolerance

Increased DAF-16 activity has been associated with longevity in

animals with reduced levels of the insulin/IGF-1 like receptor

DAF-2 [21,26]. daf-2 mutants are long-lived and resistant to

various stressors, such as heat and oxidative stress [21,26]. Since

DAF-16 activity may be increased in rrf-1 mutants, we examined

whether rrf-1 mutations extend lifespan and promote stress

resistance in rrf-1 animals. However, we found no difference

between rrf-1(pk1417) mutants and wild-type animals in their

mean lifespan (Figure 4B and Figure S7) or their ability to

withstand elevated temperature (Figure 4C). Thus, although rrf-1

mutants display increased sod-3 transcript levels, indicative of

elevated DAF-16 activity, these alterations were not sufficient to

increase longevity or stress resistance in rrf-1 mutants.

Discussion

Here, we have shown that C. elegans rrf-1 mutants are capable of

processing RNAi targeting several genes expressed in the soma

(summarized in Table 1).

The strongest phenotypic effects were achieved by reducing

genes expressed in the intestine. We observed that two different

GFP transgenes expressed in the intestine were reduced in

Somatic RNAi Effects in C. elegans rrf-1 Mutants
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rrf-1(pk1417) mutants after being exposed to gfp RNAi. In addition,

we found that RNAi of two endogenous targets, elt-2 and pept-1,

induced robust phenotypes in two different rrf-1 mutants. While

elt-2 RNAi seemed to play an exclusively intestinal-specific role,

pept-1 RNAi induced effects in both intestinally and hypodermally

rescued rde-1 strains [12,13]. This result may indicate that pept-1

functions as an oligopeptide transporter not only in the intestine,

but also in the hypodermis. Alternatively, we note the possibility

that the rescued rde-1 strains are not as specific in their RNAi

sensitivity as anticipated.

We also observed RNAi-processing capabilities in another

somatic tissue, the hypodermis, albeit to a limited extend. We

found that rrf-1 mutants expressing a transgenic reporter in a

specific subset of hypodermal cells, i.e., the seam cells were

susceptible to knockdown of gfp. In contrast, rrf-1 mutants failed to

respond to RNAi against bli-3 or tsp-15, which are both genes

reported to be expressed exclusively in the hypodermis. Moreover,

we found that RNAi against additional genes with hypodermal

expression (bli-4 and die-1) induced similar phenotypes in both

wild-type animals and rrf-1 mutants. While the phenotypes

induced by bli-4 and die-1 RNAi in rrf-1 mutants could originate

from the knockdown of these genes in other somatic tissues,

including the intestine (Table 1), it seems that the hypodermis of

rrf-1 mutants is not generally capable of processing dsRNA

triggers. Instead, our findings suggest that either a restricted subset

of cell types in the hypodermis of rrf-1 mutants is capable of

processing RNAi, or perhaps only some endogenous targets can be

degraded. Further analysis of endogenous targets, especially

expressed in hypodermal seam cells is warranted to address this

possibility.

Taken together, our analysis indicates that rrf-1 mutants can

process RNAi in the soma, most notably in the intestine,

demonstrating that rrf-1 mutants have broad RNAi-processing

capabilities. Consistent with this notion, new information on the

expression pattern of the predominantly germline-specific genes

pos-1, par-1 and pop-1 originally tested by Sijen et al. [7], suggests

that these genes are also expressed in somatic tissues [27,28,29,30],

which further corroborates an RNAi-processing role in the soma

of rrf-1 mutants.

These findings have important implications for the use of this

strain in tissue-specific RNAi studies, as well as for the

interpretation of published reports using RNAi in this strain.

Our literature search revealed that close to 50 studies used the

rrf-1(pk1417) mutant to investigate the role of a gene of interest in

the germline versus somatic tissues. However, several of these

publications used additional and alternative methods to confirm a

germline requirement for the gene of interest, such as mosaic

analysis [31,32,33,34,35]. Indeed, most of the published studies

used rrf-1(pk1417) mutants to determine if a gene expressed in the

gonad has a specific role in the germline or the somatic gonad

[36,37,38]. Our studies indicated that the rrf-1 mutant is resistant

to RNAi in the somatic gonad by using two different gfp-tagged

reporters. Specifically, we found that the GFP signal was

maintained in the vulva and spermatheca of an rrf-1;

lgg-1p::gfp::lgg-1 reporter strain, as well as in distal tip cells of an

rrf-1; lag-2p::gfp reporter strain (Table 1). Ideally, these experi-

ments should be complemented by an analysis of endogenous

genes; however, we have been unsuccessful in inducing phenotypes

in wild-type animals using RNAi against the endogenous genes we

investigated, including lag-2 (data not shown). Based on our results,

the rrf-1 strain may thus be a useful tool for determining a

differential requirement for a gene in the germline and somatic

gonad.

RRF-1 is one of two RdRPs involved in the exogenous siRNA

pathway that amplifies dsRNA triggers, and has been reported to

act in the soma of C. elegans [7]. In contrast, the second RdRP,

EGO-1, is thought to be required for processing of siRNA

targeting germline-specific genes [6]. Our observation that the

rrf-1 mutant is capable of processing RNAi in somatic tissues could

suggest the existence of unidentified enzymes that have overlap-

ping functions with RRF-1, or suggest a role for EGO-1 outside of

the germline. Although Smardon et al. have reported that EGO-1

Figure 4. rrf-1 mutants have increased sod-3 mRNA levels, a
normal lifespan, and normal thermo-tolerance. (A) The sod-
3 mRNA levels of a mixed population of C. elegans wild-type (WT, N2(A))
and rrf-1(pk1417).4x (rrf-1(pk1417) mutant outcrossed four times to
WT(A)) strains were determined. Bars show the mean + SEM of three
independent experiments; **P,0.005 (Student’s t-test). (B) Lifespan
analysis of wild-type WT(A) and rrf-1(pk1417).4x strains at 20uC; P = 0.59,
log-rank (Mantel-Cox test). This experiment has been performed three
times with similar results; see Figure S7F for additional data. (C)
Thermo-tolerance was measured by assessing survival of WT(A) and rrf-
1(pk1417).4x strains after 8 h incubation at 36uC; P = 0.36 (Student’s t-
test). This experiment has been performed three times with similar
results.
doi:10.1371/journal.pone.0035428.g004
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expression is primarily germline-specific [6], it may also be

expressed in somatic tissues. Moreover, germline EGO-1 activity

may be sufficient to produce enough siRNA to affect other tissues.

Alternatively, RRF-2 or an unidentified RdRP may play roles in

processing RNAi in the absence of RRF-1.

One of the striking features of RNAi in C. elegans is its systemic

nature, in which the dsRNA spreads from the tissue of uptake,

most often the intestine, into other tissues [39,40,41,42]. In our

experiments, the dsRNA trigger was delivered by feeding the

animals bacteria expressing dsRNA. Therefore, it is possible that

sufficient dsRNA was ingested to at least partially knock down the

targeted mRNA in the intestine without the need for an RdRP-

mediated amplification reaction, making the mechanism RdRP-

independent. This may also be the case for the worm pharynx,

which processes bacteria upon intake. Although we have

attempted to directly address a role for the pharynx using

endogenous genes as RNAi targets, these experiments have been

hampered by the apparent refractory nature of the pharynx to

RNAi (see Figure 2A, and data not shown). While our objective

in this study was to characterize the rrf-1 strain for processing of

RNAi delivered by feeding, future studies should determine if

direct injection of the dsRNA into the germline have the same

effect on somatic gene expression of rrf-1 mutants, including in the

intestine. Perhaps direct delivery of dsRNA to the germline would

reduce exposure of the intestine and other tissues to dsRNA and

might even prevent the degradation of mRNAs encoded by

intestinal-specific genes. These additional tissues may include ones

we have not yet assayed, for example neurons, which are generally

considered refractory to RNAi by feeding [43,44].

Unexpectedly, we observed that rrf-1 mutants displayed

increased expression of an important target gene of the FOXO

transcription factor DAF-16, the superoxide dismutase SOD-3.

Since DAF-16 is a major regulator of sod-3, this observation raises

the possibility that rrf-1 mutants have increased activity of DAF-

16. DAF-16 activity is required for the extended longevity of many

C. elegans mutants, including daf-2 mutants [21]. In daf-2 mutants,

these phenotypes are mediated by nuclear translocation and

activation of DAF-16, which in turn causes upregulation of target

genes such as sod-3. We did not, however, observe nuclear

localization of DAF-16 in the rrf-1 background (Figure 2A and

Table 1. RNAi efficiency in different tissues in rrf-1 mutants.

Tissue
investigated

Gene or transgene
targeted by RNAi Reported tissue of expression RNAi phenotype

wild-type rrf-1 Observed Citatio n1

Germline gld-1 Germline + + Pro, Tum [52]

pie-1p::gfp::H2B Germline + + GFP loss [53]

Muscle unc-22 Muscle + 2 Unc/Twitcher [39]

pat-4 Body-wall muscle, spermatheca, DTC, vulval and anal sphincter
muscle, mechanosensory neurons

+ 2 Prz [54]

unc-112 Body-wall, vulval, spermathecal, uterine, and anal sphincter/
depressor muscles

+ 2 Prz [55]

myo-3p::gfp::myo-3 Body-wall muscle + 2 GFP loss [56]

Intestine elt-2 Intestine + + Gob, Clr, Lva [10]

pept-1 Intestine + + Clr, Gro [14]

bli-4 Hypodermis, intestine, vulva, ventral nerve cords + + Bli, Dpy [28,57]

daf-16p::gfp::daf-162 Intestine, hypodermis, gonad, body-wall muscles, neurons + + GFP loss [58]

lgg-1p::gfp::lgg-13 Intestine, hypodermis, pharynx, gonad, neurons, body-wall
muscles

+ + GFP loss [16]

Hypodermis bli-3 Hypodermis + - Bli, Dpy [18]

tsp-154 Hypodermis + - Bli, Dpy [19]

bli-4 Hypodermis, intestine, vulva, ventral nerve cords + + Bli, Dpy [28,57]

die-1 Embryonically in hypodermis, pharyngeal cells and muscle/gut
primordium precursor cells

+i +5 Bmd [59]

SCMp::gfp Seam cells + +/26 GFP loss [60]

Somatic gonad lag-2p::gfp Distal tip cell + 2 GFP loss [61]

lgg-1p::gfp::lgg-1 Intestine, hypodermis, pharynx, gonad, neurons, body-wall
muscles

+ 2 GFP loss [16]

‘+’ and ‘2’ refer to the presence or absence of a phenotype in response to RNAi treatment in wild-type or rrf-1 animals. The rrf-1(pk1417), rrf-1(pk1417).4x (rrf-1(pk1417)
four times outcrossed to WT(A) and rrf-1(ok589) mutants behaved similarly to RNAi targeting endogenous genes and are combined here as rrf-1. For strains expressing
GFP-tagged transgenes, loss of GFP expression was assayed in response to gfp RNAi in the rrf-1(pk1417) mutant only.
Phenotype abbreviations: Pro: proximal germ cell proliferation abnormal; Tum: tumorous germline; Prz: paralyzed, Unc/Twitcher: uncoordinated, sub-class, Twitcher;
Gob: gut-obstructed; Clr: clear; Lva: larval arrest; Gro: slow growth; Ste: sterile; Bli: blistered; Dpy: dumpy; Bmd: body morphology defects; DTC: distal tip cell.
1Citations refer to studies describing expression patterns and gene functions of the genes targeted by RNAi and to descriptions of the transgenes used;
2Only the intestinal expression of daf-16p::gfp::daf-16 was examined;
3The intestinal, pharyngeal, and gonadal expression of lgg-1p::gfp::lgg-1 was examined;
4Data not shown;
5RNAi phenotypes observed in 2nd generation;
6Transgene expression was only partially reduced.
doi:10.1371/journal.pone.0035428.t001
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Figure S7A, and data not shown). Additionally, we found no

increase in longevity or thermo-tolerance in the rrf-1(pk1417)

mutant, suggesting that if rrf-1 mutants have increased DAF-16

activity, it is not sufficient to extend lifespan. This would be

consistent with the observation that increased expression of SOD-

3 does not extend C. elegans lifespan [45]. It remains to be explored

how inhibition of the RdRP rrf-1 leads to increased expression of

SOD-3, and whether other DAF-16 targets are similarly affected.

Regardless of the exact mechanism, our novel findings that rrf-1

mutants show efficient RNAi in somatic tissues and also exhibit

increased expression of the DAF-16-regulated stress response gene

sod-3, should be considered before using these mutants in tissue-

specific RNAi studies, especially in the study of longevity pathways

with relevance to the FOXO transcription factor DAF-16.

In addition to observing a new somatic RNAi-processing

ability and increased expression of endogenous sod-3, we also

noted that multiple, but not all, transgenes used in our

investigation were expressed at higher levels in rrf-1 mutants.

These observations suggest that RRF-1 can negatively regulate

transgene expression, at least in some cases. Notably, we

observed no direct correlation between the tissues in which

transgenic expression was increased by rrf-1 mutation and the cell

types that responded to RNAi processing. Moreover, the

daf-16p::gfp::daf-16 and lgg-1p::gfp::lgg-1 reporters both responded

to gfp RNAi in the intestine when expressed in rrf-1 mutants, but

only the daf-16p::gfp::daf-16 reporter was notably upregulated by

the rrf-1 mutation. This suggests that the mechanism regulating

transgene expression in rrf-1 mutants is not identical to that of

RNAi processing. While the mechanism of transgene regulation

is currently unclear, it is an important result because the

increased expression of specific transgenes in rrf-1 mutants could

induce morphological or cellular changes. Indeed, rrf-1 mutants

may display many more phenotypes than noted previously or

reported here, and this information should be kept in mind when

using this mutant as a tool for studying gene function.

Materials and Methods

Strains and Culture Conditions
Strains were maintained and cultured under standard condi-

tions at 20uC using E. coli OP50 as a food source [46], except when

subjected to RNAi treatment. We used these previously reported

strains in this study (see Table 1 for references):

WT(A): Hansen-lab N2, WT(B): Tuck-lab N2 (Simon Tuck,

University of Umeå), NL2098: rrf-1(pk1417) I, RB798:

rrf-1(ok589) I, NL2099: rrf-3(pk1426) II,

WM27: rde-1(ne219) V,

VP303: rde-1(ne219) V; kbIs7[nhx-2p::rde-1 + rol-6(su1006)],

NR222: rde-1(ne219) V; kbIs9[lin-26p::nls::gfp, lin-26p::rde-1 +
rol-6(su1006)],

DA2123: adIs2122[lgg-1p::gfp::lgg-1 + rol-6(su1006)],

CF1934: daf-16(mu86) I; muIs109[daf-16p::gfp::daf-16 +
odr-1p::rfp],

AZ212: unc-119(ed3) III; ruIs32[unc-119(+) pie-1(+)

pie-1p::gfp::H2B],

RW1596: myo-3(st386) V; stEx30[myo-3p::gfp::myo-3 +
rol-6(su1006)],

CF1553: muIs84[sod-3p::gfp],

JK2049: qIs19[lag-2p::gfp + rol-6(su1006)] V,

JR667: unc-119(e2498::Tc1) III; wIs51[SCMp::gfp + unc-119].

We note that the promoter of the seam-cell marker (SCM) used

for GFP expression in the JR667 strain has not been reported.

We created the following new strains for this study:

MAH19: rrf-1(pk1417) I, myo-3(st386)V; stEx30[myo-3p::gfp::

myo-3 + rol-6(su1006)],

MAH22: rrf-1(pk1417) I; adIs2122[lgg-1p::gfp::lgg-1 +
rol-6(su1006)],

MAH23: rrf-1(pk1417) I outcrossed 4 times to Hansen-lab N2

and referred to as rrf-1(pk1417).4x,

MAH74: rrf-1(pk1417) I; unc-119(ed3) III; ruIs32[unc-119(+)

pie-1(+) pie-1p::gfp::H2B],

MAH97: rrf-1(pk1417) I; muIs109[daf-16p::gfp::daf-16 +
odr-1p::rfp],

MAH99: rrf-1(pk1417) I; muIs84 [sod-3p::gfp],

MAH132: rrf-1(k1417) I; unc-119(e2498::Tc1) III;

wIs51[SCMp::gfp + unc-119],

MAH133: rrf-1(pk1417) I; qIs19[lag-2p::gfp + rol-6(su1006)] V.

We note that we observed germline defects in 5–10% of the

assayed animals of the rrf-1(pk1417); lag-2p::gfp strain (data not

shown), whereas no defects were observed when this transgene was

expressed in the wild-type background, or in the rrf-1(pk1417)

mutant without expression of the lag-2p::gfp reporter, or in the

rrf-1(pk1417); pie-1p::gfp::H2B strain (data not shown).

RNAi Treatment and Imaging
The gfp RNAi clone was obtained from Dr. Andrew Dillin (Salk

Institute). The bli-4 and elt-2 clones used were obtained from the

Vidal RNAi library [47]; the elt-2, pept-1, pat-4, unc-112, pha-4,

gld-1 and bli-3 RNAi clones were obtained from the Ahringer

library [48]. All RNAi clones were verified by sequencing. For the

RNAi treatment, worms were synchronized by hypochlorous acid

treatment and the eggs seeded on the NGM plates with bacteria

expressing the dsRNA. Differential interference contrast (DIC)

microscopy was performed on a Zeiss Imager Z1 after mounting

worms on a 2% agarose pad containing 0.1% NaN3, in M9

medium also containing 0.1% NaN3. Worms on plates were

imaged on plates with a Leica DFC310 FX camera. For the

analysis of GFP expression, fluorescence images were collected on

a Zeiss Imager Z1 at the exposure times indicated in the figure

legends. Image analysis was performed with ImageJ software

(National Institutes of Health), by tracing the intestine (for strains

expressing daf-16p::gfp::daf-16 and sod-3p::gfp) or the entire worm

(lgg-1p::gfp::lgg-1 expressing strains) and measuring the integrated

density. The analysis of strains expressing lag-2p::gfp was performed

by tracing a defined circular DTC-encompassing region of interest

and measuring the mean density. For the analysis of the GFP

intensity of the seam cells, 1–5 regions of interest encompassing

2360 pixels were drawn around the single seam cell bodies and the

average mean density per worm was calculated. For the analysis of

the germline overproliferation following gld-1 RNAi treatment,

worms were washed off the plates on day 3 of adulthood and

washed three times in M9 media before fixing in methanol

overnight at -20uC. For DAPI staining, methanol was removed by

washing with M9 media, 0.1 mg/ml DAPI in M9 was added, and

samples were incubated for 20 min on a slow nutator. Worms

were washed with M9 and then mounted on agarose pads for

imaging. Statistical analyses were performed by Student’s t-test

and two-way ANOVA using GraphPad Prism (La Jolla, CA). If

RNAi was induced for a second generation, the eggs of the first

generation of animals were transferred to new RNAi plates and

these animals were then scored. All experiments were carried out

at 20uC.

Quantitative RT-PCR
The graphs show the average from three biological replicates

(with three technical replicates). For each experiment, total RNA

was isolated from a mixed population of ,2000 nematodes that
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were flash frozen in liquid nitrogen. RNA was extracted using

Trizol (Life Technologies, Grand Island, NY) and purified using

the Qiagen RNeasy kit (Valencia, CA), including an additional

DNA digest step using the Qiagen Dnase I kit. The M-MuLV

reverse transcriptase and random 9-mer primers (New England

Biolabs, Ipswich, MA) were used for reverse transcription of 1 mg

of RNA per sample [49]. Quantitative PCR was run using SYBR

Green Master Mix in a Roche LC480 LightCycler (Indianapolis,

IN). A standard curve was run for each primer on serial dilutions

of a mixture of different cDNAs, and the observed CT values

were converted to relative values according to the primers’

standard curves. The mRNA levels of target genes were

normalized to those of the housekeeping genes cyclophilin (cyn-

1) and nuclear hormone receptor nhr-23. Primer information is

available upon request.

Lifespan Analysis
Lifespan was measured at 20uC with at least 90 worms in each

experiment [50]. Animals were scored as dead when they failed to

respond to gentle prodding with a platinum wire pick. Censoring

occurred if animals desiccated on the edge of the plate, escaped,

ruptured, or suffered from internal hatching. For statistical analysis

Stata software was used (StataCorp, College Station, TX). P values

were calculated with the log-rank (Mantel-Cox) method.

Thermo-tolerance Assay
The survival of C. elegans at elevated temperatures was measured

after an 8 h incubation at 36uC [51]. The synchronized wild-type

and rrf-1(pk1417) animals were transferred to assay plates on day 1

of adulthood and the thermo-tolerance experiment was performed

on day 3 of adulthood. This experiment was performed at least

3 times with similar results. Student’s t-test was used to calculate

P values.

PCR Assay for eri-6/7 Mutations and Genomic
Rearrangement

Single worms were used in these PCR assays. Worms were lysed

in 10 ml proteinase K buffer (1 mg/ml proteinase K, 1x PCR buffer,

H2O) at 65uC for 1 h and 95uC for 15 min. Taq polymerase was

used to amplify the PCR product for 35 cycles with an annealing

temperature of 58uC. Primer sequences were: P1 (MH439): 59-

GCCAGTGCTTCACGTGTC-39, P2 (MH440): 59-CGAAGCC-

CAGATGTGAGATC-39 P3 (MH479): 59-TAAGTTTTCC-

TAAAATGATTTC-39. This protocol was adapted from [4].

Supporting Information

Figure S1 rrf-1 mutants are capable of processing RNAi
in the germline. (A) The indicated C. elegans strains were raised

on bacteria expressing gld-1 dsRNA, fixed in methanol on day 3 of

adulthood, and subsequently stained with DAPI and imaged by

fluorescence microscopy. All strains display mitotic germ cell

overproliferation except the RNAi-resistant rde-1 strain, which

shows typical mitotic and meiotic zones in the distal end of the

gonad, and eggs in utero in the proximal part of the gonad. This

experiment was repeated twice with 50–100 worms per strain with

similar results. WT: wild-type N2 (A – Hansen lab, B – Tuck lab),

rrf-1(pk1417).4x: rrf-1(pk1417) outcrossed 4 times to WT(A). (B)

The indicated C. elegans strains were raised on bacteria expressing

gfp dsRNA and imaged by DIC and fluorescence microscopy

(overlays shown here) on day 1 of adulthood. rrf-1 mutants carried

the pk1417 allele. The pie-1p::gfp::H2B reporter is expressed in the

germline of C. elegans. GFP expression is completely abolished

upon treatment with gfp RNAi, in both the wild-type and rrf-1

backgrounds. The image shows one arm of the gonad including

oocytes, and was acquired with an exposure time of 100 ms. This

experiment was repeated twice with 30–50 worms per strain and

imaging of ,10 per experiment, with similar results.

(TIF)

Figure S2 rrf-1 mutants are resistant to RNAi in the
muscle. (A) The indicated C. elegans strains were raised on

bacteria expressing gfp dsRNA, and imaged by fluorescence

microscopy on day 1 of adulthood. rrf-1 mutants carried the

pk1417 allele. The body-wall muscle-specific GFP expression is

maintained in the rrf-1 background, but completely abolished in

the wild-type background. The exposure time for the GFP channel

was 200 ms. This experiment was repeated twice with similar

results. (B) The indicated C. elegans strains were raised from

hatching on bacteria expressing muscle-specific unc-112, pat-4, and

unc-22 RNAi and were assayed for paralysis and twitching on day

1 of adulthood. The experiments have been repeated at least two

times with similar results. WT: wild-type N2 (A – Hansen lab, B –

Tuck lab), rrf-1(pk1417).4x: rrf-1(pk1417) outcrossed 4 times to

WT(A). Phenotype abbreviations: Prz: paralyzed; Unc: uncoordi-

nated, sub-class, Twitcher. n.a.: not assayed.

(TIF)

Figure S3 Intestinal pept-1 RNAi induces phenotypes in
rrf-1 mutants. The indicated C. elegans strains were raised on

bacteria expressing pept-1 dsRNA, and imaged by bright-field

microscopy on day 1 of adulthood. WT: wild-type N2 (A – Hansen

lab, B – Tuck lab), rrf-1(pk1417).4x: rrf-1(pk1417) outcrossed 4

times to WT(A). (A) The rrf-1 animals were smaller and have a

clear appearance, whereas the wild-type and hypersensitive RNAi

strain rrf-3 were developmentally delayed. (B) Quantification of

the mid-body diameter of all the strains shows that all strains are

significantly smaller than the unaffected rde-1 strain. This

experiment has been repeated three times with similar results.

Size quantification was determined with 7–10 worms per strain.

Bars show the mean + SEM of one representative experiment.

P,0.0001 was determined with one-way ANOVA, and individual

significance was determined with Bonferroni’s multiple compar-

ison test: **P,0.005 ***P,0.0005.

(TIF)

Figure S4 rrf-1 mutants are partially affected by RNAi
targeting the hypodermis. (A) The indicated C. elegans strains

were raised on bacteria expressing bli-3 (expressed in the

hypodermis), bli-4 (expressed in the hypodermis, intestine, vulva,

and ventral nerve cords) or die-1 (expressed embryonically in the

hypodermis, pharyngeal cells, and muscle/gut primordium precur-

sor cells) RNAi from hatching. Worms were assayed for the

indicated phenotypes on day 1 of adulthood of the first generation

for bli-3 and bli-4 RNAi and the second generation of RNAi

treatment for die-1 RNAi. These assays have been repeated two or

three times with similar results. WT: wild-type N2 (A – Hansen lab,

B – Tuck lab), rrf-1(pk1417).4x: rrf-1(pk1417) outcrossed 4 times to

WT(A). Phenotype abbreviations: Bli: blistered cuticle; Bmd: body

morphology defects. n.a.: not assayed in this experiment, but these

strains showed no effect when ,10 worms were imaged in a

separate experiment (data not shown). {: phenotypes only observed

in 2nd generation of RNAi treatment. (B) The indicated C. elegans

strains were raised on bacteria expressing bli-4 dsRNA, and imaged

by bright-field microscopy on day 1 of adulthood. The gene bli-4 is

expressed in the hypodermis, intestine, vulva, and ventral nerve

cords. All strains except the RNAi-resistant rde-1(ne219) strain were

affected by the RNAi treatment. This experiment has been repeated

twice with similar results. (C) Quantification of the fluorescence

intensity of wild-type and rrf-1(pk1417) animals expressing
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SCMp::gfp raised on control RNAi and gfp RNAi. Data are from

images of one representative experiment (Figure 3B). Because the

transgene expression in the rrf-1 strain background was greatly

increased compared to the wild-type animals, the exposure times

were 5 ms and 100 ms, respectively. Student’s t-test was performed

for statistical analysis: *P,0.05, ***P,0.0005.

(TIF)

Figure S5 rrf-1 mutants are inefficient in processing gfp
RNAi in the somatic gonad. The indicated C. elegans strains

were raised on bacteria expressing gfp dsRNA, and imaged by DIC

and fluorescence microscopy (overlays shown here) on day 1 of

adulthood. rrf-1 mutants carried the pk1417 allele. (A) The

lag-2p::gfp reporter is expressed solely in the distal tip cell (DTC)

of C. elegans. GFP expression in this strain was dramatically

reduced upon treatment with gfp RNAi, whereas the rrf-1 mutant

maintained DTC fluorescence. DTCs are indicated by arrows.

Asterisk denotes the DTC from the opposite gonad arm, which is

out of focus in this image. The exposure time for the GFP channel

was 100 ms. (B) The lgg-1p::gfp::lgg-1 reporter is expressed in the

intestine, pharynx, somatic gonad, and hypodermis. GFP

expression in this strain was dramatically reduced upon treatment

with gfp RNAi. The rrf-1 mutant lost all intestinal GFP

fluorescence but maintained GFP in the spermatheca (SP) and

vulva. The spermatheca is indicated by an arrow. The exposure

time for the GFP channel was 5 ms. (C) Quantification of the

fluorescence intensity of animals expressing lag-2p::gfp raised on

OP50 bacteria from images of one representative experiment.

Student’s t-test was performed for statistical analysis: **P,0.005

(similar results were obtained when empty-vector control bacteria

were used as the control condition, data not shown). The GFP

intensity of the rrf-1 strain is under-represented due to saturation of

the GFP level. This experiment was repeated twice with similar

results. (D) Quantification of the fluorescence intensity of images of

whole animals expressing lgg-1p::gfp::lgg-1 raised on OP50 bacteria

from images of one representative experiment. Student’s t-test was

performed for statistical analysis: n.s., P.0.05 (similar results were

obtained when empty-vector control bacteria were used as the

control condition, data not shown). This experiment was repeated

three times with similar results (See also Figure 2A).

(TIF)

Figure S6 rrf-1 mutants do not show deletions or
genomic rearrangements in the eri-6/eri-7 gene locus.
Image of an ethidium-bromide stained agarose gel after electro-

phoresis of PCR-amplified DNA of the indicated C. elegans strains,

with primer combination P1 + P2 or P1 + P3. In wild-type animals

the genes eri-6 and eri-7 are in the trans position, and eri-6 is flanked

by direct repeats (indicated by blue arrows). Mutation mg441

induces the inversion of the direct repeats, which leads to a

genomic rearrangement of eri-6 into the cis position. The assay was

designed to detect a possible genomic rearrangement as indicated

by the presence of an amplification product with primer pair

P1 + P3 instead of P1 + P2. PCR with P1 + P2 of all strains

resulted in the same size amplification product, indicating that

none of the strains carries a deletion mutation at this gene locus.

WT: wild-type N2 (A – Hansen lab, B – Tuck lab),

rrf-1(pk1417).4x: rrf-1(pk1417) outcrossed 4 times to WT(A).

(TIF)

Figure S7 rrf-1 mutants display no increase in daf-
16 mRNA levels, but increased transgenic expression of
the daf-16 target gene sod-3. (A) The indicated C. elegans

strains were raised on OP50 bacteria and imaged by bright-field

and fluorescence microscopy (overlays shown here) on day 1 of

adulthood. rrf-1(pk1417) mutants have increased GFP expression

as shown in representative images. The exposure time for the GFP

channel was 200 ms. (B) Quantification of the intestinal

fluorescence intensity of animals expressing daf-16p::gfp::daf-16

from images of one representative experiment. Student’s t-test was

performed for statistical analysis: ***P,0.0005. This experiment

has been repeated three times with similar results (see also

Figure 2B). (C) The daf-16 mRNA levels of a mixed population

of wild-type (WT, N2(A)), rrf-1(pk1417).4x (rrf-1(pk1417) mutant

outcrossed four times to N2(A)), and the reporter strains expressing

daf-16p::gfp::daf-16 and rrf-1; daf-16p::gfp::daf-16 were determined.

Bars show the mean + SEM of three independent experiments;

n.s.: P.0.05 (one-way ANOVA). (D) The indicated C. elegans

strains were raised on OP50 bacteria and imaged on day 3 of

adulthood. rrf-1 mutants have increased GFP expression as shown

in representative images. The exposure time for the GFP channel

was 200 ms. (E) Quantification of the intestinal fluorescence

intensity of animals expressing sod-3p::gfp from images of one

representative experiment. Student’s t-test was performed for

statistical analysis: ***P,0.0005. This experiment has been

repeated three times with similar results. (F) Three independent

lifespan experiments comparing wild-type (WT(A): N2 from the

Hansen lab) to rrf-1(pk1417).4x animals (rrf-1(pk1417) mutant

outcrossed 4 times to N2(A)) were performed at 20uC using OP50

bacteria as the food source. MLS: mean lifespan; N: population

number; P-value obtained with Mantel-Cox log-rank test.

(TIF)
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