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Abstract

Background: Hyperthyroidism during pregnancy is treated with the antithyroid drugs (ATD) propylthiouracil (PTU) and
methimazole (MMI). PTU currently is recommended as the drug of choice during early pregnancy. Yet, despite widespread
ATD use in pregnancy, formal studies of ATD teratogenic effects have not been performed.

Methods: We examined the teratogenic effects of PTU and MMI during embryogenesis in mice. To span different periods of
embryogenesis, dams were treated with compounds or vehicle daily from embryonic day (E) 7.5 to 9.5 or from E3.5 to E7.5.
Embryos were examined for gross malformations at E10.5 or E18.5 followed by histological and micro-CT analysis. Influences
of PTU on gene expression levels were examined by RNA microarray analysis.

Results: When dams were treated from E7.5 to E9.5 with PTU, neural tube and cardiac abnormalities were observed at E10.5.
Cranial neural tube defects were significantly more common among the PTU-exposed embryos than those exposed to MMI
or vehicle. Blood in the pericardial sac, which is a feature indicative of abnormal cardiac function and/or abnormal
vasculature, was observed more frequently in PTU-treated than MMI-treated or vehicle-treated embryos. Following PTU
treatment, a total of 134 differentially expressed genes were identified. Disrupted genetic pathways were those associated
with cytoskeleton remodeling and keratin filaments. At E 18.5, no gross malformations were evident in either ATD group,
but the number of viable PTU embryos per dam at E18.5 was significantly lower from those at E10.5, indicating loss of
malformed embryos. These data show that PTU exposure during embryogenesis is associated with delayed neural tube
closure and cardiac abnormalities. In contrast, we did not observe structural or cardiac defects associated with MMI
exposure except at the higher dose. We find that PTU exposure during embryogenesis is associated with fetal loss. These
observations suggest that PTU has teratogenic potential.
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Introduction

Graves’ disease (GD) is caused by activating autoantibodies to

the thyrotropin (TSH) receptor (TSHR-Ab) leading to excessive

thyroid hormone secretion and thyromegaly [1,2,3]. GD is the

most common cause of hyperthyroidism during pregnancy and is

estimated to affect 1 in 500 to 1,000 women [4]. Considering that

there are about 4 million births per year in the United States (US)

[5], 4,000 to 8,000 women per year will have GD during

pregnancy in the US [4,6].

Under- or untreated hyperthyroidism during pregnancy is

associated with an increased risk of miscarriage, premature birth,

intrauterine growth retardation, fetal demise, maternal hyperten-

sion, and thyroid storm [1,6,7]. As such, optimal treatment of GD

during pregnancy is essential for favorable pregnancy outcome

[6,8,9].

There are three treatment options for GD: medical therapy with

antithyroid drugs (ATDs), radioactive iodine (131I) and surgery

[6,10]. Radioactive iodine therapy of maternal GD is contrain-

dicated during pregnancy [6,11]. Surgery is associated with a risk

of miscarriage [11]. Thus ATDs are the preferred treatment for

GD during pregnancy [12].

In the US, propylthiouracil (PTU) and methimazole (MMI) are

the two ATDs available. In some countries, carbimazole, which is

converted to MMI, is available [13]. MMI is 20-fold more potent

than PTU and has a longer half-life [2,13]. Both medications

control the hyperthyroid state [2,14,15] and cross the placenta

similarly [16]. Fetal concentrations of PTU and MMI are 30–80%

of maternal levels [17]. The structure-activity relationships of these

compounds has been recently elucidated [18].

Reports suggest a relationship between congenital anomalies

(choanal atresia, aplasia cutis, esophageal atresia, facial abnor-

malities, hypothelia, cardiovascular defects) and prenatal exposure

to MMI, a constellation of features termed MMI embryopathy

[19,20,21,22]. Large cohort studies, however, have found birth

defects associated with maternal GD to be attributed to the

hyperthyroid state rather than to the ATDs themselves [23,24,25].

Because of the few number of reports of fetal anomalies

associated with maternal use of PTU during pregnancy as
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compared to MMI, PTU has been assumed to have a more

favorable teratogenic profile and is therefore recommended for use

during pregnancy [6,26]. There have, however, been a small

number of birth defects reported in association with prenatal PTU

use since its introduction in 1947 [27,28,29,30,31].

Recently a hepatotoxicity risk of PTU has been uncovered [32].

Thus to minimize risks to the mother and fetus, it has been

suggested that PTU use be restricted to the 1st trimester of

pregnancy and changed to MMI thereafter [8,12]. This

recommendation, though, is based on limited data [8].

Other adverse effects of PTU use during pregnancy have also

been observed including agranulocytosis, and skin rash and

vasculitis [33]. Iatrogenic fetal goitrous hypothyroidism can result

from overtreatment of graves during pregnancy [34]. Iatrogenic

fetal goitrous hypothyroidism can affect the normal fetal

development and cause several developmental anomalies includ-

ing polyhydramnios, hyperextension of the fetal neck, intrauterine

growth restriction, fetal hydrops and delayed bone development

[35,36].

Despite widespread ATD use in pregnancy, formal studies of

ATD teratogenic effects have yet to be performed in humans [37].

There has been some investigation of the effects of ATDs in

animal models. Studies of E9.5 to E11.5 rat embryos cultured with

high doses of MMI revealed abnormal head morphology and

absence of neural tube closure [38]. Treatment of rabbits and

guinea pigs with PTU after embryogenesis led to thyroid

enlargement but no congenital anomalies [39]. Treatment of rats,

mice and rabbits after embryogenesis did not cause congenital

anomalies [40,41,42].

To begin to address the limitations in our understanding of the

teratogenic potential of ATDs, we examined the effects of PTU

and MMI exposure during embryogenesis in mice.

Materials and Methods

Mice
All animal studies were approved by the Yale University

Institutional Animal Care and Use Committee under protocol

#2009-11315. Mice were used for study, as they are a validated

model of teratogenicity investigation [43]. C57BL/6 mice (Charles

River Laboratories, Wilmington, MA, USA) were housed in a

temperature-controlled room with a 12-hour light-dark cycle and

access to food and water ad libitum. For breeding, males and

females were paired overnight. The day a vaginal plug was

observed was designated embryonic day (E) 0.5.

Drug treatments
Drugs were administered orally via gavage in 0.5 ml of water.

The PTU (Sigma Aldrich; St. Louis, MO) doses used were 1, 5, 10,

25, 50 and 100 mg/kg. In preliminary studies, the PTU dose of

200 mg/kg was found to be lethal. The MMI (Sigma Aldrich)

doses used were 1, 4, 10 and 20 mg/kg. Controls were

administered vehicle (distilled water). Doses were given each day

between 12:00 to 15:00 hrs. To span critical periods of

embryogenesis [44,45], dams were initially treated each day

between E7.5 and E9.5. To investigate effects at PTU exposure on

earlier stages of development, pregnant mice were treated with

100 mg/kg of PTU or 20 mg/kg of MMI each day from E3.5 to

E7.5. Physical observations of the treatment groups indicated that

ATD treatment did not result in any observable effects on

maternal behavior. When maternal weights were assessed at the

end of the treatment periods, difference in the maternal body

weight among the groups was not observed.

Necropsy and histopathology
After drug treatments, embryos were examined at E10.5 or

E18.5. At E10.5, dams were euthanized by CO2 asphyxiation.

Embryos were removed from the uteri and rinsed in Dulbecco’s

phosphate buffered saline (D-PBS, InVitrogen, Carlsbad, CA).

Embryos were photographed using an Olympus C-5060 camera

(Tokyo, Japan) attached to a Ziess Stemi 2000C dissecting

microscope (Oberkochen, German). Photographic images were

used to measure the crown rump lengths of embryos. Gross

evaluation of embryos included assessment of viability and the

presence or absence of gross malformations. Embryos were

considered alive if their hearts were beating. Dead embryos (no

heart beat) were excluded from analysis.

At E18.5, pregnant dams were euthanized by CO2 followed by

cervical dislocation and exsanguination by cardiac puncture.

Embryos and placentas were harvested from the uterus, weighed,

fixed in Bouin’s fixative (Ricca Chemical Corporation, Arlington

TX), embedded in paraffin, sectioned at 5 mm, and stained with

Table 1. Crown-rump length and viability of E10.5 murine embryos.

Drug Dose (mg/kg) Embryo (n)
Crown-rump length
(mm) Mean (SE) P value1 Dead (%)

PTU (n = 413) 1 45 4.33 (0.19) 4 (8.9)

5 47 4.36 (0.09) 2 (4.3)

10 37 4.38 (0.09) 0.0082 1 (2.7)

25 81 4.49 (0.07) 8 (9.9)

50 58 4.37 (0.08) 5 (8.6)

100 145 4.64 (0.06) 5 (3.4)

MMI (n = 146) 1 36 4.56 (0.09) 0.0015 1 (2.8)

4 46 4.40 (0.09) 6 (13)

10 24 4.03 (0.11) 0 (0)

20 40 4.56 (0.10) 8 (20)

Vehicle (n = 145) - 154 4.12 (0.06) 9 (5.8)

1Mixed model with repeated measure analysis (adjusted by Tukey approach for multiple comparisons) between PTU vs. vehicle and MMI vs. vehicle.
SE, Standard Error.
doi:10.1371/journal.pone.0035213.t001
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Masson’s Trichrome (head sections only) by routine methods [46].

Masson’s Trichrome-stained coronal sections of the head were

examined for craniofacial and neurologic defects by light

microscopy and digital image recorded using a Zeiss AxioImager

A1 Axioskop microscope, AxoCam MRc55 camera and AxioVi-

sion 4.7.1 imaging software (Carl Zeiss Micro Imaging, Inc.

Thornwood, NY) where the reviewer was blind to experimental

manipulation. Images were generated in AdobeH PhotoshopH
(Adobe Systems Incorporated, San Jose, California).

MicroCT imaging
Embryos were collected for microCT scanning at E10.5 and

E18.5, stained in 1% iodine in ethanol for at least 24 hours, and

rinsed in 70% ethanol. Scans were performed in 70% ethanol in a

mCT-35 scanner (Scanco, Bruttisellen, Switzerland) at an

isometric voxel size of 6 mm, peak energy of 45 kVp, and an

integration time of 800 ms. Images were analyzed using Micro-

view software v2.0 (GE Healthcare).

Table 2. Structural defects in E10.5 murine embryos.

Drug
Dose mg/
kg # of Embryos Type of Defects Total Sum of Defects

Head folds not
fused

Peri-cardial
blood Other defects

Embryo
Defects Odds Ratio p-value

n (%) n (%) n (%) n (%) OR (95% CI)

PTU 1 41 2 (4.8) 2 (4.4) 0 (0.0) 4 (9.7) 1.6 (0.5, 5.2) 0.24

5 45 1 (2.2) 2 (4.2) 2 (4.2) 5 (11.1) 1.8 (0.6, 5.6) 0.15

10 36 4 (11.1) 3 (8.1) 1 (2.7) 8 (22.2) 4.1 (1.5, 11.3) 0.0019

25 73 3 (4.1) 6 (9) 3 (1.4) 12 (16.4) 2.8 (1.2, 6.9) 0.009

50 53 3 (5.6) 6 (8) 0 (0) 9 (17) 2.9 (1.1, 7.7) 0.011

100 140 18 (12.9) 13 (9.2) 5 (1.4) 36 (25.7) 4.9 (2.4, 10.5) ,0.0001

MMI 1 35 2 (5.7) 0 (0) 1 (2.5) 3 (8.6) 1.4 (0.4, 5.2) 0.33

4 40 1 (2.5) 2 (5) 0 (0) 3 (7.5) 1.7 (0.3, 4.5) 0.41

10 24 0 (0) 2 (8.3) 1 (4.2) 3 (12.5) 2.1 (0.5, 8.1) 0.15

20 32 2 (6.2) 3 (9.3) 0 (0) 5 (15.6) 2.7 (0.8, 8.4) 0.04

Vehicle 154 3 (2) 7 (4.8) 0 (0) 10 (6.9)

Includes live embryos only.
Chi-square \ test.
doi:10.1371/journal.pone.0035213.t002

Figure 1. PTU exposure during embryogenesis induces cranial defects. Representative images of E10.5 embryos treated with (A, D) vehicle,
(B, E) PTU (100 mg/kg) or (C, F) MMI (20 mg/kg) illustrate un-fused cephalic neural folds in PTU-treated embryos (arrowhead). (D–F) MicroCT scans
showing sagittal 3D images of E10.5 whole embryos with arrowhead identifying unfused neural folds defect. Scale bars = 0.5 mm.
doi:10.1371/journal.pone.0035213.g001
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Gene expression analysis
Total RNA was extracted from whole embryos according to

the manufacturer’s instructions and purified with the RNeasy Kit

(Qiagen, Inc.). RNA concentrations were obtained from

absorbance at 260 nm (A260). RNA quality was determined

based on an A260/A280 ratio. The W.M. Keck Facility at Yale

University performed microarray analysis. Total RNA samples

were hybridized to Illumina Sentrix BeadChip array (Mouse

WG-6 v2; Illumina Inc., San Diego, CA) following preparation

using the Illumina TotalPrep RNA Amplification kit (Applied

Biosystems; Austin, TX). GenomeStudio software (Illumina Inc.)

was used to assess changes in gene expression between controls

and treatment groups. Gene pathway analysis was performed

using Metacore software (Genego Pathway Analysis; St. Joseph,

MI).

Hormone measurements
Plasma thyroxine (T4) levels were measured by radioimmuno-

assay (RIA) using a Mouse/Rat Thyroxine ELISA kit (GenWay

Biotech, Inc, San Diego, CA). Serum samples were obtained at

E10.5 from the pregnant dams that were treated with PTU (10,

25, 50, 100 mg/kg), MMI (10, 20 mg/kg) or vehicle from E7.5 to

E9.5.

Statistical analysis
Statistical analysis was performed with repeated measures

analysis using mixed models with Tukey’s approach for multiple

comparisons, and with generalized estimating equations (GEE), by

Statistical Analysis Software (SAS). Fisher’s exact test analysis was

also performed. Data are presented as mean 6 SEM. T4 hormone

levels between treatment groups were compared using one-way

ANOVA.

Results

Effects of PTU and MMI on embryonic development
We first examined the effects of PTU and MMI during a critical

period of embryogenesis. Dams were treated from E7.5 to E9.5

with 1, 5, 10, 25, 50 or 100 mg/kg of PTU, or with 1, 4, 10 or

20 mg/kg of MMI, and embryos were examined at E10.5. Per

standard protocols used to assess drug teratogenic potential, doses

used were multiples of standard human doses [47].

Data were obtained from a total of 713, E10.5 embryos from 64

dams. PTU and MMI treated-embryos did not differ in size

among treatment doses, but were larger than control embryos

(mean crown-rump length PTU 4.42 mm; MMI 4.41 mm, control

4.12 mm, p,0.001, Table 1). No significant difference in T4

hormone levels was observed in dams exposed to any doses of

PTU, MMI or vehicle. At that highest doses used, T4 levels were:

PTU: 3.7260.4 m/dl, n = 20; MMI, 2.360.18 mg/dl, n = 4;

vehicle, 3.360.26 mg/dl, n = 12P.0.05).

Next, we evaluated for the presence or absence of gross

malformations (Table 2). Of those observed, cranial and cardiac

structural defects were the most common. Cranial defects were

more common among the PTU-exposed embryos than those

exposed to MMI (p#0.17 vs. vehicle, Fisher’s exact test) or vehicle

(p#0.0002 vs. vehicle, Fisher’s exact test; Fig. 1. Table 2). Cranial

defects were greatest at the highest PTU dose of 100 mg/kg

(12.9%, p#0.0001 vs. vehicle, Fisher’s exact test).

Blood in the pericardial sac, which is a feature indicative of

abnormal cardiac function and/or abnormal vasculature [48], was

observed more frequently in PTU-treated than MMI-treated or

vehicle-treated embryos (Fig. 2. Table 2). Other abnormalities

observed included growth-retardation, abnormal head shape

(without head defects) and spinal defects. These abnormalities

Figure 2. PTU exposure during embryogenesis induces blood
in the pericardium. Representative images of E10.5 embryos treated
with (A, C) vehicle and (B, D) PTU (100 mg/kg) showing blood in the
pericardial sac of PTU-treated embryo (arrowhead). (C, D) MicroCT scans
showing sagittal 3D images of whole embryos. Scale bars = 0.5 mm.
doi:10.1371/journal.pone.0035213.g002

Figure 3. Heat map showing the differential gene expression of 139 genes between PTU and vehicle treated groups. Heat map
generated in GenomeStudio compares the average detection signals of genes between PTU and control groups. Total RNA was collected at E10.5
from whole-embryos treated between E7.5–E9.5,. Three PTU and three control RNA samples were tested and genes with a significant p-value
(p,0.001) were displayed. Scale bar indicates detection signal.
doi:10.1371/journal.pone.0035213.g003
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Table 3. Molecular pathways affected by exposure to PTU in E10.5 embryos.

# Pathway # of Genes Fold- change Microarray p-value

1 Cytoskeleton remodeling keratin filaments 2 of 36 2.8 0.001

2 Transport_RAB1A regulation pathway 1 of 12 1.7 0.019

3 Transport_RAB3 regulation pathway 1 of 14 1.7 0.02

4 Development_ERK5 in cell proliferation and neuronal survival 1 of 23 1.4 0.04

5 Development_GDNF signaling 1 of 24 1.4 0.04

6 Development_Mu-type opioid receptor signaling via Beta-
arrestin

1 of 24 1.4 0.04

7 Proteolysis_Role of Parkin in the Ubiquitin-Proteasomal
Pathway

1 of 24 1.4 0.04

8 Cytoskeleton remodeling_Neurofilaments 1 of 25 1.4 0.04

9 Development_SSTR1 in regulation of cell proliferation and
migration

1 of 29 1.3 0.045

10 Cell adhesion_Gap junctions 1 of 30 1.3 0.047

doi:10.1371/journal.pone.0035213.t003

Figure 4. Expression of Genes in the Cytoskeleton remodeling and keratin filament pathways were altered by PTU treatment.
Cytoskeleton structure in most eukaryotic cells consists of three distinct interconnected, filament systems: Actin filaments, Microtubules and
intermediate filaments. Cell assembly is integrated by the network of intermediate filaments (IFs) and by their interactions with other cytoskeleton
structural elements defining cytoarchitecture and cytodynamics. The IF network is critically involved in cell shape control and imparts intracellular
mechanical strength. The experimental data are visualized on the map in red (increased expression or up-regulation) histogram. The height of the
histogram corresponds to the relative expression value for a particular gene/protein.
doi:10.1371/journal.pone.0035213.g004
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were observed more frequently in PTU-treated than vehicle-

treated embryos (p#0.01, Fisher’s exact test), but not in MMI-

treated vs. vehicle-treated embryos (p = 0.06, Fisher’s exact test)

(Table 2).

Overall, the PTU doses of 10, 25, 50, 100 mg/kg induced

embryo malformations at rates higher than control (Table 2). Only

at the highest dose of MMI (20 mg/kg), there was a slight increase

in the malformation rate compared to vehicle and the defects

mainly consisted of blood in the pericardial sac (p = 0.04; Table 2).

PTU-mediated changes in gene expression
To investigate potential mechanisms associated with unfused

head folds in the PTU-exposed embryos, microarray analysis was

performed. Because we did not observed defects with MMI, only

affects of PTU were investigated.

E10.5 embryos with unfused cephalic neural folds from dams

that had been treated with 100 mg/kg of PTU from E7.5 to E9.5

were compared with vehicle controls. A total of 134 differentially

expressed genes were identified in the PTU-treated embryos.

Nineteen genes had increased expression and 115 had decreased

expression. A complete list of genes is presented in Table S1) and a

representative heat map is presented in Figure 3.

Metacore-GeneGo pathway analysis was used to identify

potentially disrupted molecular pathways (Table 3). The most

significantly disrupted pathways were those associated with

cytoskeleton remodeling and keratin filaments (Figure 4).

Effects of PTU and MMI exposure during embryogenesis
on near term-embryos

To determine if the abnormalities observed at E10.5 persisted,

embryos were treated with ATDs from E7.5 to E9.5 and examined

at E18.5. Embryo weights at E18.5 were similar among the

different groups (PTU, 1.1660.03 g, n = 35; MMI, 1.1660.05 g,

n = 14; and vehicle, 1.1860.03 g, n = 3). No gross malformations

were evident in either ATD group at E18.5 (Figure 5). To assess if

craniofacial or heart structural development was affected, snout,

head and heart size were assessed using MicroCT. Analysis of

MicroCT images did not reveal any differences among compar-

ative measurements of snout length, brain or heart size (Fig. 5;

Table 4). Histopathological analysis of coronal sections through

the head also did not reveal differences among the PTU, MMI and

vehicle groups (Fig. 6).

Effects of early exposure to PTU during embryogenesis
on heart development

We next assessed effects of PTU and MMI at even earlier stages

of development to investigate if abnormal looping and/or situs

inversus could be elicited with ATD exposure. Dams were treated

with 100 mg/kg of PTU or 20 mg/kg of MMI from E3.5 to E7.5.

No significant differences in craniofacial defect rates at E10.5 were

observed between control and ATD groups. Situs defects were not

observed either in control or ATD groups.

Early exposure (E3.5 to E7.5) in mice though, resulted in growth

retardation in the PTU-treated group (n = 52) with a mean crown-

rump length of 4.2460.08 mm vs. the vehicle-treated group

(n = 67) with a mean crown-rump length of 4.8960.06 mm

(p,0.0001). No significant difference in crown-rump length was

observed between MMI (mean crown-rump length

4.7460.06 mm) and control group (p.0.05).

Figure 5. PTU exposure during embryogenesis and effects in E18.5 embryos. Embryos treated in utero from E7.5–E9.5 were analyzed at
E18.5. Representative MicroCT scans showing sagittal 3D images of whole embryos indicate no differences between the treatment groups of vehicle,
PTU, and MMI. Left panel shows location of morphometic measurements (a. Snout: upper lip to soft palate. b. Fronto-occipital: frontal to occipital
lobes. c. Aorta-apex diameter: aortic valve to left ventricular. d. Biventricular diameter: right to left ventricle). Scale bars = 5 mm.
doi:10.1371/journal.pone.0035213.g005

Table 4. Morphometic Analysis of Embryos at E18.5 based on
MicroCT images.

Vehicle PTU MMI p-value1

Parameter (mm)
Mean
(SEM)

Mean
(SEM)

Mean
(SEM)

Snout length 5.13 4.97 5..27 0.28

(0.10) (0.07) (0.12)

Brain Fronto- 9.27 9.97 8.61 0.09

occipital diameter (0.22) (0.20) (0.23)

Aorta-apex
diameter

3.16 3.11 2.86 0.08

(0.07) (0.08) (0.15)

Bi-ventricular 2.52 2.65 2.45 0.15

diameter (0.05) (0.09) (0.09)

1ANOVA.
doi:10.1371/journal.pone.0035213.t004
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Discussion

We show that exposure to PTU during critical periods of

embryogenesis causes structural anomalies in mice. PTU-treated

embryos exhibited delayed fusion of head neural folds and

hemorrhagic pericardial sacs. Cranial defects consisted of unfused

cephalic neural folds, a process normally completed by E9 in

mouse embryos [44].These results suggest that the notion that

PTU is not teratogenic is incorrect [12].

It is important to note that the observed effects cannot be

attributable to the possibility of hypothyroidism. The morpho-

genesis of fetal thyroid cells begins at E 8.5 but thyroid gland is not

known to become functional to produce thyroid hormone until E

16.5 [49], well after our treatment period. Prior to the fetal thyroid

hormone production, the fetus is dependent on the transplacental

transport of thyroxine [50,51]. When we assessed T4 levels of the

dams that were exposed to antithyroid drugs, they were similar to

the control group. Thus it is very unlikely that teratogenicity was

the result of a hypothyroid state in the dams or fetus.

Previous animal studies on potential effects of PTU or MMI are

limited [13]. Thyroid enlargement and hypothyroidism have been

observed in neonates treated with PTU and MMI in utero, but the

rate of major congenital anomalies was not increased [13,52].

MMI reportedly caused abnormal head morphology and absence

of neural tube closure of rat embryos cultured from E9.5 to 11.5,

however, the concentration at which MMI disturbed rat

embryogenesis was very high [13,38].

Despite several reports of an association of birth defects and

prenatal use of MMI [19,20,21,22], this association remains

unclear [8]. Momotani et al. reported that among 643 infants of

mothers with Graves’ disease, uncontrolled maternal hyperthy-

roidism was associated with congenital malformations, whereas

MMI treatment was not [24]. Van Dijke and co-workers found no

increased birth defect rates in the setting of MMI use on review of

49,091 records [25]. Wing et al. reached similar observations in a

review of 36 infants exposed to MMI [15], and a cohort of 241

infants born to MMI-treated woman, had no increased in birth

defects as reported by Di Gianantonio [23]. Our observations are

consistent with these clinical findings, as we did not see MMI-

associated birth defects.

In a recent report, congenital cardiac defects were associated

with PTU in an analysis that included over 18,000 congenital

malformations and 127 infants exposed to ATD during the first

trimester, 8 of whom were exposed to PTU [22]. In our study, we

did not observe situs abnormalities in the embryos exposed to

PTU during early embryogenesis. PTU embryos, though, were

twice as likely to have blood in the pericardial sacs, which is a

feature indicative of embryo cardiac dysfunction [48].

A recent epidemiological study on birth defects associated with

the treatment of hyperthyroidism suggested that exposure to PTU

was associated with situs inversus and cardiac outflow tract defects

[22]. In murine embryos, axial determination begins with

rightward looping at stage E6 [53]. In our studies, we did not

observe altered cardiac looping from PTU or MMI exposure.

These discrepant observations may reflect species related differ-

ences or difference in the timing and doses of antithyroid drugs in

clinical practice vs. the treatment paradigms used here. At present,

we are unaware of studies that had described neural tube defects

associated with PTU use. However, neural tube defects have been

reported to the US FDA associated with PTU use (FDA

MedWatch). Potential teratogenic mechanisms associated with

delayed skull closure may be related to altered differential gene

expression patterns that involve cytoskeleton remodeling, which in

turn define cell cytoarchitecture and cytodynamics. In our study,

PTU altered cytoskeleton remodeling and keratin filaments

signaling pathways. These pathway components play a role in

cytoskeleton organization, epithelium morphogenesis and neuro-

nal survival (Fig. 4). Major skull defects were not found in near-

term embryos in any of the experimental groups. This indicates

that PTU causes delayed neural tube closure. It is also possible

that there is resorption of malformed embryo, an issue that is

currently under investigation by our group. In summary, we

observed that PTU exposure during embryogenesis was associated

with delayed neural tube closure and cardiac abnormalities. In

contrast, we did not observe structural defects associated with

MMI exposure except at the higher doses and majority of these

were mainly cardiac defects.

These observations dispute the notion that PTU is not

teratogenic. Further human epidemiological studies of this

important issue are needed.
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Figure 6. Representative histopathology of E18.5 calveria from vehicle, PTU and MMI treated mice. Histopathologic analysis of coronal
sections through the head of E18.5 embryos from dams treated with (A, D) vehicle, (B, E) PTU (100 mg/kg), or (C, F) MMI (20 mg/kg) from E7.5 to E9.5
did not reveal any significant morphologic changes in the bones of the calveria (arrowheads) or the connective tissue stroma within the (A, B, C)
frontal or (D, E, F) parietal sutures when compared to the skulls of control embryos. Representative sections from (A, B, C) rostral dorsal frontal bone
at the level of the nasal cortex, and (D, E, F) caudal dorsal parietal at the level of the ears. Scale bars = 200 mm. Masson’s Trichrome stained sections are
shown.
doi:10.1371/journal.pone.0035213.g006
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