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Abstract

Pulmonary Hypertension (PH) is a pathophysiologic condition characterized by hypoxemia and right ventricular strain.
Proliferation of fibroblasts, smooth muscle cells, and endothelial cells is central to the pathology of PH in animal models and
in humans. Methionine aminopeptidase-2 (MetAP2) regulates proliferation in a variety of cell types including endothelial
cells, smooth muscle cells, and fibroblasts. MetAP2 is inhibited irreversibly by the angiogenesis inhibitor fumagillin. We have
previously found that inhibition of MetAP2 with fumagillin in bleomycin-injured mice decreased pulmonary fibrosis by
selectively decreasing the proliferation of lung myofibroblasts. In this study, we investigated the role of fumagillin as
a potential therapy in experimental PH. In vivo, treatment of rats with fumagillin early after monocrotaline injury prevented
PH and right ventricular remodeling by decreasing the thickness of the medial layer of the pulmonary arteries. Treatment
with fumagillin beginning two weeks after monocrotaline injury did not prevent PH but was associated with decreased right
ventricular mass and decreased cardiomyocyte hypertrophy, suggesting a direct effect of fumagillin on right ventricular
remodeling. Incubation of rat pulmonary artery smooth muscle cells (RPASMC) with fumagillin and MetAP2-targeting siRNA
inhibited proliferation of RPASMC in vitro. Platelet-derived growth factor, a growth factor that is important in the
pathogenesis of PH and stimulates proliferation of fibroblasts and smooth muscle cells, strongly increased expression of
MetP2. By immunohistochemistry, we found that MetAP2 was expressed in the lesions of human pulmonary arterial
hypertension. We propose that fumagillin may be an effective adjunctive therapy for treating PH in patients.
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Introduction

Pulmonary Hypertension (PH) is a pathophysiologic condition

defined by a mean pulmonary arterial pressure.25 mmHg at rest

[1] and is characterized by hypoxemia, exercise limitation, and in

many cases, death [2]. PH occurs in a variety of clinical situations

and is associated with a broad spectrum of histological patterns

and abnormalities [3]. While idiopathic pulmonary arterial

hypertension (IPAH) is rare (15 per one million [4]), PH

complicates and worsens the prognosis of many systemic diseases

including chronic obstructive pulmonary disease, idiopathic

pulmonary fibrosis (IPF), human immunodeficiency virus in-

fection, systemic sclerosis (SSc), and liver cirrhosis (reviewed in

[5]). A shared pathologic feature of PH and diseases such as IPF or

SSc is the expansion of the mesenchymal cell compartment in the

lung. The lesions of PH are characterized to various degrees,

depending on the particular etiology, by the accumulation of

endothelial cells, smooth muscle cells, and fibroblasts in the

pulmonary vasculature (reviewed in [6]). Altered rates of pro-

liferation and apoptosis in mesenchymal cells lead to thickened

and narrowed vessels resulting ultimately, in increased pulmonary

arterial pressures and right ventricular strain [6]. In human PH

(reviewed in [7]) and in experimental models of PH [3,8,9],

smooth muscle and endothelial cells actively proliferate, leading to

occlusion of the pulmonary arteries and the stigmata of PH.

Therapies that prevent the accumulation of these cells in the

pulmonary arterial bed would be predicted to impact positively

both quality-of-life and survival in PH. The currently available

vasodilatory therapies for IPAH do enhance survival [10,11] but
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do not significantly address the root pathological lesions of PH: the

accumulation of fibroblasts, smooth muscle and endothelial cells.

Methionine aminopeptidase-2 (MetAP2) is a metalloprotease

that functions in the regulation of fibroblast [12], smooth muscle

[13], and endothelial cell [14] proliferation. The enzymatic

function of MetAP2 is to cleave the N-terminal methionine off

polypeptides, a process that is necessary for many downstream,

post-translational modifications of certain proteins [15,16].

Fumagillin is a fungal metabolite [17] that irreversibly inactivates

the enzymatic activity of MetAP2 [18,19]. Fumagillin and its

analogues are potent inhibitors of proliferation and have advanced

into clinical trials as angiogenesis inhibitors in multiple cancers.

There is accumulating evidence that fumagillin may be an effective

therapy in animal models of fibrosis. We have previously found

that fumagillin decreased bleomycin-induced pulmonary fibrosis in

mice by selective inhibition of myofibroblast replication [12]. In

addition, the fumagillin analogue TNP-470 has been found to

inhibit both liver fibrosis [20] and peritoneal fibrosis [21] in

animal models. The role of fumagillin in PH has not previously

been explored. We hypothesized that inhibition of MetAP2 with

fumagillin would prevent the accumulation of smooth muscle cells

in the pulmonary vasculature that leads to PH.

Materials and Methods

This protocol was approved by the Institutional Animal Care

and Use Committees and the Institutional Review Boards of both

Columbia University and the University of Pittsburgh. At

Columbia University the relevant protocols are: IRB-AAAE4847,

Expression of MetAP2 in Pulmonary Hypertension and IACUC-

AAAB0235, Modification of Smooth Muscle Cell Proliferation

with Fumagillin. At the University of Pittsburgh, the relevant

protocols are: IRB-08020021, Genetics, Transcriptional Geno-

mics, and Pharmacogenomics of Pulmonary Hypertension and

IACUC-1009954, Modification of Smooth Muscle Cell Pro-

liferation with Fumagillin.

Reagents
Monocrotaline, fumagillin, bromodeoxyuridine (BrdU), and

monoclonal antibodies against a-smooth muscle actin (clone

1A4) were obtained from Sigma (St Louis, MO). SYBR Green

dye and Rabbit IgG against MetAP2, and Alexa Fluor 488–

conjugated goat anti-mouse IgG were from Invitrogen (Carlsbad,

CA). Monoclonal antibody (mAb) against bromodeoxyuridine

(BrdU) (clone BMC 9318) was from Roche (Indianapolis, IN).

Platelet-Derived Growth Factor (PDGF) was purchased from

R&D Systems (Minneapolis, MN). Rabbit polyclonal antibodies

against Ki67 and von Willebrand Factor were obtained from

Neomarkers (Fremont, CA). A mouse monoclonal antibody

directed against rat CD45 (clone OX-1) was obtained from

AbdSerotec (Raleigh, NC). A goat antibody directed against CD31

(PECAM-1, cat# M-20) was from Santa Cruz Biotechnology

(Santa Cruz, CA). MetAP2- and non-targeting siRNA oligonu-

cleotides were purchased from Dharmacon (Lafayette, CO).

Hiperfect and primers specific for human MetAP2 and PPIA

were from Qiagen (Valencia, CA).

Monocrotaline-Induced Pulmonary Hypertension
Male Sprague-Dawley Rats (Harlan, Indianapolis, IA) were

purchased at 250 grams of mass. Monocrotaline was dissolved in

0.5N hydrochloric acid, and the pH was slowly adjusted to 7.4

with 0.2N sodium hydroxide. A single subcutaneous injection of

monocrotaline (60 mg/kg) or vehicle control was administered on

day 0. Fumagillin was dissolved in dimethyl sulfoxide (DMSO) at

10 mg/ml, and then further diluted in RPMI 1640 pH 8.0 to

a final concentration of 10% DMSO. Beginning three days (early)

or two weeks (late) after monocrotaline injury, fumagillin (0.5 mg/

kg) was administered by inhalation. Under isoflurane anesthesia,

a gel-loading pipet tip was gently inserted into the nares of the rat,

a volume of 125 microliters was slowly introduced, and the volume

was inhaled. This dosage of fumagillin and route of administration

was chosen, rather than the more commonly used higher doses in

rodents (20–100 mg/kg [22,23,24,25]), because intranasal delivery

afforded localized pulmonary, rather than systemic delivery. Drug

or vehicle control was administered every other day for the

duration of the experiment. Animals were weighed weekly.

Animals were sacrificed at four or five weeks after monocrotaline

injury.

Measurement of Right Ventricular Systolic Blood Pressure
At four weeks after monocrotaline injury, animals were

anesthetized with a combination of ketamine and xylazine. The

right internal jugular vein was exposed and a 2-French catheter

(Millar Instruments, Houston, TX) was introduced and advanced

to the right ventricle. Pressure measurements were transduced

using PowerLab 4/30 from ADI Instruments (Colorado Springs,

CO).

Measurement of Hemodynamics and Echocardiography
At five weeks after MCT injury, animals were brought to the

phenotyping core of the Vascular Medicine Institute of the

University of Pittsburgh. Central venous access was obtained via

internal jugular venous cannulation using sterile PE-50 tubing. To

obtain in vivo hemodynamic measurements, rats were anesthetized

with a mixture of ketamine (100 mg/kg) and acepromazine

(5 mg/kg). The rats were then ventilated by the insertion of

a tracheal cannula attached to a rodent ventilator (Harvard

Apparatus, South Natick, MA) set to 90 breaths/min with a tidal

volume of 8 ml/kg body weight. The chest was opened with

a midline incision and then a four-electrode pressure-volume

catheter (Scisence Inc., London, Ontario, Canada) was placed

through the right ventricular apex to record chamber volume by

admittance and pressure micromanometry as described previously

analyzed using customized acquisition software (IOX2; Emka,

Falls Church, VA) [26,27]. Direct Doppler velocities of the

pulmonary arterial flow were obtained using a 20 MHz ultrasound

probe and analyzed using customized software (Doppler signal

processing workstation; DSPW; Indus Instruments, Houston, TX).

A silk tie was loosely placed around the inferior vena cava (IVC),

and a transient decrease in preload was achieved by a gentle

constriction of the tie to obtain ESPVR. A family of pressure-

volume loops was generated to allow for the evaluation of the right

ventricular end-systolic pressure volume relationship (Ees) and

ventricular-arterial coupling (Ees/Ea).

Measurement of Cardiomyocyte Cross-Sectional Area
and Vessel Thickness
Sections of the free wall of the right ventricle were fixed in 10%

neutral buffered formalin. Five mm sections of paraffin-embedded

tissue were cut and routine hematoxylin and eosin staining was

performed. The section was scanned by a blinded reviewer for

cells cut in cross section. Cross-sectional area was measured using

an Olympus CH2 microscope with a DP25 camera and DP2-BSW

software (Tokyo, Japan). Modified Movat’s pentachrome staining

was performed on paraffin-embedded samples of rat lung sections

using a kit from Electron Microscopy Services (Hatfield, PA). The

pulmonary vessels ,250 mm were identified by morphological
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features and their proximity to airways. Twenty-five vessels in

cross-sectional diameter were assessed for each rat sample by

a blinded reader. Medial diameter of the vessel wall was measured

by determining the distance between the internal and external

elastic laminae, stained black by the Movat stain. The widest

diameter of the vessel was used. The percent medial thickness is

reported as percentage of the medial diameter to the diameter of

the entire vessel. Measurements were made at 4006magnification

using an Olympus DP25 microscope camera.

Rat Pulmonary Artery Smooth Muscle Cell Culture and
Immunoblotting
Rat pulmonary artery smooth muscle cells (RPASMC) were

provided generously by Dr. Brian Zuckerbraun, University of

Pittsburgh. The isolation of RPASMC has been described

elsewhere [28]. Cells were cultured in low-glucose DMEM:F-12

(1:1) supplemented with 4 mM glutamine (Glutamax, from

Invitrogen). Cells were used between the fourth and eighth

passages. For immunoblotting, cells were plated in 24-well plates.

On the next day, cells were cultured in serum-free DMEM:F12

overnight. On the next day, cells were stimulated with PDGF at

10 ng/mL. 24 h after the addition of PDGF, cells were lysed in

RIPA buffer (150 mM NaCl, 1% NP-40, 0.25% sodium

deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 1 mM EDTA,

5 mM PMSF, 50 mg/ml leupeptin, 50 mg/ml aprotinin, 50 mM

Tris-HCl, pH 7.4), and subjected to SDS-polyacrylamide gel

electrophoresis and immunoblotting with a rabbit polyclonal

antibody against MetAP2 and a goat polyclonal against b-actin as

previously described [12]. Quantification of band intensity was

performed with ImageJ software (http://rsb.info.nih.gov/ij/).

Cell Proliferation Assays
RPASMC were washed and incubated in DMEM:F12 without

FBS for 24 h to synchronize the cells in G0 [29]. To release

RPASMC from G0 arrest, the media were then replaced with

DMEM:F12 + 10% FBS supplemented with fumagillin 20 nM

dissolved in DMSO or vehicle control. RPASMC were also grown

with or without PDGF at 10 ng/mL and incubated for 24, 48, and

72 h. To facilitate counting cells, RPASMC were fixed in 3.7%

formaldehyde, permeabilized in 0.2% Triton X-100, and stained

with the DNA-sensitive dye SYBR green (Invitrogen). SYBR green

fluorescence was quantitated with a plate-reading spectrofluorim-

eter. We have found and published previously that SYBR green

fluorescence intensity correlated with cell counts in a hemacytom-

eter. All data represent fold changes in cell number following

background subtraction [29].

For quantification of BrdU incorporation, RPASMCwere plated

in 24-well plates on glass coverslips. Cells were washed and

incubated in DMEM:F12 without FBS for 24 h to synchronize the

cells in G0 [29]. The media were then replaced with

DMEM:F12+10% FBS supplemented with fumagillin dissolved in

DMSO or vehicle control, with or without PDGF at 10 ng/mL and

incubated for an additional 48 h. Cells were pulsed with BrdU

10 mM for the final 30 minutes. Cells were fixed in 3.7%

formaldehyde and permeabilized in 0.2%Triton X-100. To expose

the incorporated BrdU, we incubated the fixed cells with 100 U/ml

DNase for 60 min at 37uC. Cells were processed for immunoflu-

orescence using a monoclonal antibody against BrdU followed by

Alexa Fluor 488–conjugated goat anti-mouse IgG and counter-

staining with DAPI. Cells were visualized with a Nikon Eclipse

TE200 microscope (Nikon, Tokyo, Japan) equipped with epifluor-

escence. At least 15 fields were selected at random, and BrdU+ cells

were enumerated and scored as a percentage of all cells present/

high-power field (hpf). About 1500 cells were counted per

experiment.

Transfection of siRNA
RPASMC were plated in DMEM/F12 and 10% fetal bovine

serum on day 0, and were transfected with 37.5 ng of siRNA

oligonucleotides specific for rat MetAP2 or non-targeting controls

using Hiperfect (Qiagen) on days 0 and 1. Cells were then

incubated in the presence of fumagillin 20 nM or vehicle control

for 36 hours. Cells were processed for immunoblotting or

determination of BrdU incorporation as noted above.

Immunostaining of Rat and Human Lung
Human lung tissues from patients with Idiopathic Pulmonary

Arterial Hypertension (IPAH, World Health Organization, class I)

or normal controls were obtained from the Columbia University

Tissue Bank. Normal lung was obtained from histologically

normal appearing lung distant from resected lung cancers [29].

All diagnoses were rendered by a dedicated lung pathologist

according to standard American Thoracic Society criteria. For

immunohistochemistry, sections were deparaffinized with xylene

followed by rehydration through graded ethanol series. Antigen

retrieval with 10 mM sodium citrate was performed for Ki67,

MetAP2, and von Willebrand Factor. For brightfield microscopy,

antigens were developed with the Vectastain ABC Universal kit

(Vector Labs, Burlingame, CA). Diaminobenzidine (brown) and

Vector SG (gray) were used for double-labelling experiments.

Sections were counterstained with Harris’ hematoxylin, dehy-

drated through graded alcohol series, and mounted with Permount

(Fisher, Fairlawn, NJ). Sections were visualized using an Olympus

CHS microscope and images were photographed with an

Olympus DP25 camera (Olympus, Tokyo, Japan). Ki67+ cells

were counted as the number of positively-staining nuclei per vessel

per high power field (hpf). Immunostaining for CD45 was

performed on cryosections of lungs from rats. CD45+ cells were

quantified as the number of positively-staining cells per hpf.

Immunofluorescent staining on human lung was performed on

paraffin-embedded tissue with rhodamine- and Cy5-conjugated

secondary antibodies (Jackson Immunoresearch, West Grove, PA).

Nuclei were counterstained with DAPI. Black and white images

were photographed on the TE200 Nikon Eclipse, processed, and

pseudocolored using Adobe Photoshop.

Terminal Deoxynucleotidyl Transferase dUTP Nick End
Labeling (TUNEL)
Five mm sections of formalin-fixed, paraffin-embedded lung and

heart tissues were cut, deparaffinized, and rehydrated through

graded ethanol series. Sections were then prepared with proteinase

K pre-treatment. TUNEL staining was then performed employing

the ApopTag Peroxidase kit (Millipore, Billerica, MA). TUNEL+
cells were counted as the number of positively-staining nuclei per

high power field.

Quantitative RT-PCR
The preparation of samples of cDNA from lungs of patients

with pulmonary arterial hypertension (PAH) or normal controls

has been described elsewhere [30]. Quantitative RT-PCR was

performed, and data were analyzed on the Applied Biosystems

7500 (Carlsbad, CA). Primers specific for human MetAP2 and the

endogenous control PPIA were obtained from Qiagen and used

according to the manufacturer’s recommendations.

Fumagillin and Pulmonary Hypertension
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Statistics
Data were analyzed by one-way ANOVA followed by

Bonferroni’s post-hoc test (unless otherwise stated) using GraphPad

Prism 5 (GraphPad Software, La Jolla, CA).

Results

Inhibition of MetAP2 by Fumagillin Prevents PH in MCT-
Injured Rats
We have previously found that delivery of fumagillin to

bleomycin-injured mice decreased pulmonary fibrosis by a selective

reduction in the number of accumulated fibroblasts in the lung

parenchyma. In this study, we sought to expand on our previous

findings and determine if treatment of rats with fumagillin would

attenuate PH in an animal model where smooth muscle and

fibroblast accumulation was a prominent feature. We chose to test

the efficacy of fumagillin in the monocrotaline (MCT) model of

PH. MCT was injected subcutaneously on day 0, followed by

treatment with fumagillin or vehicle control beginning either on

day 3 (early treatment), or day 14 (late treatment), after MCT

injury. Treatment continued every other day for the duration of

the experiment. Animals were weighed weekly as a measure of

overall health. All animals gained weight every week for the first

four weeks of the experiment (Figure 1A). Between the fourth and

fifth weeks, MCT-injured animals, treated with the vehicle all lost

nearly 20 grams (Figure 1B). In contrast, MCT-injured rats,

treated with fumagillin beginning on day 3 continued to gain

weight at a rate similar to uninjured animals. Animals treated with

fumagillin beginning 14 days after MCT lost significantly less

weight at week 5 than MCT-injured animals treated with the

vehicle. These data suggest that treatment with fumagillin initiated

at 3 d protected animals from weight loss induced by MCT injury.

When fumagillin treatment was initiated at 14 d, we observed

attenuated weight loss in response to MCT injury suggesting at

least partial protection.

Next, we assessed the effects of fumagillin treatment on MCT-

injured animals using physiologic and histopathologic measures of

PH. On day 28 after injury, right ventricular systolic blood pressure

(RVSP) was determined (Figure 2A). RVSP was determined by

catheterization of the right internal jugular vein. AverageRVSPwas

less than 25 mmHg in uninjured animals treated with fumagillin or

the vehicle control. In MCT-injured, vehicle-treated animals, the

average RVSP was 66 mmHg. However, in the MCT-injured

animals treated with fumagillin early after injury, the average RVSP

was significantly reduced at 28 mmHg. In contrast, animals treated

with the vehicle or fumagillin beginning at 14 d after MCT

exhibited similarly elevated RVSPs (63 vs. 69 mmHg, respectively).

Thus, only early treatmentwith fumagillin preventedMCT-induced

pulmonary hypertension. Treatment of animals with fumagillin

beginning at 14 d after MCT injury did not prevent PH.

Wenext determined the effect of fumagillin on heart size inMCT-

injured rats. At five weeks after MCT injury, the hearts and lungs

were excised and prepared for gross and histopathologic analysis.

We measured the mass of the right ventricle normalized to the mass

of the left ventricle and the interventricular septum (Figure 2B).

Compared to uninjured controls, the ratio of RV mass to LV mass

increased 2.5-fold withMCT injury and treatment with the vehicle.

Early treatment with fumagillin attenuated the increase in right

ventricular mass induced by MCT injury. Surprisingly, late

treatment with fumagillin, beginning 14 d after MCT injury, also

attenuated right ventricular remodeling induced by MCT despite

RVSPs as high as the vehicle-treated and MCT-injured rats. These

data suggest that fumagillin treatment as early as three days and as

late as 14 days after MCT injury prevents RV remodeling due to

PH.

Fumagillin Treatment Preserves Right Ventricular
Function in MCT-Injured Rats
The decreased weight loss exhibited by MCT-injured animals

treated with fumagillin late and the decrease in the RV size in these

animals in the presence of elevated RVSP suggested to us that

fumagillin may offer a direct protective effect on the hearts of

animals injured with MCT. We next measured hemodynamics in

animals both injured with MCT and treated with fumagillin

(Figure 3). Measures of systolic function, including cardiac output

and ejection fraction, between uninjured animals treated with the

vehicle or fumagillin were identical (data not shown). We found that

early treatment with fumagillin significantly increased RV ejection

fraction (RVEF) 2.4-fold compared to vehicle-treated, MCT-

injured controls (Figure 3A). The mean RVEF was lower in the

late fumagillin-treated animals compared to the early treatment, but

Figure 1. Early Fumagillin Treatment is Associated with Growth in Monocrotaline-Injured Rats. Rats were injected with monocrotaline
(MCT) as described in Materials and Methods. Treatment with fumagillin or vehicle controls was initiated on the third day or 14th day after injury and
continued every other day for the duration of the experiment. Animals were weighed weekly. At weeks 1–4, all MCT-injured animals gained weight at
a similar rate (A). Panel (B) represents the data shown in panel (A) at week 5. MCT-injured rats treated with the vehicle lost nearly 20 g compared with
the early fumagillin-treated animals that continued to gain weight at a rate similar to uninjured animals (*P,0.05, MCT+fumagillin v MCT+vehicle,
n = 6 per group). In the MCT-injured animals treated with fumagillin starting at week 2, animals exhibited decreased weight loss compared with the
MCT-injured animals treated with the vehicle (*P,0.05 MCT+fumagillin week 2 v. MCT + Vehicle, week 2). Data were analyzed by one-way ANOVA
followed by the Bonferroni post-hoc test.
doi:10.1371/journal.pone.0035388.g001
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this difference was not statistically significant. We next measured

minimum dP/dt as a measurement of diastolic function in the RV

(Figure 3B). We observed a similar trend: early treatment with

fumagillin inMCT-injured animalswas associatedwith a statistically

significant 1.7-fold improvement inminimumdP/dt as compared to

vehicle-treated, MCT-injured controls. Similar to RVEF, min dP/

dt was lower in the late fumagillin-treated animals compared to the

early treatment, but this difference too was not statistically

significant. Early treatment with fumagillin was also associated with

a significant reduction in RV end-diastolic pressure (RVEDP)

(Figure 3C), a measure of RV failure, in comparison to MCT-

injured and vehicle-treated controls. Early treatmentwith fumagillin

also led to a significant increase in the ratio of RV end-systolic

volume to stroke volume (Ees/Ea) (Figure 3D), a measure of right

ventricular and pulmonary artery coupling [31]. Again, late

treatment was associatedwithmeasurements that were intermediate

between vehicle treatment and early fumagillin treatment. Thus,

treatment with fumagillin is associated with improved hemodynam-

ics in MCT-injured animals. The most significant improvements in

hemodynamics were observed in animals treated early with

fumagillin after MCT injury.

Fumagillin Inhibits Cardiac Myocyte Hypertrophy in MCT-
Induced PH
Because we found that late treatment with fumagillin decreased

RV mass in the presence of high pulmonary arterial pressures, we

next measured the cross-sectional diameter of cardiac myocytes in

animals injured with MCT and treated with the vehicle or with late

fumagillin (14 d after MCT) (Figure 4). No significant difference in

cardiac myocyte diameter was found between uninjured animals

treated with the vehicle or with fumagillin. After MCT injury,

myocyte diameter in vehicle-treated animals significantly increased

2.3-fold compared to the uninjured control. Late treatment with

fumagillin significantly attenuated the increase in myocyte diameter

induced byMCT by 76%. Thus fumagillin has a direct effect on the

cardiomyocyte hypertrophy in MCT-injured animals.

Late Fumagillin Does Not Affect Capillary Number in the
Right Ventricles of MCT-Injured Rats
To investigate further the effect of fumagillin on the hearts of

MCT-injured animals, we performed immunohistochemistry for

CD31 (PECAM) toquantify the number of capillaries in the hearts of

these animals (Figure 5). We found that vehicle treatment in MCT-

injured animals was associated with an increase in the number of

capillaries compared to vehicle-treated uninjured controls. Early

treatment with fumagillin resulted in a borderline reduction in

capillary number, but late treatment with fumagillin did not affect

capillary number in the heart in comparison to the MCT-injured,

vehicle-treated controls. These data suggest that late treatment of

MCT-injured animals with fumagillin does not impair right

ventricular neoangiogenesis in response to pulmonary hypertension.

Fumagillin Decreases Apoptosis in the Right Ventricles of
MCT-Injured Rats
We next examined histologic sections of the right ventricles of

MCT-injured animals to determine if fumagillin affected the rate of

apoptosis in injured hearts. We performed terminal deoxynucleo-

tidyl transferase dUTP nick end labeling (TUNEL) on rat hearts

following MCT injury and treatment at different time points with

fumagillin (Figure 6). FollowingMCT injury, there was a significant

increase in the number of apoptotic cells in the vehicle-treated

animals that was blocked by either early or late treatment with

fumagillin.

Early Treatment with Fumagillin Decreases Medial
Thickness of the Pulmonary Arteries
Next, we examined histologic sections of the lung from MCT-

injured animals to determine the effects of fumagillin treatment on

the pulmonary vasculature. We hypothesized that fumagillin would

directly block accumulation of smooth muscle cells inMCT-injured

rats. Routine hematoxylin and eosin staining was performed on lung

sections from uninjured and MCT-injured animals (Figure 7A–D).

Figure 2. Fumagillin Prevents Pulmonary Hypertension and Right Ventricular Hypertrophy in MCT-Injured Rats. Rats were injected
with MCT and treated with fumagillin or vehicle control as described in Materials and Methods. After four weeks, animals were killed, and direct right
ventricular pressure was measured (A). MCT injury significantly increased RV systolic BP, which is prevented by early, but not late, treatment with
fumagillin (*P,0.05, one-way ANOVA followed by Bonferroni’s post hoc test). (B) Measurement of right ventricular mass normalized to left ventricular
mass (RV/LV+S). Five weeks after MCT injury, hearts were excised, fixed in formalin, and the masses of the RV and the LV+septum were determined.
MCT-injured animals treated with the vehicle exhibited a significant increase in RV mass, which was prevented in both early and late fumagillin-
treated animals (*P,0.05, ANOVA followed by Bonferroni’s post-hoc test).
doi:10.1371/journal.pone.0035388.g002
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Figure 3. Treatment of monocrotaline-injured rats with fumagillin leads to improved right ventricular function. Rats were injected
with MCT and treated with fumagillin or vehicle control beginning at 3 d or 14 d after MCT injury as described in Materials and Methods. At five
weeks after MCT injury, animals were prepared for echocardiography and measurement of invasive hemodynamics as described in Materials and
Methods: (A) right ventricular ejection fraction, (B) right ventricular minimum dP/dt, (C) right ventricular end-diastolic pressure, and (D) the ratio of
right ventricular to pulmonary artery elastance, Ees/Ea. Note stepwise improvement in these hemodynamic parameters as fumagillin treatment is
delivered late vs. early (*P,0.05, MCT+early fumagillin v. MCT+vehicle, by t-test n = 427 animals per group).
doi:10.1371/journal.pone.0035388.g003

Figure 4. Late treatment with fumagillin inhibits RV cardiomyocyte hypertrophy. Rats were injected with MCT and treated with fumagillin
or vehicle control beginning at 14 d after MCT injury as described in Materials and Methods. At five weeks after MCT injury, animals were killed and
the free wall of the right ventricles were prepared for histology: (A) Uninjured + vehicle, (B) uninjured + fumagillin, (C) MCT + vehicle, week 2, (D) MCT
+ fumagillin early, and (E) MCT + fumagillin late (magnification6400, bar = 20 mm). The area of cardiomyocytes cut in cross section was measured as
described in Materials and Methods (F). MCT injury led to a significant increase in cardiomyocyte cross-sectional area, which was attenuated by
treatment with fumagillin (*P,0.05, one-way ANOVA, followed by Bonferroni’s post-hoc test).
doi:10.1371/journal.pone.0035388.g004
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MCT injury was associated with severe lung injury including

architectural distortion and the prominent accumulation of foamy

macrophages. In MCT-injured, vehicle-treated animals, significant

thickening of the medial layer was observed in all vessels. Some

vessels in the vehicle-treated MCT-injured animals were also

occluded. In theMCT-injured, early fumagillin-treated animals, the

medial layers were thickened, but all vessels observed remained

patent. We also performed double-label immunohistochemistry for

a-smooth muscle actin (a-SMA) to mark smooth muscle cells and

myofibroblasts, and von Willebrand Factor (vWF) to mark

endothelial cells (inset, Figure 7C, D). In MCT-injured, vehicle-

treated animals, there was significant thickening of the medial layer

with endothelial cells appearing bunched, and some vessels

exhibited extensive muscularization. In contrast, in early fumagil-

lin-treated animals, vessels again were mildly thickened but widely

patent. We measured vessel thickness employing Movat staining in

the pulmonary vasculature as described in Materials and Methods

(Figure 7E–G). Representative Movat images are shown in

Figure S1. In all vessels measuring less than 250 mm and in the

vessels measuring less than 50 and 30 mm in cross-sectional

diameter, MCT injury and vehicle treatment was associated with

significant vessel thickening, which was attenuated by early

Figure 5. Treatment with fumagillin is not associated with differences in capillary density in MCT-injured animals. Rats were injected
with MCT and treated with fumagillin or vehicle control beginning at 14 d after MCT injury as described in Materials and Methods. At five weeks after
MCT injury, animals were killed and the free wall of the right ventricles were prepared for immunostaining for PECAM: (A) Uninjured + vehicle, (B)
uninjured + fumagillin, (C) MCT + vehicle, week 2, and (D) MCT + fumagillin early, and (E) MCT + fumagillin late (magnification6400, bar = 20 mm). The
number of microvessels was counted per hpf as described in Materials and Methods (F). No significant differences in the number of microvessels were
detected in fumagillin-treated animals compared to vehicle controls (data analyzed by one-way ANOVA, followed by Bonferroni’s post-hoc test,
n = 3–5 animals per group).
doi:10.1371/journal.pone.0035388.g005

Figure 6. Treatment with fumagillin decreases the number of apoptotic cells in rat hearts. Rats were injected with MCT and treated with
fumagillin or vehicle control beginning at 14 d after MCT injury as described in Materials and Methods. At five weeks after MCT injury, animals were
killed and the free wall of the right ventricles were prepared for TUNEL staining: (A) Uninjured + vehicle, (B) uninjured + fumagillin, (C) MCT + vehicle,
week 2, (D) MCT + fumagillin early, and (E) MCT + fumagillin late (magnification 6400, bar = 20 mm). The number of TUNEL+ cells in the right
ventricles were increased by MCT injury but attenuated by fumagillin treatment (F) (*P,0.05, one-way ANOVA, followed by Bonferroni’s post-hoc
test, n = 3–5 animals per group).
doi:10.1371/journal.pone.0035388.g006
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treatment with fumagillin. In the animals receiving late fumagillin

therapy, there was no significant difference in vessel thickness

between fumagillin- and vehicle-treated animals. These data show

that early fumagillin treatment is associated with decreased

thickening of the medial layer of the pulmonary arteries in MCT-

injured animals. Because late fumagillin treatment did not decrease

thickening of the medial layers of the pulmonary vasculature, these

data also suggest that the accumulation of cells in the medial layer in

MCT-injured animals is an event that occurs within the first 14 days

after MCT injury [32].

Fumagillin Treatment Decreases the Accumulation of
CD45+ Cells after Monocrotaline Injury
To understand the effect of fumagillin on inflammation in

MCT-injured lungs, we quantified the number of CD45+ cells in

the lungs (Figure 8). No significant differences were detected

between uninjured animals treated either with the vehicle or

fumagillin. After MCT injury, we observed a large reduction in the

number of CD45+ cells. Many of the CD45+ cells in the MCT-

injured animals appeared to be foamy macrophages. In MCT-

injured animals, fumagillin decreased the accumulation of CD45+
cells by 34% compared to vehicle treatment. Thus, fumagillin was

associated with reduced inflammation following MCT injury.

MetAP2 Inhibition by Fumagillin Suppresses Proliferation
in Rat PA Smooth Muscle Cells
Because we found decreased thickening of the pulmonary

arteries in MCT-injured rats with fumagillin, we reasoned that

fumagillin may inhibit the proliferation of smooth muscle cells

directly. We have previously found that inhibition of MetAP2 by

fumagillin, or that silenced expression of MetAP2 by short

interfering RNA (siRNA), decreased proliferation of rat lung

fibroblasts in vitro [12]. In this section, we tested the hypothesis that

fumagillin, via MetAP2, would inhibit the proliferation of

RPASMC in vitro. The effect of fumagillin on rat PASMC, a cell

type that is actively proliferating in experimental PH [9], is

unknown. We incubated primary RPASMC in serum-free

medium, as described in Materials and Methods, to synchronize

cells in G0. The cells were then released from growth arrest by

addition of serum, and were incubated with or without PDGF,

a pro-proliferative growth factor in smooth muscle cells [9], in the

presence of fumagillin or vehicle control (Figure 9A). Cells were

grown for one, two, and three days after the addition of serum.

Cell number was determined by total SYBR Green intensity as

measured by a fluorimetric plate reader. After the addition of

serum, cell number increased in all conditions by day 1. By days 2

and 3, the increases in RPASMC number in the vehicle conditions

were suppressed by fumagillin. Compared to RPASMC grown

with the vehicle control, there were nearly 25% fewer cells

Figure 7. Fumagillin Protects Rats from PA thickening in MCT-injured Rats. Rats were injected with MCT and underwent treatment with
fumagillin or vehicle control as described in Materials and Methods. Animals were killed on day 35 after injury, and the lungs were processed for
histology. Hematoxylin and eosin staining of lungs from (A) uninjured, vehicle-treated (B) uninjured, fumagillin-treated, (C) MCT-injured, vehicle
treated, or (D) MCT-injured, early fumagillin treated. Arrows point to thickened pulmonary arteries (6100 magnification, scale bar = 50 mm). Inset
images are 4006 magnification and show immunohistochemistry for a-SMA (brown) and vWF (gray) as described in Materials and Methods.
Pulmonary artery thickness was measured by Movat staining as described in Materials and Methods (Representative images are shown in Figure S1)
(E) All vessels ,250 mm, (H) vessels ,50 mm, (I) vessels ,30 mm. *P,0.05, n = 4–6 animals). Data were analyzed by one-way ANOVA followed by the
Bonferroni post-hoc test.
doi:10.1371/journal.pone.0035388.g007
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incubated with fumagillin at days 2 and 3 after the addition of

serum. Compared to RPASMC grown with the vehicle and

PDGF, the addition of fumagillin decreased RPASMC number by

nearly 33% at days 2 and 3 after the addition of serum. We also

determined the rate of BrdU incorporation of RPASMC grown in

the presence of fumagillin or vehicle control (Figure 9B–C). Cells

grown in the presence of serum and fumagillin exhibited less BrdU

incorporation than cells grown in the presence of serum and the

vehicle. The apparent IC50 for the growth inhibition of fumagillin

of RPASMC grown in the presence of serum is in the range of

2 nM, which is similar to published data in different cell types

[12,33]. Cells grown in the presence of serum, PDGF, and

fumagillin also exhibited decreased BrdU incorporation compared

to the vehicle control. Thus, fumagillin directly inhibits pro-

liferation of RPASMC in vitro.

To determine if MetAP2 expression is necessary for pro-

liferation, we incubated RPASMC in the presence of MetAP2-

targeting short-interfering RNA (siRNA). Immunoblotting re-

vealed suppression of MetAP2 expression in the absence of

fumagillin (Figure 9D). In the presence of non-targeting RNA

oligonucleotides and the vehicle, there was no inhibition of

proliferation as measured by BrdU incorporation (Figure 9E).

When incubated with MetAP2-targeting siRNA, RPASMC pro-

liferation was inhibited. Incubation of fumagillin-treated cells

where MetAP2 expression was suppressed by siRNA did not lead

to any additional growth inhibition. These data support the

hypothesis that MetAP2 expression is necessary for proliferation in

RPASMC, and that the anti-proliferative effect of fumagillin is

specific for MetAP2.

PDGF Increases MetAP2 in Rat PA Smooth Muscle Cells
Several growth factors that induce proliferation of smooth

muscle cells and fibroblasts have been implicated in the

pathogenesis of PH. One such growth factor is platelet-derived

growth factor (PDGF) [9,34]. We previously found that PDGF

induced expression of MetAP2 in primary rat lung fibroblasts in

vitro [12]. The effect of PDGF on MetAP2 expression in RPASMC

is unknown. We hypothesized that MetAP2 expression would be

increased downstream of PDGF. To test this, we used cultured

RPASMC as a model system for thickening of vascular media in

PH. RPASMC were cultured in the absence of serum with or

without PDGF (Figure 10). Immunoblotting for MetAP2 revealed

a nearly six-fold increase in MetAP2 protein expression in

response to PDGF. Thus, PDGF, a pro-proliferative growth factor

that is critical for the development of PH in animals [9,35] and

possibly in humans [9,36] increased MetAP2 protein expression in

RPASMC.

The Effect of Fumagillin on the Proliferation and Death of
Cells in the Pulmonary Arteries in MCT-Injured Rats
Because we observed that fumagillin decreased proliferation of

RPASMC in vitro, we hypothesized that fumagillin treatment might

specifically decrease proliferation of cells in the medial layer of

pulmonary arteries in MCT-injured rats directly. And because

fumagillin has well-known effects on endothelial cell proliferation

[14], we also quantified the number of Ki67+ endothelial cells in

the pulmonary arteries. We stained for the proliferation marker

Ki67 [37] in lung sections from MCT-injured animals treated with

fumagillin or vehicle at 28 days after MCT injury (Figure 11).

Double staining for the smooth muscle marker, a-SMA, the

endothelial cell marker, vWF, and Ki67 are shown in Figure S2.

By visual inspection, abundant staining for Ki67 was present in the

pulmonary arteries from MCT-injured, vehicle-treated animals

compared to the pulmonary arteries of MCT-injured, early

fumagillin-treated rats. Fewer Ki67+ cells were quantified in the

animals treated with fumagillin three days after MCT injury

compared to the vehicle controls, but this difference did not reach

statistical significance. We also quantified Ki67+ cells in the medial

layer of the pulmonary arteries in injured animals at two weeks

following injury and found a similar trend to decreased Ki67

Figure 8. Fumagillin treatment decreases the number of inflammatory cells following monocrotaline injury. Immunohistochemistry
was performed for common leukocyte antigen (CD45). CD45+ cells were quantified per high power field (hpf) as described in Materials and Methods.
MCT injury was associated with a significant decrease in the number of CD45+ cells in the lung. Early treatment with fumagillin decreased CD45+ cells
in the lung by 25% (*P,0.05 by ANOVA, n= 3–4 animals per group).
doi:10.1371/journal.pone.0035388.g008
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positivity in fumagillin-treated animals (data not shown). Further-

more, we found no significant differences in the number of Ki67+
endothelial cells in MCT-injured animals treated either with

fumagillin or the vehicle. Thus, at four weeks after injury, there is

no significant difference in the number of Ki67+ proliferating cells

in the medial layer of the pulmonary arteries from MCT-injured

rats treated with fumagillin compared to the vehicle control. We

also performed terminal deoxynucleotidyl transferase dUTP nick

end labeling (TUNEL) in parallel and found no significant

differences in the number of TUNEL+ cells in animals that were

treated with fumagillin or the vehicle (data not shown).

MetAP2 Expression in Human and Rat PH
Having shown efficacy of fumagillin, a MetAP2 inhibitor, in

a rat model of PH, we sought to determine if MetAP2, the target of

fumagillin, is expressed in human disease. We performed

immunohistochemistry for MetAP2 on multiple samples of lungs

from patients with IPAH and from MCT-injured rats (Figure 12).

MetAP2 staining was present in multiple cell types including

endothelial cells and cells in the medial layer of the pulmonary

vasculature. Very mild staining was present in the non-immune

control. Double staining for the smooth muscle marker, a-SMA,

the endothelial cell marker, vWF, and MetAP2 are shown in

Figure S3. These results support the hypothesis that the cells in the

pathologic lesions of human pulmonary arterial hypertension

express MetAP2.

To determine if MetAP2 gene expression is increased in the

lungs of patients with pulmonary arterial hypertension, we

performed quantitative RT-PCR on lung samples from patients

with IPAH (n= 6) compared to normal controls (n = 6). No

significant difference in MetAP2 gene expression was detected

between IPAH and normal controls (data not shown).

Figure 9. Fumagillin and Silencing of MetAP2 Expression Inhibit Proliferation of RPASMC in vitro. (A) Primary RPASMC were serum-
starved in basal medium for 24 h to synchronize all cells in G0. Cells were then released from G0 by addition of 10% FBS supplemented with or
without PDGF (10 ng/mL) or fumagillin (20 nM). Cells were fixed after 0, 1, 2, and 3 days of culture and then stained with SYBR Green as described in
Materials and Methods. Fluorescent intensity, which correlates with relative cell number, was measured by a fluorimetric plate reader. Data represent
mean + SEM, n = 4. At days 2 and 3, fumagillin significantly reduced cell number in cells incubated in the absence of PDGF (*P,0.01) or in the
presence of PDGF (**P,0.001). (B–C) RPASMC were incubated in the absence of serum followed by addition of serum (B) or serum with PDGF (10 ng/
mL) (C) with or without fumagillin at the indicated concentrations. Cells were incubated for an additional 48 h and pulsed with BrdU for the final
30 minutes then fixed. BrdU+ cells were quantified as described in Materials and Methods. Data represent mean + SEM. Data analyzed by ANOVA
followed by Tukey’s multiple comparison test (*P,0.05, fumagillin v vehicle AND fumagillin + PDGF v. vehicle + PDGF). (D) Immunoblotting for
MetAP2 of RPASMC cultured in the presence of 10% serum and exposed to MetAP2-targeting siRNA (lanes 1 and 2) or non-targeting RNA
oligonucleotides (lanes 3 and 4). Cells in lanes 1 and 3 were incubated with the vehicle control, and cells in lanes 2 and 4 were incubated with
fumagillin 20 nM. Note the increased band intensity of MetAP2 in the fumagillin conditions. (E) Incorporation of BrdU in RPASMC during silencing of
MetAP2 gene expression by siRNA. During suppression of MetAP2 gene expression, BrdU incorporation was decreased 27% compared to the non-
targeting control (**P,0.05, ANOVA followed by Neuman-Keuls post-hoc test compared to Non-targeting + VEH). In the presence of fumagillin,
silencing of MetAP2 did not lead to additional inhibition of proliferation.
doi:10.1371/journal.pone.0035388.g009
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Discussion

In this study, we tested the hypothesis was that fumagillin would

prevent MCT-induced pulmonary hypertension by a direct anti-

proliferative effect on rat pulmonary artery smooth muscle cells.

We did indeed find that early treatment with fumagillin did

prevent MCT-induced PH, but we discovered that the protective

mechanism of fumagillin in MCT injury is far more complex than

a simple effect on smooth muscle cell proliferation. We found that

animals treated early with fumagillin did exhibit decreased vessel

thickness. While fumagillin, and knockdown of its pharmacologic

target MetAP2, did inhibit proliferation in vitro, we did not observe

significant differences in the number of Ki67+ smooth muscle cells

in vivo. We did uncover an anti-inflammatory effect of fumagillin

following MCT injury, as we found fewer CD45+ leukocytes in the

lungs of MCT-injured, fumagillin-treated animals compared to

controls. But perhaps our most surprising observation was that late

treatment of MCT-injured animals with fumagillin disconnected

RV remodeling from PH.

The MCT-injured, late fumagillin-treated animals exhibited

both decreased RV mass and decreased right ventricular cardiac

myocyte cross-sectional area compared to the MCT-injured

vehicle controls. We did not detect any clear differences between

the number of capillaries in MCT-injured animals treated with

fumagillin late or the vehicle suggesting that the effect of fumagillin

in the heart was not a result of altered neoangiogenesis. We did

find significantly reduced apoptosis in the heart of MCT-injured

animals treated with fumagillin compared with the vehicle

controls. We suggest that the effect of fumagillin on the

myocardium is at least partially protective. MCT-injured rats

treated with fumagillin beginning 14 d after injury exhibited

decreased weight loss compared to the vehicle controls. While we

found that MCT-injured animals treated late with fumagillin

exhibited decreased cardiomyocyte hypertrophy compared to the

MCT-injured, vehicle-treated controls, we did not detect signif-

icant differences in RV ejection fraction, RV end-diastolic

pressure, RV minimum dP/dt, and Ees/Ea between these groups.

We suggest that the risk of type II error in these observations is

high. The measurement of these hemodynamic parameters in

mechanically-ventilated animals following thoracotomy proved to

be challenging. Because the intra-operative mortality of this

procedure was high, the number of MCT-injured and vehicle-

treated animals with adequate hemodynamic data was low. Little

is known about the effects of fumagillin on the myocardium.

Previous data support the efficacy of the fumagillin analogue TNP-

470 in combination with cyclosporine in preventing myocardial

arteriosclerosis after heart transplant in rats [38]. Our data lend

further support to a growing body of literature that suggests that

RV failure in PH is not solely explained by RV pressure afterload

[39,40]. Pulmonary artery banding studies have shown that there

is RV hypertrophy with sustained PH but is associated with

preserved RV function [41,42]. In this model, the effects of

MetAP2 inhibition, or off-target effects, by fumagillin on

neurohormonal or growth factor signaling known to be important

in right ventricular remodeling in MCT injury remain unknown.

Further study of fumagillin will be necessary to elucidate the

molecular mechanisms that govern right ventricular hypertrophy

in animal models of PH.

What about the effect of fumagillin on endothelial cell

proliferation? We found no effect of fumagillin on the number of

microvessels in the heart following MCT injury or on proliferation

of large vessel endothelial cells. It should be noted that a recent

study found that the fumagillin analogue, TNP-470, when

delivered subcutaneously at 30 mg/kg in MCT-injured animals,

beginning at 21 d after injury, prevented the protective effects of

estrogen by inhibition of pulmonary neoangiogenesis [43]. In

addition, TNP-470 suppressed the "protective" cardiomyocyte

hypertrophy in aorta-constricted mice expressing active heat shock

transcription factor 1 (HSF1), an effect that the authors attribute to

decreased angiogenesis [44]. The discrepancies between the effects

of fumagillin and TNP-470 in MCT injury may be an effect of the

dose of fumagillin that we employed, the route of administration,

or the timing of fumagillin treatment. Our data suggest that the

protective effects of fumagillin in MCT injury are certainly

complex and involve effects of fumagillin on other cell types

including inflammatory cells, smooth muscle cells, and cardio-

myocytes.

The finding that fumagillin decreased both MCT-induced PH

(this study) and bleomycin-induced pulmonary fibrosis [12]

Figure 10. PDGF Increases MetAP2 in Rat Pulmonary Artery Smooth Muscle Cells. RPASMC were incubated in basal medium with 0.5%
FBS. Cells were then stimulated with PDGF (10 ng/mL) for 18 hours. Cells were lysed in detergent and subjected to SDS-PAGE and immunoblotting
for MetAP2 and Actin. (A) A representative immunoblot showing an increase in MetAP2 expression by PDGF. (B) Quantitative densitometry was
performed as described in Materials and Methods and expressed as fold-increase compared to cells incubated in the absence of PDGF (mean + SEM,
n = 3,*P,0.03). Data were analyzed by paired t-test.
doi:10.1371/journal.pone.0035388.g010
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suggests that fumagillin may be effective in treating so-called

‘‘secondary’’ PH, that is World Health Organization Class III, PH,

which is associated with hypoxemic diseases such as IPF. Further

studies will be necessary to determine if fumagillin is efficacious in

attenuating both pulmonary fibrosis and PH in animal models of

secondary PH.

Why use MCT injury as a model for PH? Many correctly note

that MCT injury is not associated with the plexiform lesion, the

histopathologic hallmark of idiopathic pulmonary arterial hyper-

tension in humans [3]. Moreover multiple agents have been shown

to prevent MCT-induced PH, including agents that are associated

with PH in humans [3]. Many cases of human PH are advanced at

the time of diagnosis. Anti-proliferative approaches, such as

fumagillin, for example, may have clinical utility, perhaps in

conjunction with currently available therapies, in preventing

disease progression. Perhaps most critical to developing any

therapy for pulmonary hypertension is to determine the effect of

the compound on the right ventricle. Death in PH is due to failure

of the right ventricle. MCT injury, as opposed to chronic

hypobaric hypoxia, is associated with significant PH, RV strain,

and failure [3]. Further studies will be necessary to determine if

fumagillin is effective in preventing cardiac remodeling in other

animals of PH.

Our data show that MetAP2 expression is increased by PDGF

in RPASMC in vitro. We suggest that MetAP2 exerts a permissive

effect on RPASMC proliferation. But how does fumagillin inhibit

proliferation of RPASMC? The enzymatic function of MetAP2 is

to cleave the N-terminal methionine from nascent polypeptides

during protein synthesis [15]. The removal of methionine is

essential for further N-terminal modifications, for example

acetylation by N-a-acetyltransferase and myristoylation of glycine

by N-myristoyltransferase [16]. Growth inhibition induced by

TNP-470 is dependent on p21 and p53 [33]. How the inhibition of

the enzymatic function of MetAP2 leads to p21 induction is not

Figure 11. Quantification of Ki67 Staining in Rat Pulmonary Arteries. Immunohistochemistry for Ki67 was performed on rat lung sections
from animals injured with MCT treated with or without fumagillin. Images of pulmonary arteries are shown (A) uninjured + vehicle (B) uninjured +
fumagillin (C) MCT + vehicle and (D) MCT + fumagillin (Magnification6400, bar = 20 mm). Black arrows point to Ki67+ nuclei in the medial layer of
pulmonary arteries and yellow arrows point to Ki67+ nuclei in endothelial cells. Magnification6400, inset line 20 mm. (E) Ki67+ nuclei in the medial
layer (n = 4–6 per group) and (F) Ki67+ nuclei in endothelial cells of the pulmonary arteries (n = 4 per group) were quantified per hpf as described in
Materials and Methods. MCT injury resulted in a nearly 15-fold increase in the number of Ki67+ nuclei in medial cells per vessel per hpf in the MCT-
injured vehicle-treated lung. The increase in the number of Ki67+ nuclei was decreased nearly 30% with fumagillin treatment, but this difference did
not reach statistical significance. Similarly, MCT significantly increased the number of endothelial cells staining positively for Ki67 nearly tenfold.
However, no differences in the number of Ki67+ nuclei were detected after fumagillin treatment.
doi:10.1371/journal.pone.0035388.g011
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clear [33]. Incorrect processing of a protein’s N-terminus can

theoretically result in aberrant biological functions and lead to

a cell stress response [45]. Although the current study has

implicated the enzymatic activity of MetAP2 in promoting

proliferation, MetAP2 has other recognized non-enzymatic

functions. It was first characterized in 1988 as a 67 kDa protein

that binds to eukaryotic initiation factor-2a (eIF2-a), protecting it

from phosphorylation and thus maintaining active protein

synthesis [15]. Pharmacologic inhibition of MetAP2 by fumagil-

lin-type compounds does not affect the ability of MetAP2 to

protect eIF2-a from phosphorylation [46]. While our in vitro data

support a specific effect of fumagillin for MetAP2, we also cannot

exclude MetAP2-independent effects of fumagillin in vivo [47].

Fumagillin, and its analogues, have advanced into clinical trials

in different malignancies [48,49,50]. Dose-limiting neurotoxicity

has limited the application of fumagillin-like treatments in clinical

practice. Typically these fumagillin doses reach ranges of 20–

100 mg/kg. We chose intranasal delivery, at a significantly lower

dosage (0.5 mg/kg). We found no efficacy of fumagillin delivered

by intraperitoneal injection at 0.5 mg/kg (data not shown). Although

use of the intranasal route for the delivery of fumagillin or its

analogues has not been described in human clinical trials, the

potential for delivery of high local concentrations of MetAP2

inhibitors might be expected to minimize neurotoxicity. Further

studies will be required to determine the safety, effectiveness, and

pharmacokinetics of inhaled fumagillin in human lung diseases.

Supporting Information

Figure S1 Movat staining of the pulmonary vasculature
in MCT-injured rats. Rats were injected with MCT and

underwent treatment with fumagillin or vehicle control as

described in Materials and Methods. Pulmonary artery thickness

was measured by Movat staining as described in Materials and

Methods. Representative images of vessels with similar luminal

diameters are shown: (A) Uninjured + vehicle, (B) uninjured +
fumagillin, (C) MCT + vehicle early, (D) MCT + fumagillin early,

(E) MCT + vehicle late, and (F) MCT + fumagillin late

(magnification 6400, bar = 20 mm).

(TIF)

Figure S2 Double-label immunohistochemistry for
Ki67, vWF, and a-SMA. Double staining for Ki67 (brown)

and the endothelial cell marker, von Willebrand Factor (gray).

Yellow arrows point to a vWF+/Ki67+ cell. (B) Double staining

for Ki67 (gray) and the smooth muscle cell marker, aSMA

(brown). Yellow arrows point to an a-SMA+/Ki67+ cell. Inset

image is the non-immune control for a-SMA (magnification6400,

bar = 20 mm).

(TIF)

Figure S3 Immunofluorescent detection of MetAP2 and
smooth muscle and endothelial cell markers. Immunoflu-

orescence for MetAP2 and a-smooth muscle actin (aSMA) and

von Willebrand Factor (vWF) was performed on formalin-fixed

paraffin-embedded samples. (A) MetAP2, (B) aSMA, (C) DAPI,

and (D) merged image showing MetAP2 positivity in aSMA+ cells.

(E) MetAP2, (F) vWF, (G) DAPI, and (H) merged image. White

arrows point out MetAP2+ and vWF+ cells. Images A9–H9 show

the corresponding non-immune controls (magnification 6400,

bar = 50 mm).

(TIF)

Figure 12. Detection of MetAP2 in human and rat lungs. Immunohistochemistry for MetAP2 was performed on formalin-fixed paraffin-
embedded samples. Sections were counterstained with hematoxylin. Representative sections are shown, n= 3: (A) normal human lung (B) Pulmonary
arterial hypertension (inset non-immune rabbit IgG) (C) normal rat lung (D) MCT-injured rat lung (inset non-immune rabbit IgG). Magnification6400,
bar = 20 mm. Note staining for MetAP2 in endothelial cells (black arrows) and cells in the medial layer (yellow arrows).
doi:10.1371/journal.pone.0035388.g012
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