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Abstract

Lunasin is a peptide derived from the soybean 2S albumin seed protein that has both anticancer and anti-inflammatory
activities. Large-scale animal studies and human clinical trials to determine the efficacy of lunasin in vivo have been
hampered by the cost of synthetic lunasin and the lack of a method for obtaining gram quantities of highly purified lunasin
from plant sources. The goal of this study was to develop a large-scale method to generate highly purified lunasin from
defatted soy flour. A scalable method was developed that utilizes the sequential application of anion-exchange
chromatography, ultrafiltration, and reversed-phase chromatography. This method generates lunasin preparations of .99%
purity with a yield of 442 mg/kg defatted soy flour. Mass spectrometry of the purified lunasin revealed that the peptide is 44
amino acids in length and represents the original published sequence of lunasin with an additional C-terminal asparagine
residue. Histone-binding assays demonstrated that the biological activity of the purified lunasin was similar to that of
synthetic lunasin. This study provides a robust method for purifying commercial-scale quantities of biologically-active
lunasin and clearly identifies the predominant form of lunasin in soy flour. This method will greatly facilitate the
development of lunasin as a potential nutraceutical or therapeutic anticancer agent.
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Introduction

Lunasin has been described as a 43 amino-acid peptide that is

encoded within the soybean GM2S-1 gene and was first identified

as a novel peptide found in soybean seed extracts [1]. Initial

studies of the biological activity of lunasin found that expression

constructs encoding the lunasin peptide sequence resulted in

arrested cell division and the formation of nonseptated filaments in

E. coli and caused mitotic arrest in mammalian cell lines,

apparently by binding to kinetochore regions of the centromere

and blocking microtubule attachment [2]. These initial results

suggested that lunasin could be useful as a cancer therapeutic

provided that lunasin could be specifically delivered to cancer cells.

Given that consumption of soy products has been associated with

the reduced incidence of specific cancers [3,4]; additional studies

were done to examine the cancer chemoprevention activity of

lunasin. In a series of key studies, addition of a synthetic lunasin

peptide to mammalian cells prevented cellular transformation by

chemical carcinogens and the viral oncogenes ras and E1A

[5,6,7,8]. An interesting observation made during these initial

studies was that neither normal immortalized cells, nor stable

cancer cell lines were affected by lunasin peptide exposure. These

results provided the initial indication that lunasin may be used as a

chemoprevention agent. This hypothesis was further supported by

animal studies in which topical application of lunasin significantly

suppressed skin papilloma formation in SENCAR (SENsitivity to

CARcinogenesis) mice treated with a combination of the chemical

carcinogen 7,12-dimethylbenz[a]anthracene and the tumor pro-

moter 12-O-tetradecanoylphorbol-13-acetate [5]. Since the orig-

inal discovery of lunasin in soybean, lunasin has been identified in

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e35409

1,2,4

America, 2 Owensboro Cancer Research Program, Owensboro,

America, 4 Department of Pharmacology and Toxicology,



barley, wheat, Solanum nigrum, and amaranth [7,9,10,11,12,13].

Analysis of different soybean cultivars demonstrated that lunasin

content varied significantly, suggesting that it may be possible to

breed soybean varieties with higher lunasin content [14,15].

More recent studies have demonstrated that lunasin can inhibit

the growth of some cancer cells in culture and in a mouse

xenograft model [16,17,18,19] and that it also has anti-

inflammatory activity [20,21,22]. This contradicts the earlier

studies which were done on a limited number of cell lines and

demonstrate that the initial conclusion that lunasin did not affect

established cancer cells was incorrect. These latter studies suggest

that lunasin may be useful both as a chemoprevention agent and a

cancer therapeutic. Lunasin has been shown to bind specifically to

the deacetylated core histones H3 and H4 and current hypotheses

on lunasin’s mechanism of action suggest that this is critical for the

anticancer effects of lunasin [5,7,9,23,24,25]. de Lumen and

coworkers [6,24,26] have proposed a model for the molecular

basis of the biological effects of lunasin based on the disruption of

normal histone acetylation by histone deacetylase and histone

acetylase. Recent studies have shown that treatment of cancer cells

with lunasin may induce apoptosis through the intrinsic pathway

[16,17,27] and that both the anti-inflammatory and anticancer

effects are mediated by suppression of the NF-kB pathway [20,28].

It is not known if these effects are linked to inhibition of HAT and

disruption of histone acetylation. Recent gene expression studies

indicate that lunasin can affect a number of signaling pathways in

different cell types, thus, some of the observed biological effects of

lunasin may be independent of histone acetylation [23,29].

Although the potential anticancer effect of lunasin has been

known for over a decade, little progress has been made to test in

vivo efficacy of purified lunasin in animal or human clinical studies.

One major limitation has been the lack of availability of the gram-

kilogram quantities of highly purified lunasin required to conduct

such studies. To address this need, we have developed a method

for purifying lunasin from defatted soybean flour (white flake) that

yields highly purified lunasin and can be easily scaled to produce

kilogram quantities of peptide. The purified lunasin was

biologically active as measured by histone binding assays and

was found to have the same, if not higher, activity compared to

synthetic lunasin. Structural analysis of the purified peptide

revealed that the major form of lunasin present in soybean white

flake is 44 amino acids in length and contains an additional C-

terminal asparagine relative to previously published descriptions of

lunasin.

Results

Establishment of extraction conditions
Previous reports describing the partial purification of lunasin

utilized extraction of soy flour with water and phosphate buffered

saline (PBS) [15,30,31]; however, a systematic analysis of

extraction conditions was not described. We therefore tested the

extraction efficiency of water and buffers using various extraction

times, pH levels, and ratios of extraction solution volume to

amount of white flake. These studies demonstrated that lunasin is

readily extracted by both water and buffer solutions over a range

of extraction conditions (Figure S1). Water and buffer solutions

were found to have very similar extraction efficiencies and an

extraction time as short as 30 minutes gave maximum yield of

lunasin. Varying the ratio of extraction solution volume to amount

of white flake over a range of 5:1 to 12.5:1 (buffer:white flake) also

did not have a significant effect on the amount of lunasin

recovered. However, the lower buffer to white flake ratios gave

more viscous extracts that were more difficult to work with. The

only significant parameter observed was pH; lower pH buffers

extracted slightly lower amounts of lunasin. Based on these results,

and the fact that the subsequent anion-exchange chromatography

step requires the sample to be in PBS, our standard extraction

method utilized a modified PBS buffer (pH 7.4) at a 12.5:1 buffer

to white flake ratio with an extraction time of sixty minutes.

Development of lunasin purification method
Previously published results [30,31] and our own preliminary

studies indicated that anion-exchange chromatography was an

effective method for obtaining partially purified lunasin. Thus, we

optimized conditions for fractionation of lunasin using Q-

Sepharose FF chromatography. Initial experiments where lunasin

was eluted from the Q-Sepharose FF column using a linear

gradient of NaCl (Figure 1A) demonstrated that lunasin eluted

between 0.29 and 0.48 M NaCl. To simplify the large-scale

purification, we utilized these results to develop a step-elution

method for fractionating lunasin by Q-Sepharose FF chromatog-

raphy (Fig. 1B). This study demonstrated that a step elution using

0.35 M NaCl effectively eluted lunasin from the column and

yielded a partially purified preparation enriched for lunasin

(Fig. 1C, Fig. 2A and 2B).

During our analysis of the Q-Sepharose FF purified lunasin

fractions by sodium dodecyl sulfate polyacrylamide gel electro-

phoresis (SDS-PAGE), we observed that the ,5 kDa lunasin

peptide always co-purified with a ,9 kDa protein. Analysis of the

Q-Sepharose FF purified lunasin by SDS-PAGE under standard

reducing conditions or in the absence of beta-mercaptoethanol

(BME) in conjunction with immunoblotting revealed that the

majority of lunasin present in the partially purified preparation

was in a ,14 kDa protein complex (Figure 3). Analyses of clarified

extracts confirmed that approximately 80% of the extractable

lunasin is in this ,14 kDa complex (Figure 4). This critical

observation revealed that to obtain the maximum amount of

lunasin from white flake, and presumably other plant-derived

sources, it is necessary to include a reducing step to release lunasin

from the ,14 kDa complex.

To test the ability of various reducing agents to disrupt the

lunasin-containing complex, we generated a highly purified

lunasin-containing complex using Q-Sepharose FF chromatogra-

phy followed by ultrafiltration using a 50 kDa molecular weight

cut-off (MWCO) membrane. The purified complex was treated

with varying concentrations of BME, tris(2-carboxyethyl)pho-

sphine (TCEP) and dithiothreitol (DTT), then analyzing the

resulting protein profiles by SDS-PAGE (Figure S2). All three

reducing agents were effective in releasing lunasin from the

,14 kDa complex. Based on its suitability for use in the large-scale

production of lunasin, 2 mM DTT was selected to reduce the Q-

Sepharose FF purified lunasin prior to further purification.

Since many of the contaminating proteins still present in the Q-

Sepharose FF purified lunasin preparation were .20 kDa,

ultrafiltration using a 30 kDa MWCO membrane was performed.

In this application of ultrafiltration, lunasin accumulates in the

permeate. This ultrafiltration step removed most of the contam-

inating proteins except for the ,9 kDa protein that is a

component of the ,14 kDa lunasin-containing complex. To

further purify lunasin, we tested the ability of reversed-phase

chromatography to remove the remaining contaminating proteins

(Figure 5A). This polishing step was found to be very effective and

resulted in a lunasin preparation that was .99% pure as assessed

by analysis of Coomassie-stained SDS-PAGE gels (Figure 5B).

Immunoblot analysis using a lunasin-specific antibody provided an

initial confirmation that the purified protein was indeed lunasin

(Figure 5C).

Scalable Purification of Lunasin Peptide
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Figure 1. Optimization of anion-exchange chromatography method. (A) Elution of lunasin using a linear NaCl gradient. White flake was
mixed with extraction buffer (75.5 mM sodium phosphate, 68.4 mM NaCl, 10 mM sodium metabisulfite, 20 mM ascorbic acid, pH 7.4) at a 12.5:1
buffer to biomass ratio and mixed for one hour at 4uC. The mixture was filtered through four layers of cheesecloth and one layer of miracloth and
then centrifuged at 10,0006g for 10 minutes at 4uC. The supernatant was collected, filtered through a 0.2 mm filter, and the clarified extract stored at
4uC until used. For chromatography, a 5 mL Q-Fast Flow HiTrap pre-packed anion-exchange column was equilibrated with ten CV of Buffer A
(75.5 mM Sodium Phosphate, 68.4 mM NaCl, pH 7.4) prior to loading 100 mL of soy clarified extract. The column was washed with five CV of Buffer A

Scalable Purification of Lunasin Peptide
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Mass spectrometry of purified lunasin and the lunasin
complex

To confirm the identity of our purified ,5 kDa protein as

lunasin and to attempt to determine the identity of the ,9 kDa

protein that is present in the lunasin complex, we performed

electrospray ionization mass spectrometry (ESI-MS) on the

purified lunasin and the lunasin complex. The monoisotopic mass

of the most abundant peptide in the purified lunasin sample was

found to be 5139.25 Da, which is 114.02 Da higher than the

expected monoisotopic mass of 5025.23 Da for the 43 amino-acid

form of lunasin described in the literature (Figure 6A). The mass

difference suggests that the predominant form of our purified

lunasin contains 44 amino acids and that it contains an additional

asparagine residue. A very weak signal was observed with a

monoisotopic mass 5025.23 Da suggesting that a minor amount of

the 43 amino-acid form of lunasin may be present. ESI-MS

analysis of the purified lunasin after treatment with DTT or DTT

in combination with iodoacetamide (IAA) gave monoisotopic

masses of 5139.25 Da and 5253.29 Da, respectively, and indicate

to remove unbound proteins. A 25 CV linear salt gradient beginning at 68.4 mM and ending at 1000 mM NaCl at a flow rate of 5 mL/min was used to
elute proteins from the column. Five mL fractions were collected during the elution. Fractions were pooled based on the A280 profile and analyzed for
lunasin by ELISA and SDS-PAGE. The largest amount of lunasin was detected in fractions 7–11 which corresponds to NaCl concentrations of between
290 mM and 480 mM. (B) Development of a step-gradient elution method. Anion-exchange chromatography was performed using the same 5 mL Q-
Fast Flow HiTrap column used in (A). After the column was stripped and re-equilibrated in Buffer A, 100 mL of clarified extract was applied, followed
by eight CV washes with Buffer A. A step gradient consisting of six steps (10, 20, 30, 40, 50, and 100% Buffer B) of five CV each at of flow rate of 5 mL/
min was used to elute lunasin. Each step fraction was analyzed for the presence of lunasin by ELISA and SDS-PAGE. Lunasin was detected in both the
20% and 30% B elution fractions which correspond to NaCl concentrations of between 255 mM and 348 mM. (C) Optimized step-gradient
purification of lunasin using anion-exchange chromatography. A final step gradient chromatography run was performed as described in (B), except
that a ten CV wash was done prior to the step elution. Two elution steps of 30% (5 CV) and 100% Buffer B (10 CV) which corresponded to NaCl
concentrations of 348 mM and 1000 mM, respectively, were done. The presence of lunasin in each sample was determined by ELISA and SDS-PAGE.
Lunasin was detected only within the 30% B elution fraction. Chromatograms show the A280 (solid line ______), percent Buffer B (_ _ _ _ _), and the
percent maximum lunasin content as determined by ELISA (-------).
doi:10.1371/journal.pone.0035409.g001

Figure 2. SDS-PAGE and immunoblot analysis of anion-
exchanged purified lunasin. Aliquots of samples corresponding to
the bench-scale anion-exchange chromatography method where
lunasin was eluted using a step gradient (Figure 1C) were subjected
to SDS-PAGE and immunoblot analysis. (A) SDS-PAGE of the clarified
extract, column flow through (Q flow through), and the 30% Buffer B
elution (Q 30% B Fraction). Clarified extract, Q flow through, and Q-
30%B fraction were prepared at dilutions of 1:8, 1:8, and 1:10,
respectively, and electrophoresed using 15% Tris-glycine gels. Molec-
ular weight standards (MW Std) are shown in the first lane. (B)
Immunoblot analysis of the clarified extract, Q flow through, and the Q
30% B Fraction. Proteins were separated by SDS-PAGE as described in
(A), transferred to a PVDF membrane, and probed with a lunasin-
specific mouse monoclonal antibody. For SDS-PAGE, clarified extract, Q
flow through, and Q-30% B fraction were prepared at dilutions of 1:20,
1:20, and 1:40, respectively. Molecular weight standards (MW Std) are
shown in the first lane.
doi:10.1371/journal.pone.0035409.g002

Figure 3. Detection of lunasin within a 14 kDa protein complex
using SDS-PAGE and immunoblot analyses. Coomassie-stained
SDS-PAGE gel (A), and corresponding immunoblot (B) of purified
lunasin-containing complex under reducing and non-reducing condi-
tions. The first two lanes represent lunasin (5.1 kDa) and lunasin-
containing complex (14.1 kDa) under standard reducing conditions
while the 4th and 5th lanes represent equivalent samples under non-
reducing conditions (without BME in the sample buffer). Lanes with
lunasin contain 300 ng of synthetic lunasin as a reference, while lanes
with complex contain 3 mg of lunasin-containing complex. Identifica-
tion of the lunasin-containing complex by immunoblot analysis was
accomplished using a 1:5000 dilution of rabbit polyclonal anti-lunasin
as the primary antibody and a 1:100,000 dilution of HRP-conjugated
goat anti-rabbit as the secondary antibody. Molecular weight standards
(MW Std) are shown in the 3rd lane.
doi:10.1371/journal.pone.0035409.g003

Scalable Purification of Lunasin Peptide
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that the purified lunasin does not contain any disulfide bonds and

contains two cysteine residues as expected. To further confirm that

the purified lunasin is a 44 amino acid peptide, we digested the

purified lunasin with trypsin and acquired LC-MS/MS spectra of

the resulting tryptic peptides. Peptides identified in this analysis are

summarized in Table 1. The identified peptides covered 75% of

the purified lunasin and included a peptide with an m/z of

1225.32, which is consistent with the sequence

GDDDDDDDDDN. A peptide with an m/z of 1111.28

corresponding to the sequence GDDDDDDDDD was not

detected. Analysis of the MS/MS spectrum of the m/z 1225.32

peptide by (Figure 6B) confirmed that this peptide has the

sequence GDDDDDDDDDN and thus, that the predominant

form of lunasin isolated from white flake has the sequence

SKWQHQQDSCRKQLQGVNLTPCEKHIMEKIQGRGDD-

DDDDDDDN.

ESI-MS analysis of the purified ,14 kDa lunasin complex

revealed that the most abundant isotopic mass of the complex was

14109.3 Da (Figure 7A). Upon reduction of the complex with

DTT, the most abundant isotopic masses corresponding to the two

subunits of the complex were 5141.3 Da and 8975.1 Da

Figure 7A). The sum of the average molecular weights of the

subunits, 14116.4 Da, is 7 Da higher than lunasin complex

(14109.3 Da), indicating that there are four disulfide bonds in

lunasin complex. Although reduction of the four disulfide bonds

should have caused an 8 Da mass shift, the observed shift of 7 Da

is likely due to the change of isotope mass profiles with the size of

the peptides. A more precise method for calculating the mass shift

due to reduction would be to use the monoisotopic masses.

However, the signals for the monoisotopic masses of the lunasin

complex and 8975.1 Da subunit were too weak to be detected.

ESI-MS analysis of the lunasin complex after reduction with DTT

and alkylation with IAA demonstrated that the 5141.3 Da and

8975.1 Da complex subunits contain two and six cysteine residues,

respectively (Figure 7A). These results also indicated that all

cysteine residues in the lunasin complex are involved in disulfide

bonds and that there are 2 disulfide bonds between lunasin and the

8975.1 Da subunit.

The mass of the 8975.1 Da subunit of the lunasin complex

matched very well with the expected mass of the soybean 2S

albumin large subunit (GenBank AAB71140.1). Analysis of

peptides in a tryptic digest of the 8975.1 Da subunit by LC/

MS/MS confirmed that this subunit does correspond to the 2S

albumin large subunit (Table 1). Based on these results, it is clear

that the lunasin complex represents the processed form of the pre-

propeptide encoded by the soybean 2S albumin gene (GenBank:

AF005030.1). The complete sequence of the 2S pre-propeptide

and the relative positions of lunasin and the large subunit are

shown in Figure 7B.

Pilot-scale purification of lunasin
To test the scalability of our purification scheme and determine

the amount of lunasin that can be obtained with these methods, we

utilized the pilot-scale facility available at Kentucky BioProcessing

(Owensboro, KY, USA). For this study we began with 20.8 kg of

soybean white flake and followed the process outlined in Figure 8A.

The separations obtained using larger volume Q-Sepharose FF

and reversed-phase columns were very similar to that observed

during our bench-scale purifications (Figure 8B and 8C). SDS-

PAGE analysis of the final lunasin product indicated that the

lunasin we obtained is .99% pure (Figure 8D). Based on

quantification of the protein band intensities obtained from

Coomassie-stained SDS-PAGE gels of protein samples taken at

each step of the purification process, we obtained an overall yield

of lunasin from the initial extract of 20%, with a total of 9.2 g of

lunasin recovered. This successful pilot-scale purification demon-

strates that our purification method is scalable and that

commercial-scale production of kilogram quantities of highly

purified lunasin is possible.

Figure 4. Quantitation of lunasin and lunasin complex in
clarified extracts. White flake (120 g) was extracted with 1.5 L of
75.5 mM sodium phosphate/150 mM NaCl/20 mM ascorbic acid/
10 mM sodium metabisulfite, pH 7.4 for one hour. A clarified extract
was produced by treating the initial extract with Celpure P100 and
filtration using one micron M-503 filter pads. (A) SDS-PAGE analysis of
reduced and non-reduced clarified extract. The clarified extract was
diluted 1:10 and analyzed by SDS-PAGE using a 15% Tris-glycine gel
under standard reducing and non-reducing (without BME in the sample
buffer) conditions. Molecular weight standards (MW Std) are shown in
the first lane. The arrow indicates a ,5 kDa band that corresponds to
lunasin. The lack of a clear lunasin band in the sample analyzed under
non-reducing conditions indicates that most of the lunasin present in
the clarified extract is in protein complexes stabilized by disulfide
bridges. (B) Immunoblot analysis of reduced and non-reduced clarified
extract. Clarified extract was diluted 1:10 and subjected to SDS-PAGE
along with a series of synthetic lunasin standards as described in (A).
The separated proteins were transferred to a PVDF membrane and
probed with a lunasin-specific mouse monoclonal antibody diluted
1:100,000. The amount of lunasin present was determined by image
analysis using the synthetic lunasin band intensities to generate a
standard curve. This analysis demonstrated that ,20% of the
extractable lunasin is present in the ,5 kDa form.
doi:10.1371/journal.pone.0035409.g004
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Biological activity of purified lunasin
Previous studies have demonstrated that a key component of the

biological activity of lunasin is its ability to bind to the core

histones H3 and H4 and modulate histone acetylation [23,24]. To

assess the potential biological activity of our purified lunasin, we

performed a series of histone-binding experiments using a

modified enzyme-linked immunosorbent assay (ELISA). For these

experiments, synthetic lunasin and lunasin purified from white

flake were compared for their ability to bind recombinant human

core histones H3 and H4. These assays demonstrated that our

purified lunasin binds to both histones H3 and H4 at levels

equivalent to, and in some instances better than, synthetic lunasin

(Figure 9). Both the synthetic and purified white flake-derived

lunasins exhibited higher binding to histone H4 when compared to

H3. Purified lunasin exhibited higher binding to histone H4

compared to that of the synthetic lunasin. These results

demonstrate our purification method produces biologically active

lunasin that is functionally equivalent to synthetic lunasin. These

results also suggest that the C-terminal asparagine residue present

in the purified soy-derived lunasin does not significantly affect

lunasin’s biological activity.

Discussion

The recent advances in studies of the biological activities of

lunasin and the potential use of lunasin as an anti-inflammatory or

anticancer agent provide a strong rational for developing a robust

and scalable purification method for lunasin that would generate

large quantities of highly purified peptide suitable for large-scale

animal and human trials. Although partially purified lunasin

preparations may be adequate for oral administration as a

nutraceutical, highly purified lunasin will be required to develop

therapeutics. Previous studies have described methods that

produce lunasin preparations that are ,80–85% pure [20,30].

These published methods utilize DEAE anion-exchange chroma-

tography followed by size-exclusion chromatography using either

Superdex 75 [30] or a 7 kDa resin [20]. The 75 kDa size-

exclusion step did not provide good resolution between the protein

components in the anion-exchange purified preparation, albeit,

specific fractions were identified that appeared to be highly

enriched for the ,5 kDa lunasin peptide. This method yielded

lunasin at a purity of ,80%. Improved resolution was obtained

with the 7 kDa resin which was associated with a modest increase

in purity to 85%, albeit, the authors do not show a Coomassie-

stained SDS-PAGE gel and indicate that purity was determined

using Western blot analysis via an undescribed method. Although

these purification schemes represent a good start, higher purity

would be preferable to ensure that all the biological effects

attributed to lunasin in these preparations are not related to

contaminants. Moreover, size-exclusion chromatography is a more

difficult method to scale since good separation requires that small

sample volumes relative to the column volume must be applied.

We have developed an alternative method for purifying lunasin

that utilizes an initial anion-exchange step followed by ultrafiltra-

tion using 30 kDa MWCO membranes and reversed-phase

Figure 5. Reversed-phase chromatography (RPC) method
development. Bench-scale RPC was performed using a 1.668.0 cm
Source15RPC column that was sanitized with 1 N NaOH and
equilibrated with ten CV of Buffer A (75.5 mM sodium phosphate/
68.4 mM NaCl, pH 7.4) prior to sample load. The ultrafiltration (UF)
permeate was brought to a final concentration of 1 M ammonium
sulfate and then applied to the column followed by a five CV wash with
Buffer A. Bound proteins were eluted using a five-step gradient
consisting of 20%, 40%, 60%, 80%, and 100% Buffer B (64.2 mM sodium
phosphate/58 mM NaCl/15% n-propanol (v/v)). Each gradient step was
approximately five CV except the 100% B step which was ten CV. The
column was then stripped using 65% n-propanol. (A) RPC of the UF
permeate. Letters with arrows represent beginning of (a) sample load,
(b) column wash, and (c) column strip. The presence of lunasin in each
sample was determined by ELISA and SDS-PAGE. Lunasin was detected
primarily within the 100% B elution fraction. Chromatogram shows the
A280 (solid line ______), the A215 (.__. __.), percent Buffer B (_ _ _ _ _), and the
percent maximum lunasin content as determined by ELISA (-------). (B)
Coomassie-stained SDS-PAGE gel of RPC fractions. SDS-PAGE using a
15% Tris-glycine gel was performed on 1:10 dilution and 1:4 dilutions of
the UF permeate and column strip, respectively, and undiluted samples
from the column flow through and Buffer B step gradient fractions.
Molecular weight standards (MW Std) are shown in the first lane. The
majority of lunasin (.95%) was detected in the 100% B eluate, with
minor amounts detected in the 80% B eluate and in the column strip.
The major contaminating ,9 kDa protein was detected exclusively in

the column strip. (C) Immunoblot analysis of the UF permeate, column
flow through, step gradient fractions, and column strip. Proteins
separated by SDS-PAGE were transferred to a PVDF membrane and
probed with a lunasin-specific mouse monoclonal antibody. For SDS-
PAGE, dilutions of the UF permeate (1:10), 80% B eluate (1:4), 100% B
eluate (1:4), and column strip (1:4) were made. All other samples were
undiluted. The position of the 4 kDa and 6 kDa molecular weight
standards (MW Std) are shown in the first lane.
doi:10.1371/journal.pone.0035409.g005

Scalable Purification of Lunasin Peptide

PLoS ONE | www.plosone.org 6 April 2012 | Volume 7 | Issue 4 | e35409



Figure 6. Mass spectrometry of the purified lunasin. (A, top panel) Deconvoluted MS Spectra of purified lunasin. The monoisotopic mass of the
purified lunasin was found to be 5139.25 Da, which is 114.02 Da higher than the expected monoisotopic mass (5025.23 Da) for the 43 amino-acid
form of lunasin described in the literature. The mass difference suggests that the predominant form of our purified lunasin contains 44 amino acids
and that it contains an additional asparagine residue. (A, middle panel) Deconvoluted spectrum of lunasin reduced with DTT. Reduction with DTT did
not cause a mass shift, indicating there is no disulfide bond present in the purified lunasin. (A, bottom panel) Deconvoluted spectrum of lunasin
complex treated with DTT and IAA. The monoisotopic mass of lunasin shifted to 5253.29 Da after alkylation with IAA, which is 114.04 Da higher than
unalkylated lunasin. This mass shift confirmed that lunasin has two free cysteine residues as expected. (B) MS/MS spectrum of C-terminal peptide of
lunasin. Calculated b and Y ions for the peptide GDDDDDDDDDN are shown in the table inset. The matched b (red) and Y (blue) ions detected match
very well the expected fragment ion values for this peptide. Signals corresponding to the loss of one (green) or more H2O molecules, which are
expected in MS/MS spectra of peptides with multiple acidic residues, are also evident in the spectrum. These [b – H2O] signals are consistent with the
presence of the GDDDDDDDDDN peptide. This analysis confirmed that the residue at the C-terminus of lunasin purified from soybean is asparagine
rather than aspartic acid.
doi:10.1371/journal.pone.0035409.g006
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chromatography that represents a significant improvement over

existing methods. This method yields highly purified lunasin

(.99%) that is fully biologically active as assessed by histone

binding. During the development of this method, we determined

that the majority of the ,5 kDa lunasin peptide in the initial white

flake extract was found in a ,14 kDa protein complex. This

observation suggests that de Mejia and colleagues [20,30] may

have been purifying only the ,20% of free lunasin present in

white flake extracts that is not present in the ,14 kDa protein

complex. By adding a reduction step to the purification method to

release lunasin from the ,14 kDa protein complex, we signifi-

cantly improved the yield of lunasin peptide.

We investigated the precise nature of the lunasin peptide

obtained using our purification method by conducting an

extensive MS analysis of the purified lunasin and the purified

,14 kDa protein complex. Characterization of the purified

lunasin by ESI-MS revealed that the major peptide in this

preparation has a monoisotopic mass of 5139.25. This corresponds

to the sequence SKWQHQQDSCRKQLQGVNLTPCEKHI-

MEKIQGRGDDDDDDDDDN and indicates that soy-derived

lunasin has an asparagine residue at the C-terminus. LC-MS/MS

analysis of tryptic peptides derived from purified lunasin

confirmed the presence of the C-terminal asparagine. This is

consistent with a previous analysis of soybean 2S albumin encoded

by the AL3 gene [32]. It is not clear why two other previous

studies did not detect the presence of the C-terminal asparagine

when partially purified lunasin from soybean was analyzed using

matrix-assisted laser desorption/ionization-time of flight (MALDI-

TOF) analysis [20,30]. The linear TOF method used by these

researchers is less precise than the methods we used, and may not

detect a 0.1 Da difference in peptide mass in some cases.

However, in both of these publications the reported mass for

purified lunasin was 5.1 kDa, which is consistent with our analysis.

Moreover, Dia et al. [30] also presented data for synthetic lunasin

with the sequence SKWQHQQDSCRKQLQGVNLTPCEKHI-

MEKIQGRGDDDDDDDDD and reported a mass of 5.0 kDa.

Taken together, these previous reports are consistent with our

results and indicate that the lunasin peptide from soybean contains

44 amino acids and has a C-terminal asparagine immediately

following the aspartic acid tail. The presence of the C-terminal

asparagine is consistent with the published cDNA sequence

(GenBank: AF005030.1).

MS analysis of the purified ,14 kDa complex and the gel-

purified ,9 kDa protein isolated from the complex after reduction

with DTT demonstrated that the complex corresponds to the

processed GM2S albumin protein. This is consistent with reports

that lunasin copurifies with the large subunit of the GM2S protein

[20,30,32]. Analysis of the complex after reduction and alkylation

with IAA demonstrated that the complex contains four disulfide

bonds, and that two of these disulfide bonds are between the two

cysteines in lunasin and two of the six cysteines present in the

GM2S large subunit. Two additional disulfide bonds were found

to be present between the four remaining cysteines present in the

GM2S large subunit. Taken together, these results support the

conclusion that the soybean GM2S albumin protein is expressed

and processed in a manner similar to that of other plant 2S

albumins [32,33,34,35].

To test the scalability of our lunasin purification method, we

conducted a pilot scale production trial at Kentucky BioProces-

sing. This trial started with 20.8 kg of soybean white flake and

utilized an up-scaled version of our optimized method. A total of

9.2 g of lunasin at a purity of .99% was recovered, representing a

20% yield from the initial amount of lunasin present in the white

flake extract. This yield was very similar to the yields we obtained

performing the purification method at the bench scale. Given the

fact that the pilot facility at Kentucky BioProcessing replicates

efficiently to their commercial-scale facility, it will be possible to

further upscale this method to produce kilogram quantities of

highly purified lunasin for use in the develop of new lunasin-based

therapeutics for the treatment of cancer and inflammatory

diseases.

Materials and Methods

Reagents
All chemicals were ACS grade or better and were purchased

from Sigma-Aldrich (St. Louis, MO, USA) except sodium

phosphate (dibasic anhydrous and monobasic monohydrate) were

from EMD Chemicals (Gibbstown, NJ, USA) and sodium

chloride, Tris-base, glycine, and bovine serum albumin (BSA)

were from Fisher Scientific (Pittsburgh, PA, USA). Defatted soy

flour (white flake) was prepared and provided by Owensboro

Grain (Owensboro, KY, USA). Briefly, de-hulled soybeans were

processed in a flaking roll and then further processed by conveying

the flake through an expander to form a collet. The collet was

transferred to a solvent extractor where the oil was removed by

extensive washing with hexane. The defatted flake was then air-

dried under fans at ambient temperature to remove the hexane.

The white flake was stored at ambient temperature until used.

Synthetic lunasin peptide along with a lunasin-specific mouse

monoclonal lunasin antibody were from GenScript Corporation

(Piscataway, NJ, USA). The lunasin-specific mouse monoclonal

antibody was raised against the synthetic peptide CEKHIME-

KIQGRGDD (98.7% pure) conjugated to keyhole limpet

hemocyanin. Most of our studies were done using the lunasin-

specific monoclonal antibody that was raised using the peptide

CEKHIMEKIQGRGDD as the antigen. Initial studies were

performed using a lunasin-specific rabbit polyclonal primary

Table 1. Peptides identified from lunasin complex subunits
by LC-MS/MS analysis.

Subunit Peptide MH+
DM
(ppm) z P

5.14 kDa QLQGVNLTPCEK 1386.7046 26.12 2 9.67E-09

QLQGVNLTPCEK 1386.7046 27.07 3 6.97E-04

KQLQGVNLTPCEK 1514.7995 27.45 2 2.73E-08

KQLQGVNLTPCEK 1514.7995 25.42 3 1.63E-03

WQHQQDSCR 1244.5225 27.37 2 4.71E-08

GDDDDDDDDDN 1225.3247 20.01 1 5.15E-03

8.98 kDa ELINLATMCR 1220.6126 26.17 2 6.36E-08

ELINLATM*CR 1236.6075 26.54 2 1.31E-07

IMENQSEELEEK 1478.6679 24.47 2 1.85E-07

IM*ENQSEELEEK 1494.6628 24.29 2 1.25E-05

CCTEMSELR 1185.4697 25.80 2 4.21E-07

CCTEM*SELR 1201.4646 26.67 2 4.70E-05

FGPMIQCDLSSDD 1484.6032 26.26 2 2.10E-06

FGPM*IQCDLSSDD 1500.5981 25.53 2 5.27E-06

M* indicates oxidized methionine; MH+ is the monoisotopic mass calculated
from peptide sequence; DM is the error of detected MH+ in ppm; z is the charge
state of the ion from which MS/MS spectrum was generated; and P is the
probability that MS/MS spectrum matched the sequence randomly. Note that
alkylation of cysteine by IAA increases the mass of cysteine by 57 Da.
doi:10.1371/journal.pone.0035409.t001
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antibody and synthetic lunasin provided by Dr. Ben O. de Lumen

(University of California-Berkeley, USA). Horse-radish peroxidase

(HRP)-conjugated sheep anti-mouse and HRP-conjugated goat

anti-rabbit antibodies were purchased from Jackson ImmunoR-

esearch (West Grove, PA, USA). Human, recombinant histones

were purchased from New England BioLabs (Ipswich, MA, USA).

All chromatography columns and resins were obtained from GE

Healthcare (Piscataway, NJ, USA). Ultrapure water was by

generated using a Milli-Q Synthesis system (Millipore, Billerica,

MA, USA).

Protein and SDS-PAGE analyses
Protein concentrations were determined using a bicinchoninic

acid-based assay (BCA Protein Assay Reagent, Thermo Scientific,

Rockford, IL, USA). BSA was used as a standard for crude and

partially purified lunasin samples whereas synthetic lunasin was

used as a standard for the highly purified lunasin samples.

SDS-PAGE was performed using 15% PAGEr Gold Tris-

Glycine PreCast gels (Lonza, Rockland, ME, USA) according to

the manufacturer’s recommendations. Molecular weight standards

correspond to SeeBlueH Plus2pre-stained proteins (Invitrogen/Life

Technologies, Grand Island, NY, USA). Gels were fixed in 40%

ethanol/10% acetic acid, stained with Coomassie Brilliant Blue

250 (Fluka/Sigma-Aldrich, St. Louis, MO, USA), and destained

with a 7% isopropanol/5% acetic acid solution. Gels were imaged

using a Kodak Image Station 4000R Pro (Carestream, Rochester,

NY, USA) or an ImageQuant-RT ECL (GE Healthcare, Piscat-

away, NJ, USA) and individual protein bands quantified using

Carestream Molecular Imaging Software version 5.0.

Figure 7. Mass spectrometry of the purified lunasin-containing complex. (A, top panel) Deconvoluted spectrum of purified lunasin
complex. The most abundant isotopic mass in the spectrum is at 14109.3 Da. The mass signal adjacent to lunasin complex (14207.3 Da) is the adduct
of lunasin complex with phosphoric acid (plus 98 Da). (A, middle panel) Deconvoluted spectrum of reduced lunasin complex. The most abundant
isotopic masses shown in the spectrum are lunasin (5141.3 Da) and soybean albumin long chain (8975.1 Da). (A, bottom panel) Deconvoluted
spectrum of lunasin complex treated with DTT and IAA. The most abundant masses shown in the spectrum are lunasin (5256.3 Da) and soybean
albumin long chain (9317.2 Da). The monoisotopic masses are 5139.28 Da and 5253.33 Da for lunasin and lunasin treated with DTT and IAA
respectively. The monoisotopic masses of lunasin complex and soybean albumin long chain were too low to be detected. (B) Sequence of 2S albumin
preproprotein. Sequence in red is corresponds to our purified lunasin and its monoisotopic and average molecular weights are 5139.27 and
5142.43 Da, respectively. Sequence in blue corresponds to soybean albumin long chain and its monoisotopic and average molecular weights are
8969.05 and 8975.17 Da, respectively.
doi:10.1371/journal.pone.0035409.g007
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Immunoblot analysis and enzyme-linked immunosorbent
assays (ELISA)

SDS-PAGE gels were run as previously described to perform

immunoblot analysis. Proteins were transferred to Immobilon-P

0.45 um PVDF membranes (Millipore, Billerica, MA, USA) at

20 V for 90 min at 4uC. Five percent (w/v) instant non-fat dry

milk in Tris-Tween buffered saline (TTBS; 16.1 mM Tris-HCl/

3.88 mM Tris-base/150 mM NaCl/0.5% Tween 20, pH 7.5) was

used as a blocking reagent. Two washes of TTBS were performed

prior to incubation with primary antibody for 90 minutes. The

lunasin mouse monoclonal primary antibody was used at a

1:75,000 or 1:100,000 dilution into primary antibody solution

(TTBS/0.5% BSA/0.04% NaN3). The lunasin polyclonal rabbit

primary antibody was used at a 1:5000 dilution. Three washes

with TTBS were performed prior to incubation with the

appropriate secondary antibody for 60 minutes. A 1:100,000

dilution of the HRP-conjugated sheep anti-mouse secondary

antibody or HRP-conjugated goat anti-rabbit secondary antibody

in 1% (w/v) instant non-fat dry milk in TTBS was used. Three

washes with TTBS were performed before incubating with the

chemiluminescent detection solution (ECL AdvanceTM Western

Blotting Detection Kit, GE Healthcare, Piscataway, NJ, USA) and

imaging using a Kodak Image Station 4000R Pro and Carestream

Molecular Imaging Software version 5.0 (Carestream, Rochester,

NY, USA). The image shown in Figure 2B was generated by first

imaging the filter using white light to detect the pre-stained

molecular weight standards, followed by imaging the filter after

addition of the ECL AdvanceTM reagent and using the imaging

software to merge the images to generate a composite image.

A direct ELISA was performed for quantitative measurements

of lunasin concentration in partially-purified preparations. Sam-

ples were diluted into coating buffer (15 mM Na2CO3/35 mM

NaHCO3/3 mM NaN3, pH 9.6), 50 mL aliquots of sample were

added to wells of a 96-well plate (Nunc MaxiSorpTM, Nalge Nunc

International, Rochester, NY), and the plates were incubated for

60 minutes at 37uC. Wells were washed two times with PBST

(137 mM NaCl, 2.7 mM KCl, 10.1 mM Na2HPO4, 1.8 mM

KH2PO4, 0.05% Tween 20, pH 7.4) and then blocked with

150 mL per well of PBSTM 5% (PBST containing 5% w/v instant

non-fat dry milk) for 60 minutes at room temperature or overnight

at 4uC. The wells were then washed two times with ultrapure

water. Lunasin primary antibody was prepared in PBSTM 1%

Figure 8. Pilot scale lunasin purification. A) Flow diagram of the optimized lunasin purification method. (B) Coomassie-stained SDS-PAGE gel of
protein samples representing each stage of the pilot-scale purification. SDS-PAGE using a 15% Tris-glycine gel and diluted samples of clarified extract
(1:20), Q anion-exchange fraction (1:40), UF permeate (1:20), and RPC fraction (1:40). Synthetic lunasin (500 ng) was loaded as a positive control.
Molecular weight standards (M) are shown in the first lane. (C) Immunoblot analysis of protein samples representing each stage of pilot-scale
purification. Proteins separated by SDS-PAGE as described for (B) were transferred to a PVDF membrane and probed with a lunasin-specific mouse
monoclonal antibody. Lunasin was detected in all the samples as a band with an apparent molecular weight of ,5 kDa. (D) Coomassie-stained SDS-
PAGE gel of final RPC-purified lunasin product. SDS-PAGE was performed on a 15% gel using 10 mg of RPC-purified lunasin. Molecular weight
standards (M) are shown in the first lane.
doi:10.1371/journal.pone.0035409.g008

Figure 9. In vitro histone-binding of synthetic and purified
lunasin to core histones H3 and H4. In vitro binding of synthetic
and purified lunasin (0.1, 1, 10 and 100 mM) to human recombinant core
histones H3 and H4 was assessed utilizing a modified ELISA format
using 500 ng of either H3 or H4 as the capture protein. Both synthetic
and purified lunasin bound to both histones H3 and H4 in a dose
dependant manner. However, while both synthetic and purified lunasin
bound to histone H3 with similar affinity, the purified lunasin exhibited
a higher affinity for histone H4 when compared to its synthetic
counterpart. Error bars represent +/2 SD of 5 independent experiments
were each sample was assayed in triplicate. Similar results were
obtained when either 100 ng or 300 ng of H3 or H4 were used (data
not shown).
doi:10.1371/journal.pone.0035409.g009
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(PBST containing 1% w/v instant non-fat dry milk) at a 1:50,000

dilution. A 50 mL aliquot of diluted primary antibody was added

to each well and incubated for 60 minutes at 37uC. The wells were

then washed three times with ultrapure water. The HRP-

conjugated secondary antibody was diluted to 1:5000 in PBSTM

1% and 50 mL aliquots were added to each well prior to

incubating for 60 minutes at 37uC. The wells were then washed

three times with ultrapure water. The plate was developed using

50 mL per well of a tetramethyl benzidine-based reagent (TMBW;

BioFX One Component HRP Microwell Substrate, SurModics,

Eden Prairie, MN, USA) and an incubation time of four minutes

at room temperature. The reaction was stopped with 50 mL per

well of stop solution (0.6 N H2SO4/1 N HCl). The absorbance at

450 nm for each well was measured using a DTX 880 Multimode

Detector (Beckman Coulter, Indianapolis, IN, USA). This ELISA

format was useful for accurately measuring between 7 and 26 ng

lunasin.

Pilot-scale purification of lunasin
Extraction. For the large-scale purification of lunasin from

soybean white flake, a 12.5:1 extraction buffer (20 mM sodium

phosphate/150 mM NaCl/20 mM ascorbic acid/10 mM sodium

metabisulfite, pH 7.4) to white flake soy flour ratio was used. The

white flake was suspended in extraction buffer and mixed for one

hour. After mixing, a diatomite filter aid, Celpure 300 (Advanced

Minerals Corporation, Santa Barbara, CA, USA), was added to

the extract (33 g/L). The extract was passed through a filter press

fitted with 1 micron M-503 filter pads (ErtelAlsop, Kingston, NY,

USA) to produce a clarified extract. After filtering, the filter cake

was blown dry with compressed air and a wash was performed

using extraction buffer (wash volume: 50% of total extract). The

wash was combined with the initial filtered extract to generate the

final clarified extract.

Anion-exchange chromatography. All chromatography

procedures were performed in clean room suites at Kentucky

BioProcessing to ensure sterility of final product. Anion-exchange

chromatography was performed using a 20.0613.0 cm Q-

Sepharose FF column on a Pharmacia 10 mm Bioprocess

System Skid. The skid and column were both sanitized with 1 N

NaOH and then pre-conditioned with 10 CV of equilibration

buffer (Buffer A: 20 mM sodium phosphate/150 mM NaCl,

pH 7.4) prior to applying samples. Clarified extract was applied

onto the column through the sample inlet at a residence time

between 2 and 2.77 minutes. The column was washed with 14.8

CV of equilibration buffer and the lunasin eluted using a linear

gradient of NaCl in the elution buffer (Buffer B: 20 mM sodium

phosphate/1 M NaCl, pH 7.4). Lunasin eluted from the column

between 0.26 M and 0.50 M NaCl. The fractions containing

lunasin were filtered through an inline 0.2 mm capsule filter and

combined.

Reduction and ultrafiltration. The lunasin-containing

fraction obtained by Q-Sepharose FF chromatography was

brought to a final concentration of 2 mM DTT and stirred with

an overhead mixer at room temperature for one hour. The DTT-

treated fraction was subjected to ultrafiltration using five, 0.1 sq.

meters each, 30 kDa MWCO polyethersulfone membranes using

a Sartorius Sartocon Slice unit (Sartorius Stedium Biotech,

Bohemia, NY, USA). Lunasin accumulates in the permeate

fraction during this procedure. Ultrafiltration was continued

until the retentate remaining in the sample reservoir reached a

volume of ,1 L. The retentate was then washed with five volumes

of buffer (20 mM sodium phosphate/300 mM NaCl, pH 7.4) with

each wash being reduced to a final volume of ,1 L. Permeates

generated from these washes were combined with the initial

permeate for further purification.

Reversed-phase chromatography (RPC). RPC was used

as the final step in the purification process using a 10.069.2 cm

Source 15RPC column on an AKTApilotTM system (GE

Healthcare, Piscataway, NJ, USA). Prior to chromatography, the

column was sanitized with 1 N NaOH and equilibrated with ten

CV of equilibration buffer (20 mM sodium phosphate/150 mM

NaCl, pH 7.4). The lunasin fraction was applied onto the column

with a residence time of 2.5 minutes. A five CV wash with

equilibration buffer was performed, followed by a step elution

using 20%, 40%, 60%, 80%, and 100% elution buffer (Buffer B:

17 mM sodium phosphate/127.5 mM NaCl/15% n-propanol,

pH 7.4). Fractions were collected at each gradient step; as

expected, the 100% B gradient step was the lunasin-containing

fraction.

Next, the lunasin-containing fraction obtained by RPC was

concentrated using a 0.5 m2 2 kDa cellulose cassette (Sartorius

Stedium Biotech, Bohemia, NY, USA). Difiltration was performed

to exchange the RPC elution buffer with 50 mM sodium

phosphate, pH 7.4. The retentate and wash were collected and

filtered through a 0.2 mm filter. The amount of lunasin present in

the concentrated sample was determined using a BCA protein

assay with synthetic lunasin as a standard. The lunasin concentrate

was then diluted with 50 mM sodium phosphate, pH 7.4 to a final

concentration of 4.65 mg/mL. Sterile, glass vials were each filled

with 5.5 mL of final product and stored at 4uC.

Mass spectrometry
Electrospray ionization mass spectrometry (ESI-MS)

analysis of purified lunasin and lunasin complex. Purified

lunasin complex was desalted with C18 ZipTip (Millipore,

Billerica, MA) and ESI spectra of lunasin complex was obtained

using an Orbitrap XL mass spectrometer (Thermo Scientific, San

Jose, CA) equipped with TriVersa NanoMate system (Advion

BioSciences, Ithaca, NY). The MS spectra were deconvoluted with

Xtract (Thermo Scientific, San Jose, CA). To analyze subunits of

lunasin complex, purified lunasin complex was reduced with

5 mM DTT at 70uC for 15 minutes, followed by alkylation with

15 mM iodoacetamide (IAA) at room temperature in the dark for

15 min. Reduced lunasin complex samples, with or without

further alkylation, were desalted with C18 ZipTip and analyzed

using an Orbitrap XL mass spectrometer.

LC-MS/MS Analysis of Lunasin Subunits. Gel-purified

lunasin subunits were desalted with PepClean C18 spin column

(Pierce/Thermo Scientific, Rockford, IL), reduced with DTT,

alkylated with IAA, and incubated with sequencing grade modified

trypsin (Promega, Madison, WI) at 37uC overnight. Incubation

was stopped by adding 5% formic acid to the samples and the

digests were loaded on to a Hypersil Gold C18 column and

separated using an Accela HPLC system (Thermo Scientific,

Waltham, MA, USA) with an aqueous acetonitrile/0.1% formic

acid gradient. The eluted peptides were directed to an Orbitrap

XL mass spectrometer and MS/MS spectra of the peptides were

acquired in data dependent scan mode.

Histone-binding assay
Aliquots of recombinant human histones H3 or H4 stock

solutions where the histone concentration was determined by

measuring the absorbance at 280 nm were plated in 96 well

MaxiSorpTM plates in coating buffer (15 mM Na2CO3/35 mM

NaHCO3/0.02% NaN3/1 mM freshly prepared DTT, pH 9.6) to

generate final quantities of 100, 300 and 500 ng/well. DTT was

added at the time of plating to allow for even distribution and
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prevention of oligomerization of the histones. Negative controls

consisted of wells containing coating buffer alone with no histones.

Plates were sealed with adhesive plastic and incubated for

60 minutes at 37uC. Plates were then washed twice with PBST

and the remaining protein-binding sites blocked for 60 minutes at

room temperature in PBST containing 5% non-fat dry milk.

Following two washes with ultrapure water, either synthetic or

purified lunasin diluted in PBSTM1% was added to the wells at

final concentrations of 0.1, 1, 10, 100 mM. Plates were incubated

at 37uC for 60 minutes, washed three times with PBST and

incubated for another 60 minutes at 37uC with the primary

monoclonal mouse anti-lunasin antibody diluted 1:5000 in

PBSTM1%. After three washes with ultrapure water, the

secondary HRP-conjugated sheep anti-mouse antibody diluted

1:5000 in PBSTM1% was added and the plates incubated at 37uC
for 60 minutes. Plates were then washed three times with ultrapure

water. Detection of lunasin bound to the histones was accom-

plished by the addition of the HRP substrate SureBlueTM (KPL,

Gaithersburg, MD, USA) followed by six minutes incubation in

the dark at room temperature. The reaction was terminated by the

addition of an equal volume of 1 N HCl and the absorbance at

450 nm for each well was measured using a DTX 880 Multimode

Detector (Beckman Coulter, Indianapolis, IN, USA).

Supporting Information

Figure S1 Optimization of white flake extraction con-
ditions. Soybean white flake (20 g) was extracted using the

indicated extraction solutions and time. Extracts were filtered

through four layers of cheesecloth and one layer of miracloth

before centrifugation for ten minutes at 10,0006 g at 4uC.

Supernatants were collected and the protein content of the

clarified extracts was determined using a bicinchoninic acid assay

prior to SDS-PAGE analysis using 15% Tris-glycine gels.

Molecular weight standards (MW Std) are shown in the first lane

of each gel. Arrows indicate the position of the protein band

corresponding to lunasin. (A) Effect of extraction time on the yield

of lunasin. White flake was extracted with 75.5 mM sodium

phosphate/68.4 mM NaCl, pH 7.4 for the indicated times up to

an overnight (O/N) period. Aliquots containing ,30 mg total

protein were analyzed for each sample. (B) Effect of pH on the

yield of lunasin. White flake was extracted for 60 minutes with

different pH buffers: 20 mM sodium acetate buffer was used for

pH 5 and 5.5; 50 mM sodium phosphate buffer was used for

pH 6.0, 6.5, PBS was used for pH 7.0 and 7.4; and 50 mM Tris

buffer was used for pH 8.0 and 8.5. Aliquots containing ,20 mg

total protein were analyzed for each sample. (C) Effect of buffer to

white flake ratio on lunasin extraction efficiency. White flake was

extracted with 50 mM sodium phosphate/150 mM NaCl, pH 7.4

using the indicated buffer to white flake ratios (v/w) for

60 minutes. Aliquots containing ,40 mg total protein were

analyzed for the 5:1 sample and ,25 mg total protein was

analyzed for the 10:1 and 12.5:1 samples. (D) Comparison of the

extraction efficiencies of buffer and water at different solution to

white flake ratios (v/w). White flake was extracted with either

ultrapure water adjusted to pH 7.4 or 75.5 mM sodium

phosphate/68.4 mM NaCl, pH 7.4) using the indicated ratios of

extraction solution to white flake. All extraction solutions also

contained 20 mM ascorbic acid and 10 mM sodium metabisulfite.

Aliquots containing ,25 mg total protein were analyzed for each

sample.

(TIF)

Figure S2 Disruption of the lunasin-containing complex
by treatment with reducing agents. SDS-PAGE analysis was

performed using 15% Tris-glycine gels. Each lane contains

15.5 mg of purified lunasin-containing complex without or with

the indicated concentration of a reducing agent. All samples were

treated with reducing agents in a reaction volume of 100 mL and

incubated at room temperature for 1 hour prior to preparing

samples for SDS-PAGE analysis. Molecular weight standards (M)

are shown in the first lane. (A) Treatment with 0, 14.3, 71.5, and

143 mM beta-mercaptoethanol (BME). (B) Treatment with 0, 1.0,

5.0, and 10.0 mM tris(2-carboxyethyl)phosphine (TCEP). (C)

Treatment with 0, 0.2, 1.0, and 2.0 mM dithiothreitol (DTT).

(TIF)
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