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Abstract

It is well known that fluid mechanical forces directly impact endothelial signaling pathways. But while this general
observation is clear, less apparent are the underlying mechanisms that initiate these critical signaling processes. This is
because fluid mechanical forces can offer a direct mechanical input to possible mechanotransducers as well as alter critical
mass transport characteristics (i.e., concentration gradients) of a host of chemical stimuli present in the blood stream.
However, it has recently been accepted that mechanotransduction (direct mechanical force input), and not mass transfer, is
the fundamental mechanism for many hemodynamic force-modulated endothelial signaling pathways and their
downstream gene products. This conclusion has been largely based, indirectly, on accepted criteria that correlate signaling
behavior and shear rate and shear stress, relative to changes in viscosity. However, in this work, we investigate the negative
control for these criteria. Here we computationally and experimentally subject mass-transfer limited systems, independent of
mechanotransduction, to the purported criteria. The results showed that the negative control (mass-transfer limited system)
produced the same trends that have been used to identify mechanotransduction-dominant systems. Thus, the widely used
viscosity-related shear stress and shear rate criteria are insufficient in determining mechanotransduction-dominant systems.
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Thus, research should continue to consider the importance of mass transfer in triggering signaling cascades.
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Introduction

Understanding the mechanistic behavior of endothelial signal-
ing pathways is crucial to the search for therapeutic drug delivery
targeting vascular diseases. Endothelial signaling pathways con-
tinuously respond to varying blood flow parameters and govern
downstream DNA synthesis, mRNA transcription, and protein
translation. Often generally called, mechanotransduction, these
fluid mechanical forces trigger cytoskeletal focal adhesions and
subsequent signaling molecules such as Shc-Grb-SOS-Rho-RAS
[1-3]. However, fluid mechanical forces actually offer two
significantly different, but coupled, mechanisms that may impact
signaling. These include mechanotransduction and mass transfer.
In this more formal description, mechanotransduction consists of
the direct interaction of mechanical forces on cellular transducers.
Mass transfer, on the other hand, is the result of fluid mechanical
forces modifying concentration gradients of signaling chemicals
that also impact the subsequent signaling cascade. Both mechan-
otransduction and mass transfer are significant throughout cellular
systems [4—7]. However, the underlying factors that stimulate
changes in endothelial signaling processes due to fluid mechanical
forces remain unclear and have been debated for nearly half-a-
century. Schwartz et al. (1995-2011) demonstrated that shear
stress 1s a determinant of endothelial signaling (activated by
triggering of focal adhesions), but while assuming that the
mechanisms of mechanotransduction is significant, they concede
that identifying the mechanism for this process remains unresolved
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[8-10]. Thus a fundamental interest in the mechanism of signaling
processes in the endothelium due to fluid mechanics, whether
mechanotransduction, mass transfer or both remains an important
topic of interest [1-10]. Therefore, it remains plausible that fluid-
dependent mass transfer may also trigger endothelial signaling
cascades.

In order to develop an inferential method for determining the
importance of mechanotransduction and mass transfer in
endothelial signaling processes, Ando et al. (1988) used viscosity-
related tangential flow studies to evaluate signaling results as
compared to fluid shear rate and shear stress. The authors used
these results to establish criteria for discerning whether mechan-
otransduction or mass-transfer was dominant in endothelial
signaling processes [11]. Their criteria was, if the signaling process
was viscosily-dependent when plotted against shear rate, but was
viscosity-independent when plotted against shear stress, then the
process was mechanotransduction. While the authors performed
both mathematical order-of-magnitude analysis and experiments
to arrive at this conclusion, they did not discuss negative controls
(i.e., the possibility of not having mechanotransducers or mass
transfer). These criteria have been used to conclude the
mechanism of fluid mechanical forces on a number of signaling
processes [11-21].

We evaluate a negative control for the above criteria (a system
without mechanotransduction) through both computational mod-
eling and wm-vitro experiments and evaluated these results to the
purported criteria above. We revisit the experiments previously

April 2012 | Volume 7 | Issue 4 | 35260



performed by Ando et al. (1988-2009) that have provided the
criteria that separate the significance of mechanical transducers
and mass transfer on signaling at the endothelium [11-21]. We
use a negative control where the system is mass-transfer limited and is
independent of any possible mechanotransducers. We assume that
chemical signaling may be proportional to mass transfer of the
triggered species, and we directly consider the viscosity depen-
dency for the mass-transfer limited systems with respect to shear rate
and shear stress in both experimental and computational
conditions. To define a negative control consisting of no
mechanotransduction, we mathematically simulate a parallel flow
chamber experiment to study the mass transfer of triggered species
for varying flow parameters. We additionally perform experiments

in a non-cellular environment. This eliminates any possible role of

biomolecular complexes that could be identified as mechano-
transducers. We compare the experimental and simulated mass-
transfer limited results relative to viscosity dependence with
previously published results by Ando et al. (1988-2009) that were
used to establish mechanotransduction dependency for endothelial
flow-dependent signaling based on the viscosity-dependence
criteria [11-21].

Initial Consideration of Mass Transfer and
Mechanotransduction in Endothelial Signaling

Try et al. (1968) showed the effect of velocity gradients on the
morphology of endothelial cells by demonstrating the enhanced
uptake of Evans blue dye as a result of elevated wall shear rate
[22]. Their findings supported the advanced theories that account
for shear rate-dependent mass transport by Caro et al. [23-24]
Caro and Nerem attempted to quantify the transport of '*C-4-
cholestrol between blood serum and arterial wall in the perfused
canine carotid artery [25]. Their results suggested that mass flux
might be a possible means of transport of biomolecules between
the blood fluid phase and the arterial walls. The authors
recommended the necessity for better experimental techniques
to ascertain the role of wall shear rate as a plausible mechanism to
explain endothelial functions.

In the following years, studies on the endothelial cell function
and morphology were performed by a number of researchers [26—
53]. These authors independently demonstrated that shear stress
and blood flow parameters were coupled to the endothelial
signaling process.

In 1995, Davies wrote an extensive review where he discussed
the mechanotransduction mechanisms that might lead to bio-
chemical, biophysical, and gene regulatory effects of endothelial
cells as a direct response to shear stress [54]. The review also
suggested the necessity in solving the confounding, yet difficult,
problem of decoupling endothelial chemical mass transport from
mechanotransduction.

Establishment of Viscosity-Dependent Criteria for
Mechanotransduction Processes

At about the same time, Ando et al. (1988) designed
experimental work to differentiate the effects of wall shear stress
(1) from shear rate (y) by exploiting their relationship T=py [11].
The authors proposed that by altering the viscosity, they could
separate the mechanisms of y from 1 respectively. Endothelial cells
were perfused with growth media having high and low viscosities.
Ultimately, they established criteria that the significance of mass
transport would be exhibited by shear rate viscosity-independency,
whereas mechanotransduction would be observed by shear stress
viscosity-independency. The authors observed that the increase in
intracellular Ca®" was viscosity dependent with varying shear rates
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and viscosity independent with varying shear stresses. Hence, they
concluded that mass transfer of molecules (previously postulated
by Fry et al. and Caro et al. [22-23]) might not be dominant at the
endothelium. Interpreting their results, they concluded that
mechanotransduction was the most significant mode of endothelial
signaling.

Consequence of the Viscosity-Dependent Criteria

The work of Ando et al. (1988-2009) led to the search of
mechanical transducers or/and mechanical sensors at the
endothelium. Since then, several pivotal publications have
addressed the significance of mechanotransduction in their in-
vitro shear stress experiments and determined the impact of
mechanotransducers on mRNA expression, Ca”" influx, lympho-
cyte adhesion, and cell differentiation [11-21]. Although seminal
work emerged, the decoupling of mass transfer and mechan-
otransduction in endothelial signaling pathways was not further
addressed [1-6,55-63]. However in 1999, Ross again attributed
atherosclerosis as a result of both mass transfer and mechanical
transduction [64]. Later Ethier suggested the possible role of mass
transport in vascular pathologies which was earlier shown not to
play an important role through the experiments of Ando et al.
(1988) [65,11].

In recent years, a number of experimental and numerical
studies have been carried out to analyze the arterial flow field, flow
parameters, and biomolecules that contribute to vascular diseases
such as atherosclerosis [66—77]. Numerical and mathematical
models have been developed for 2D parallel plate flow chambers
for steady as well as disturbed flow to study ATP and ADP
concentrations [66-67]. Further hemodynamic flow has been
correlated to endothelial vasoactive agents [68-76].

Materials and Methods

Ethics Statement
No animals, tissue or cells were used in this study.

Computer Simulations

Problem definition. Simulations are performed using a 2D
rectangular flow chamber of dimensions 0.0254 cm x 0.25 cm.
Critical dimensions, fluid density, viscosities and maximum
velocity are consistent with previously reported work [11]. The
length is selected to minimize computational time with fully-
developed laminar flow (entry length is 0.027 cm). Wall effects are
assumed to be negligible. The apical side of the endothelial cell
layer was approximated as a continuous, uniform surface. The
mass flux averaged is across the length of the hypothetical
endothelial cell layer.

Governing equations. The fluid phase i1s governed by the
continuity equation for incompressible fluid (1) and the Navier-
Stokes equation (2). The chemical species flowing through the
system follows the equation of conservation of mass and Fick’s Law
of Diftusion (3),

Vov=0, (1)

v

P +prVr=uV- [(Vv+ (Vv)T)} —VP, )
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Figure 1. Representation of the quadrilateral boundary layer mesh used for computational modeling of the parallel flow chamber
near the region representing the fluid/solid interface. In this example 6776 mesh elements are used with 2500 in the boundary layer. This
mesh application improves computational representations of momentum and mass transfer gradients in the boundary layers.

doi:10.1371/journal.pone.0035260.g001

d
and a—f +DyV*C=vVC. (3)

Boundary equations. The transport of biologically active
species such as ATP, Oy, Ca*", and NO in arteries are considered
in this analysis. Similarly, Tarbell et al. (2003) postulated the
importance of mass transport for these species in the arteries [71].
In this paper, we analyze the effect of viscosity dependence on
transport for species with properties relevant to these biologically
active molecules.

The entrance flow is modeled as parabolic and laminar with a
species concentration of 1 uM [78]. The diffusivities of the species
relative to viscosities are calculated using Stokes-Einstein’s
equation as shown in Table 1. Convection and diffusion are
selected as the transport mechanism for the species between the
fluid and the simulated cell-seeded surface. For ATP, a surface
reaction rate constant, £, of 1.47x107% cm*s™' and a diffusion
coeflicient, Dp 47p, of 5% 107% cm®'s™! are used [66,72]. The Da is
calculated as the ratio of the reaction rate to the mass transfer rate,

e (£)

where £ris the mass transfer coefficient. The estimated Damkohler
number of ATP, Oy and NO are 17.7, 49 and 173, respectively
(Table 1. In addition, the Damkohler number of Ca® is expected to
be directly related to its dynamic relationship with the ADP/ATP
concentration at the endothelium [79-81]. Recognizing that the
apparent surface reaction rate in terms of the bulk concentration is
reduced by 1/(1+Da), the transport of these small molecular-weight
species under these conditions is mass-transfer limited as Da>>1
[39,82]. Hence a mass-transfer limited boundary condition at the
endothelial cell surface is approximated as (5),

Ny—o=—ks(4C) = —ks (Co—Cy-0). ®)

where Co and Cy = 0 are the concentration of the species in the bulk
and at the endothelial cell surface, respectively. The scaling
parameters for this 2D model are the Reynolds number, Re, and
the Da.

Comsol Multiphysics® (Version 3.5, Burlington, MA, USA) is
used to numerically simulate the parallel flow chamber. Sparse
object oriented linear equations solver (SPOOLES), a library for
solving sparse real and complex linear systems of equations,
provided by COMSOL Multiphysics® is used to simulate the
steady flow model of the parallel plate chamber.

Mesh analysis. A mesh independent model shown in
Figure 1 is simulated and selected by increasing mesh elements
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until wall shear stress have a relative error of 0.002%. In order to
test the accuracy of the grid size, studies are performed with
models having mesh elements of 5,876 and 12,776. A parabolic
inlet velocity with Re =91 is used for comparing the convergence
tolerance. The results imply that the grid size of 6,776 elements is
appropriate for this study. Better resolution of the large velocity
and concentration gradients at the boundary layers is obtained by
implementing a quadrilateral boundary layer mesh that provides a
dense element distribution in the normal direction along the
boundary where endothelial cells are simulated.

Post analysis. The concentration obtained for each mesh
element at the inlet, outlet, and the endothelial cell surface is
integrated and averaged. The normalized consumed mass rate of
species ¢ at the endothelial cell surface is calculated using.

19C=1_M0u1/Mina (6)

where 3¢, M out, and M in 18 the normalized mass rate for the
consumed species ¢, the mass rate of species ¢ flowing out of the
chamber, and the mass rate of species 7 flowing into the chamber,
respectively. The difference in concentrations across the
hypothetical endothelial cell surface was determined to be
negligible for any specific case.

Experimental Method

We experimentally study the effects of flow parameters and fluid
properties on an engineered mass transfer system. Mass transfer
experiments are performed using an aqueous mixture containing
measured quantities of Yellow #5 and #6 dyes, delivered through
a rectangular tangential-flow diafiltration module. Water and dye
solutions are introduced into the module by two inlets and co-
currently delivered on the other side of the module while invoking
zero transmembrane pressure. The diafiltration module consists of
an upper and lower chamber and is divided by a hydrophilic
membrane (Durapore 125 um, Millipore Inc.).

A separate set of mass transfer experiments introduce an
aqueous solution of 40% glycerol and 40% glycerol-dye solution
into the engineered mass transfer system. The experimental
protocol for glycerol experiments are the same as that of water and
dye experiments. The membrane is pre-soaked for ten minutes
and the system is primed and pressurized by the corresponding
non-dye solution before and after each trial. The dye concentra-
tion of the inlet streams for the experiments is 0.25 g/L. Special
care is taken while handling the glycerol samples by gently stirring
them to obtain spatially uniform concentrations of dye.

Samples are taken at different intervals for a time period of 10
minutes. The concentration of the dye is quantified using a VIS
(500 nm) spectrophotometer. SigmaPlot® (Version 10.0.1.25) is
used to analyze the data from the spectrophotometer. The
resultant mass transport of dye is correlated to varied shear
stresses and shear rates. Experiments are performed in triplicate.
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Figure 2. Comparison of viscosity-dependent expression with respect to shear stress from previous in-vitro experimental results
and viscosity-dependent mass transfer with respect to shear stress simulation and in-vitro experimental results. The expression of
various molecules, cell density, and mRNA levels are shown (A). Note that all the graphs are plotted against shear stress for high viscosity (@) and low
viscosity (O) media and demonstrate a similar trend - viscosity independence. This observed viscosity-independent behavior has been previously
correlated to mechanotransduction [11-21]. However, the results obtained from our computational simulations (normalized average mass rate) and

Shear rate (10° x s1)

in-vitro flow experiments (normalized average concentration) for mass-transfer limited studies demonstrate similar trends (B).
doi:10.1371/journal.pone.0035260.g002
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Figure 3. Comparison of viscosity-dependent expression with respect to shear rate from previous in-vitro experimental results and
viscosity-dependent mass transfer with respect to shear rate simulation and in-vitro experimental results. The expression of various
molecules, cell density, and mRNA levels are shown (A). Note that all the graphs are plotted against shear rate for high viscosity (@) and low viscosity
(O) media and demonstrate a similar trend - viscosity dependence. This observed viscosity-dependent behavior has been correlated to
mechanotransduction [11-21]. However, the results obtained from our computational simulations (normalized average mass rate) and in-vitro flow
experiments (normalized average concentration) for mass-transfer limited studies demonstrate similar trends (B).

doi:10.1371/journal.pone.0035260.g003
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Table 1. Transport characteristics of O,, ATP, and NO in the simulated finite element model.

doi:10.1371/journal.pone.0035260.t001

Results and Discussion

Viscosity-Independent Shear Stress Results

Using a computational fluid dynamics (CFD) model and species
mass balance as described in Materials and Methods, we show that
a mass-transfer limited model follows the same trends as observed
by others who deduced that similar trends indicated mechan-
otransduction [11-21]. The viscosity-independent trends observed
in Figure 2: Panel A were previously interpreted to demonstrate
the dominance of mechanotransduction at the vascular endothe-
lium. The negative or positive slope is related to the consumption
or production of the measured species at the endothelium. As seen
in Figure 2: Panel B, the CFD simulation and the n-vitro
experimental setup using a mass-transfer limited system demon-
strate similar viscosity-independent trends.

Viscosity-Dependent Shear Rate Results

Figure 3 shows the shear rate versus normalized mass flux for
two viscosities. Figure 3: Panel A shows the results obtained
previously by others through their -vitro experiments [11-21].
Again, the negative or positive slope of the measured species is
related to its consumption or production at the endothelium. The
greater/lower y-axis for higher/lower viscosity media is dependent
on whether the reactants or products are analyzed in their
respective signaling cascade. Figure 3: Panel B shows the results of
the CFD simulations and the n-vitro experiments, demonstrating
similar viscosity-dependent relationships.

Differences in Computational and Experimental Model
While comparing and analyzing the results, it is important to
consider the differences in the dimensions of the typical parallel
plate flow chamber used in our computer simulations (based on
Ando et al. (1988)) and the dimensions of the in-house parallel flow
chamber used for the experimental results [11]. Despite these
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