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Abstract

Protein phosphatases, together with protein kinases, regulate protein phosphorylation and dephosphorylation, and play
critical roles in plant growth and biotic stress responses. However, little is known about the biological functions of plant
protein tyrosine dual-specificity phosphatase (PFA-DSP) in biotic stresses. Here, we found that OsPFA-DSP2 was mainly
expressed in calli, seedlings, roots, and young panicles, and localized in cytoplasm and nucleus. Ectopic overexpression of
OsPFA-DSP2 in rice increased sensitivity to Magnaporthe grisea (M. grisea Z1 strain), inhibited the accumulation of hydrogen
peroxide (H2O2) and suppressed the expression of pathogenesis-related (PR) genes after fungal infection. Interestingly,
transgenic Arabidopsis plants overexpressing AtPFA-DSP4, which is homologous to OsPFA-DSP2, also exhibited sensitivity to
Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), reduced accumulation of H2O2 and decreased photosynthesic
capacity after infection compared with Col-0. These results indicate that OsPFA-DSP2 and AtPFA-DSP4 act as negative
regulators of the pathogen response in transgenic plants.
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Introduction

Plants face a variety of biotic stresses in nature, including

bacteria and fungi, which can strongly affect growth and

production [1]. In response to these biotic stresses, plants have

evolved many defense mechanisms [2]. In one such defense

mechanism, reactive oxygen species (ROS) (H2O2, especially) play

a central role in plants by controlling many biological processes,

including gene expression, activation of transcription factors,

redox balance, programmed cell death (PCD) and regulation of

the mitogen-activated protein kinase (MAPK) pathway [3,4,5,6].

Several studies have reported that high levels of ROS lead to the

oxidative destruction of cells, but moderate levels can act as

signaling molecules to regulate plant growth and the biotic stress

response [7]. H2O2 is an important component of ROS;

endogenous and exogenous H2O2 directly or indirectly killed

pathogen cells or inhibited their growth, penetration and

proliferation at the infection site by inducing PCD [3,8,9].

Reversible protein phosphorylation, mediated through the

MAPK signalling cascade, plays a key role in determining the

response to many external stimuli in plants, including biotic

stresses [10,11]. The process of reversible phosphorylation is

controlled by a balance between the activities of protein kinases

and protein phosphatases in vivo [12]. Plant MAPKs are

phosphorylated (and activated) by a series of substrate-specific

kinases (e.g., MAPKK, MAPKK). MAPKs are dephosphorylated,

and hence deactivated, by dual-specificity MAP kinase phospha-

tases (DSPs) [12,13]. The study by Asai et al. [14] reported the

identification of the components in a MAPK signalling pathway in

Arabidopsis. These authors demonstrated that in response to the

flagellin-derived peptide flg22, AtMEKK1 (a MAPKKKs) acti-

vates AtMKK4 and AtMKK5 (two MAPKKs), which in turn

activate the functionally redundant MAPKs AtMPK3 and

AtMPK6. This cascade results in transcription of defense-related

genes, and was shown to play an important role in resistance to

both bacterial and fungal pathogen [14]. More recent studies have

shown that a transcription factor in Nicotiana benthamiana, WRKY8,

is phosphylated by several MAPKs (SIPK, NT4 and WIPK),

which in turn results in transcription of defense-related genes, and

also that phosphorylation of pathogen-inducible WRKY33 by

MPK3/MPK6 in Arabidopsis is important for activating genes

involved in phytoalexin biosynthesis [15,16]. Phosphatases as well

as protein kinases play critical roles in plant biotic stress. For

example, the rice protein phosphatase XB15 (belonging to the

PP2C subfamily), phosphorylated and inactivated protein kinase

XA21, negatively regulating XA21-mediated innate immunity

[17]. AtMKP2, a MAPK phosphatase, interacts differentially with

AtMPK3 and AtMPK6 in the negative regulation of specific
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defense responses [18,19]. Similarly, knockout mutants in AtMKP1

displayed elevated resistance to Pst DC3000 by regulating

AtMPK6 activity, again suggesting that phosphatases play key

roles in the biotic stresses response [20].

Based on substrate specificity, protein tyrosine phosphatases

(PTPs) can be divided into many groups, such as those that utilize

phosphoproteins, lipids, deoxyribonucleic acids and carbohydrates

[21]. In land plants, the lipid phosphatases are classified into three

groups: tumor suppressor phosphatase and tension homologue

deleted in chromosome 10 (PTEN), myotubular myopathy related

protein (MTMR) and plant and fungal atypical dual-specificity

phosphatases (PFA-DSP) [22]. The PFA-DSP subfamily is found

in land plants and fungi, and uses phosphatidylinositol as substrate

[22]. We previously demonstrated that OsPFA-DSP1 is an active

tyrosine-specific phosphatase, and that it acts as a negative

regulator in the abiotic stress response [23]. In addition, the

AtPFA-DSP1 protein from Arabidopsis thaliana has been shown to

possess phosphatase activity [24]. However, the biological function

of PFA-DSPs in the biotic stress response is unknown. Here, we

used overexpression and RNA-interference knockdown of OsPFA-

DSP2 and AtPFA-DSP4 in transgenic rice and Arabidopsis plants to

analyse their biological function during biotic stress. We also

assayed the expression patterns and subcellular localization of

OsPFA-DSP2, and used genetic techniques to study its biological

functions. Our results indicate that OsPFA-DSP2 and AtPFA-DSP4

negatively regulate the host response to a fungal (M. grisea) and a

bacterial (Pst DC3000) pathogen.

Materials and Methods

Generation of transgenic plants
The overexpression construct for OsPFA-DSP2 (Lo-

c_Os02g53160) from Oryza sativa ssp. japonica cv. Nipponbare

was created by inserting a complete cDNA sequence into the

vector pCXUN-flag, which contained a maize (Zea mays) ubiquitin

gene promoter [25]. OsPFA-DSP2 primer sequences are as follows:

(sense primer) 59-ATGCAGCTGGAGATTTCG-39 and (anti-

sense primer) 59-TTAACACTGTGAGGCCGTC-39. The

OsPFA-DSP2 interference construct was created by inserting a

genomic sequence fragment (containing 125 bp of the 39UTR and

125 bp from the translation stop codon) into the binary vector

pCAMBIA1301,which carries the cauliflower mosaic virus

(CaMV) 35S promoter. The recombinant plasmids were intro-

duced into Agrobacterium tumefaciens strain EHA105 by electropora-

tion. Agrobacterium tumefaciens mediated transformation were

performing using calli derived from mature embryos of japonica

line Nipponbare, according to the published protocol [26]. The

primer sequences for the interference vector were as follows: sense

fragment, 59-GGTAAGCTTCGAATGTTTTTTCATATCCG-

GTC-39 and 59-GCACCATGGGATGGATACTTTTATGAG-

GATAA-39, with HindIII and NcoI sites (underlined); antisense

fragment, 59-CGCACTAGTTGTATTTTGATGGATACTTT-

TATGAG-39 and 59-ATTAGGCCTCCGAACCGAATGTTT-

TTTCAT-39, with SpeI and StuI sites (underlined), respectively.

Transgenic rice seedlings were screened on 1/2 MS solid medium

containing 50 mg/mL hygromycin.

Using gene-specific primers, the full-length cDNA sequence of

AtPFA-DSP4 (At4g03960) from Col-0 was amplified and cloned

into vector pEN1A between the SalI and EcoRV sites with primers

59-AGTCGACATGACGTTAGAGAGTTAC-39 and 59-CGGA-

TATCTCAGTAATCAATAGTATT-39. The resulting vector

was used to transfer the AtPFA-DSP4 gene to pEarlyGate100 via

the Gateway LR reaction [27]. The resulting plasmid 35S::AtPFA-

DSP4 was introduced into Agrobacterium tumefaciens strain EHA105

by electroporation. Transformation mediated by A. tumefaciens was

performed as described [28]. The transgenic plants were selected

by spraying 1-week-old seedlings with 0.01% Glufosinate (Basta).

Examination of transgenic plants and knockout mutants
Transgenic rice plants generated with the overexpression and

interference recombinant vectors were examined by RT-PCR

using two OsPFA-DSP2 gene-specific primers, 59-ATGCAGCTG-

GAGATTTCG-39 and 59-TTAACACTGTGAGGCCGTC-39.

The expression level of the OsPFA-DSP2 gene was assayed by

quantitative reverse transcription polymerase chain reaction

(qRT-PCR) using the OsPFA-DSP2 sequence-specific primers, 59-

CCAGTTCGGTATTGACGG-39 and 59-TGAGTGCTTCT-

CGGATTT-39. The expression level of the rice b-actin gene was

assayed with actin-specific primers and used to standardize the

RNA sample for each qRT-PCR. b-actin primers were 59-

GGTATTGTTAGCAACTGGGATG-39 and 59-GATGAAA-

GAGGGCTGGAAGA-39, respectively. The OsPFA-DSP2 mutant

was identified from a rice mutant collection (International Rice

Functional Genomic Consontium; http://irfg.irri.org) harboring a

Tos17 insertion into the 2nd intron of Os02g53160 (seed stock

number NG8341) by PCR with the gene-specific primers, 59-

ATTGTTAGGTTGCAAGTTAGTTAAGA-39 and 59-GCATT-

TTGCTCAAACAGGGT-39, and the Tos17-specific primer TAI-

L13, 59-GAGAGCATCATCGGTTACATCTTCTC-39. The

atpfa-dsp4 mutant which obtained from the Arabidopsis Biological

Resource Center(ABRC)at Ohio State University (stock name:

salk_016876, named as atpfa-dsp4 mutant) was identified by PCR

using the primers: 59-ATTCCCCAAAACTTCTGA-39 and 59-

TCTACAACCATCCGATCC-39. The overexpression in trans-

genic Arabidopsis was quantified using RT-PCR with the primer

pair 59-AGTCGACATGACGTTAGAGAGTTAC-39 and 59-

CGGATATCTCAGTAATCAATAGTATT-39. The expression

profile of AtPFA-DSP4 was detected by qRT-PCR using two

sequence-specific primers, 59-TGAGGCATATCCAGAGGT-39

and 59-CTACAAGACATCCCGTCC-39. The expression of the

arabidopsis ubiquitin 4 (UBQ4) gene was detected with UBQ-

specific primers (59- GCTTGGAGTCCTGCTTGGACG -39 and

59- CGCAGTTAAGAGGACTGTCCGGC -39) and was used to

standardize the sample for each qRT-PCR reaction.

Pathogen culture and plant infection
Magnaporthe oryzae strain Z1 was cultured on PDA medium for 5

days, then transferred to spore production medium and cultured

for 24 h at 24uC with 16 h light/8 h dark. Conidia were

suspended in sterilized distilled-water at a concentration of ,3–

56105 conidial/mL. Seedlings at the three-to five-leaf stage were

infected with M. grisea by the spraying and immersed infection

method [17,29]. Transgenic rice plants after inoculation were

initially cultured for 24 h in the dark at 25uC with humidity

.95%, followed by the same conditions for 6 days with 16 h light/

8 h dark, after which they were observed for disease reaction

phenotype. Disease was scored by measuring the lesion area at 7

days after infection. For all the disease evaluations, the mock-

inoculated control was treated under identical conditions.

Arabidopsis plants were grown in a chamber with a 12 h light/

12 h dark photoperiod at 22uC for 24 days before bacterial

inoculation. Bacterial infections and growth assays with Pst

DC3000 were described previously [30]. Pst DC3000 was cultured

overnight at 28uC in King’s B medium supplemented with 50 mg

rifampicin/mL. The cells were pelleted, washed, resuspended, and

diluted in H2O to a concentration of 105 cfu/mL. Arabidopsis

leaves were syringe-inoculated. Plant leaves were harvested at the

indicated time for ROS detection, Fv/Fm measure and bacterial
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counting. Bacterial growth was assessed by plating a dilution series

of leaf discs ground in H2O on King’s B plates containing 50 mg

rifampicin/mL. The colony-forming units (cfu) were counted after

incubation at 28uC for 2 days. Each data point is shown as

triplicates.

Gene expression analysis
To examined the influence of rice blast infection on resistance

gene (OsPR1a and OsPR5) expression, RNA was extracted from

leaves with TRIzol reagent (Invitrogen, USA), and cDNA was

synthesized by reverse transcription using Prime Script RTase

(Takara, Japan). For qRT-PCR assays, SYBR Green I (Takara,

Japan) was added to the reaction system and run on a LC480 real-

time PCR detection system according the manufacturer’s

instruction (Roche, Switzerland). Data were analyzed using optical

monitor software (Roche). The expression level of the rice b-actin

gene was used to standardize the RNA (20 ng) sample for each

qRT-PCR. The assays were repeated at least three times, with

each repetion having three replications; similar results were

obtained in repeated experiments. The SD was calculated for

each data point. The sequence-specific primers were as follows:

OsPR1a, 59-CGTCTTCATCACCTGCAACTACTC-39 and 59-

CATGCATAAACACGTAGCATAGCA-39; OsPR5, 59-CGCT-

GCCCCGACGCTTAC-39 and 59-ACGACTTGGTAGTTCT-

GTTGC-39; b-Actin, 59-GGTATTGTTAGCAACTGGGATG-39

and 59-GATGAAAGAGGGCTGGAAGA-39.

Expression pattern analysis
Total RNA was extracted from different tissues of wild-type rice

using TRIzol reagent (Invitrogen, USA). The cDNA was

synthesized using Prime Script RTase (Takara, Japan) according

to the manufacturer’s protocol, and the expression of OsPFA-DSP2

was detected using SYBR Premix Ex Taq (Takara, Japan) with

LC480 (Roche, Switzerland). The transcript levels of OsPFA-DSP2

were normalized to the transcript levels of b-actin. Each data point

had three replicates, and the experiments were repeated twice.

The results from the two experiments were consistent, and those

from one set of experiments are shown.

The promoter of the OsPFA-DSP2 gene (1,750 bp DNA

fragment upstream of the translation start site) was predicted by

Osiris (http://www.bioinformatics2.wsu.edu/cgi-bin/Osiris/cgi/

home.pl) and amplified with primers 59-GGGTCTGCTGCAC-

TATACTGG-39 and 59-AAAATCCTCCTCTTGGGCG-39

from genomic DNA of wild type rice, and cloned into the vector

pCXGUS-P, which carried the reporter gene GUS (b-glucuron-

idase) [40]. Rice tissues at different growth stages were stained and

observed using a light microscope (Leica, Germany); histochemical

staining was performed according to a published method [31].

Subcellular localization of OsPFA-DSP2
The full-length cDNA sequence of OsPFA-DSP2 was amplified

from wild type rice with the primers 59-GGGTCTGCTGCACTA-

TACTGG-39 and 59-AAAATCCTCCTCTTGGGCG-39, and

inserted into pUC-GFP vector. The recombination vector was

transiently expressed in rice protoplasts isolated from rice 9-day-old

seedlings as described [32]. Cell nuclei were stained with 100 mg/

mL 49,6-diamidino-2-phenylindole (DAPI) for 15–30 minutes.

Fluorescence was observed using an Olympus fluorescent micro-

scope and visualized with Olympus DP2-BSW software.

Detection of H202 by DAB staining
Rice tissues from seedlings with 3–5 leaves (tillering stage) after

inoculation were collected at 2 hpi, and then immersed in DAB

solution (1 mg/mL) at pH 3.8 for three hours as described [33]

and transferred to the light for 8 h. Arabidopsis tissues were

treated in a similar fashion, except the vacuum treatment was

reduced to 1.5 h, and then transferred to light for 5 h. Plant tissues

was then cleared by boiling for 10 minutes in absolute ethanol,

and then photographed with a Canon camera.

Results

Expression pattern and subcellular localization of OsPFA-
DSP2

OsPFA-DSP2 is a 205 amino acid protein that has been

annotated as a putative dual-specificity phosphatase (DSPs)

belonging to the PFA-DSP subfamily; it contains four conserved

motifs characteristic of members of the PFA-DSP subfamily [23].

To determine the expression pattern of OsPFA-DSP2, qRT-PCR

and GENEVESTIGATOR analysis were carried out, and

transgenic plants expressing the GUS gene under control of the

OsPFA-DAP2 promoter were generated. Expression of OsPFA-

DSP2 was highest in young panicles, followed by roots, calli, old

leaves, stem and leaves (10-days-old) as determined by qRT-PCR

(Figure 1A). The probe Os.Affx24843.1.S1_at from OsPFA-DSP2

was used to analyze an O. sativa microarray database (OS_51K:

Rice Genome 51K array) in GENEVESTIGATOR V3 [34]. The

results of this analysis indicated taht OsPFA-DSP2 was mainly

expressed in seedlings, at the tillering stage and milk stage, and was

similar to results of the qRT-PCR assay (Figure 1B).

In order to further demonstrate the expression pattern of

OsPFA-DSP2, the activitiy of the Escherichia coli b-glucuronidase

(GUS) gene under control of the OsPFA-DSP2 promoter region

(1750 bp) was examined in transgenic rice plants. A total of 15

independent transgenic lines were analyzed, and all exhibited the

same pattern of GUS staining. GUS activity was strongest in calli,

young roots and seedling, with very little expression detected in old

roots, stems and old leaves (Figure 1C–H). Based on these results,

we concluded that OsPFA-DSP2 is mainly expressed in young

tissues.

To investigate the subcellular localization of the OsPFA-DSP2

protein in rice protoplasts, we created constructs for expression of

OsPFA-DSP2 fused to the green fluorescence protein (GFP) under

control of the 35S-CaMV promoter. The fluorescence emission of

GFP was monitored in rice protoplasts using an Olympus

fluorescence microscope. Nuclei were counter-stained with DAPI

dye. The GFP fluorescence was distributed in the cytoplasm and

nucleus (Figure 1I). OsPFA-DSP2-GFP fusion protein fluorescence

was mainly localized to the cytoplasm and nucleus, which could be

seen by blue DAPI staining. This result is in agreement with

several previous studies that showed protein dual-specificity

phosphatases such as AtIBR5, AtMKP2, AtPP2C5, OsIBR5 and

OsPFA-DSP1, also localized to the cytoplasm and nucleus when

analyzed as protein fusions with fluorescent protein tags

[18,23,35,36,37]. These data indicate that OsPFA-DSP2 may

target to both the cytoplasm and nucleus.

OsPFA-DSP2 is involved in the host response to M. grisea
infection

To demonstrate the function of the OsPFA-DSP2 gene in rice,

the OsPFA-DSP2 deficiency mutant (seed stock number: NG8142,

named as ospfa-dsp2) was chosen from the Tos17 rice database [38].

In this mutant, a retrotransposon (Tos17) has inserted into the

second intron. Transcription of OsPFA-DSP2 in the mutant was

not detected by semi-reverse transcription polymerase chain

reaction (RT-PCR) (Figure 2A). We also generated RNAi

transgenic plants to specificly silence OsPFA-DSP2; expression of

Phosphatases Regulate Plants Resistence
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OsPFA-DSP2 in the mutant and silenced plant (named RNAi2) was

suppressed approximately 95% and 89% compared with that in

wild type (WT) rice as detected by qRT-PCR (Figure 2B). The

expression level of OsPFA-DSP2 in overexpression lines (named

OX6, OX13 and OX21) was increased about 102.5-fold, 83-fold

and 112.7-fold, respectively, as compared to WT (Figure 2C). To

observe the phenotypes, the F2 generation of transgenic rice plants

was treated with an M. grisea conidial suspension, containing

0.01% Tween 20, by two different methods. Compared with CK,

which was transformed with the empty vector (pCXUN-flag

vector), the overexpression lines OX13 and OX21 were sensitive

to M. grisea at 7 days post inoculation (dpi); the lesion area was

approximately 4.5-fold and 6-fold larger than that observed on

CK (p,0.01) (Figure 2D and E). However, the symptoms of the

ospfa-dsp2 mutant and RNAi2 plant did not differ appreciably from

those observed on CK at 7 dpi, with the lesion area being similar

(Figure 2D and E). Many more hypersensitive response (HR) spots

were observed on the surface of OX6 and OX21 leaves than on

CK, ospfa-dsp2 mutant and RNAi2 rice leaves at 7 days after

spraying with the M. grisea conidial suspension; the lesion area of

OX6 and OX21 leaves were ,5.7-fold and 6.2-fold (p,0.01)

larger than the area on CK (Figure 2F and G). The number of HR

spots on the ospfa-dsp2 mutant was less than that of CK, and the

area of the lesions was reduced by about half (p,0.05) (Figure 2F

and G). However, the HR spots and lesion area observed on the

RNAi2 line was not obviously different from CK (Figure 2F and

G). These results indicated that OsPFA-DSP2 could be considered

as a negative regulator involved in the plant response to M. grisea.

OsPFA-DSP2 inhibits accumulation of H2O2 and
expression of PR genes in response to M. grisea infection

In order to further study the biological function of phosphatase

OsPFA-DSP2, DAB staining was used to detect H2O2 accumu-

lation in the leaves after infection. Leaves were stained for H2O2 at

2 hours post inoculation (hpi) with M. grisea (3–56105 conidia/mL

containing 0.01% Tween 20) and distilled-water containing 0.01%

Tween 20 (control treatment). We observed that the production

and accumulation of H2O2 in rice leaves was not detected by DAB

staining in the control, a low level of H2O2 accumulated in the

leaves of CK, the ospfa-dsp2 mutant and RNAi2 plants at 2 hpi,

and H2O2 accumulation in OX13 and OX21 was minimal

(Figure 3A). Also, when compared with CK, the expression level of

OsPR1a in the OX13 and OX21 plants was reduced by ,88.2%

and 93% at 6 hpi (p,0.01), but the expression level of OsPR1a in

Figure 1. Expression pattern and subcellular localization. (A) Expression profile of OsPFA-DSP2 in different tissues of wild type rice using qRT-
PCR. (B) Expression of OsPFA-DSP2 at different developmental periods using GENEVESTIGATOR V3. (C–H) Histochemical localization of GUS expression
in different tissues of transgenic rice carrying the OsPFA-DSP2 promoter fused to GUS; (C) callus, (D) seedling (five day), (E) young root (five day), (F)
old root (flowering stage), (G) stem, and (H) old leaf (flowering stage). (I) Subcellular localization of OsPFA-DSP2 in rice protoplasts by transient
transformation, the fluorescence of GFP and DAPI are indicated by green and blue, respectively. Bars = 10 mm.
doi:10.1371/journal.pone.0034995.g001
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the ospfa-dsp2 mutant and RNAi2 plant was increased by

approximately 1.5-fold at 6 hpi (Figure 3B). The expression

profile of OsPR5 in the ospfa-dsp2 mutant and RNAi2 plants was

also elevated, approximately 1.2-fold compared with CK at 12

hpi, but its expression in OX13 and OX21 was reduced by ,68%

and 88% compared with CK (p,0.01) (Figure 3B). These results

indicated that OsPFA-DSP2 inhibited the production and

accumulation of H2O2 and suppressed the transcription of PR

genes, further demonstrating that OsPFA-DSP2 plays a key role in

the host response to M. grisea infection.

AtPFA-DSP4 is involved in the host response to Pst
DC3000 infection

The homolog of OsPFA-DSP2 in Arabidopsis is AtPFA-DSP4;

their protein sequences share a high degree of similarity

(identifies = 67%). Because OsPFA-DSP2 is involved in the

pathogen response, we were interested to know whether AtPFA-

DSP4 has similar function. An AtPFA-DSP4 deficiency mutant

(stock name: salk_016876, named as atpfa-dsp4 mutant) was

obtained from the Arabidopsis Biological Resource Center

(ABRC) at The Ohio State University. The T-DNA was

determined to be inserted in the fifth exon by analyzing the

information from database and the gene sequence; transcription of

AtPFA-DSP4 in the mutant was not detected by RT-PCR

(Figure 4A). We also generated AtPFA-DSP4-overexpressing

transgenic plants; two independent overexpression lines, OX8

and OX11, were used in our experiments. The expression levels of

AtPFA-DSP4 in OX8 and OX11 were increased ,55.5-fold and

74.5-fold compared with Col-0, respectively (Figure 4B). The

Arabidopsis plants were treated with a Pst DC3000 suspension in

distilled water. Compared with Col-0, OX8 and OX11 lines were

sensitive to Pst DC3000 at 3 dpi; based on color, the lesions on

OX8 and OX11 leaves which were injected with the Pst DC3000

suspension were more extensive than those observed on Col-0

(Figure 4C). However, the lesion area on the atfpa-dsp4 mutant was

not appreciably different than Col-0 (Figure 4C). We also

calculated the amount of Pst DC3000 per unit area in leaves

infected with Pst DC3000. The bacterial cell counts in OX8 and

OX11 plants were 1.14-fold and 1.13-fold higher, respectively,

than in Col-0 at 3 dpi, but the bacterial cell count in the mutant

was not distinct from Col-0 at 3 dpi (Figure 4D). These results

Figure 2. Phenotypes of the ospfa-dsp2 mutant and OsPFA-DSP2 transgenic rice plants following M. grisea infection. (A) Genomic
structure of OsPFA-DSP2 and transcription level. The retrotransposon Tos17 was inserted into the second intron; expression of OsPFA-DSP2 was
detected using RT-PCR. (B) and (C) Expression of OsPFA-DSP2 in wild type rice, mutant, OsPFA-DSP2-RNAi and OsPFA-DSP2-overexpression plants was
detected using qRT-PCR. (D) and (E) Phenotype and lesion area of CK, ospfa-dsp2 mutant, OsPFA-DSP2-overexpression and OsPFA-DSP2-RNAi plants at
7 days after inoculation with M. grisea conidial suspension. The experiment was repeated with three biological replicates, *P,0.05, **P,0.01.
doi:10.1371/journal.pone.0034995.g002
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indicated that AtPFA-DSP4 is involved in Pst DC3000 response

and negatively regulated the process.

AtPFA-DSP4 inhibited accumulation of H2O2 and
photosynthesis in the Pst DC3000 response

We examined the effects of AtPFA-DSP4 on the photosynthesic

capability of Arabidopsis after Pst DC3000 infection. The results of

this study showed that AtPFA-DSP4 inhibited photosynthesis in all

plants at 3 dpi, but the inhibition observed in OX8 and OX11

plants was reduced by approximately 29% and 41% compared

with Col-0 (Figure 5A). Inhibition of photosynthesis in the atfpa-

dsp4 mutant was not obviously different from Col-0 (Figure 5A).

We also detected the generation and accumulation of H2O2 in the

leaves at 2 hpi using DAB staining. The mock treatment (distilled

water) did not have an obvious affect on the production and

accumulation of H2O2 in leaves at 2 hpi. However, infection with

Pst DC3000 resulted in a marked increase in the accumulation of

H2O2 in leaves of Col-0 and the atpfa-dsp4 mutant, but not in

leaves of the OX8 and OX11 plants (Figure 5B). Based on these

results, we concluded that AtPFA-DSP4 inhibited photosynthesis

and suppressed production and accumulation of H2O2 during the

response to bacterial infection.

Discussion

Protein phosphatases dephosphorylate activated protein kinases,

and play important roles in plant processes such as growth and the

reponse to abiotic and biotic stresses [12,39,40,41]. The results

presented here show that OsPFA-DSP2 negatively regulates the

pathogen response in rice. In the ospfa-dsp2 mutant and RNAi2

plants, the expression profiles of OsPR1a and OsPR5 were

enhanced in the early stages of M. grisea infection compared with

CK, and the lesion area was similar to that of CK at 7 dpi

(Figure 2D–G and 3B). The phenotype of the ospfa-dsp2 mutant

and RNAi2 plants was not obviously different from the CK at 7

dpi, leading us to suggest that the homologous genes exist in rice.

The expression of OsPR1a and OsPR5 in OX13 and OX21 plants

was decreased compared with CK, and the lesion area was more

extensive than in CK, because of overexpression of OsPFA-DSP2

in rice (Figure 2D–G and 3B). A previous study showed that a

mutant deficient in AtMKP1 expression suppressed the prolifera-

tion of Pst DC3000 and elevated the resistance to Pst DC3000

through the SA-mediated signalling pathway [20]. The function of

OsPFA-DSP2, which negatively regulates the response to M. grisea

infection, was consistent with the function of AtMKP1 [20].

However, rice plants lacking the phosphatase XB15 (a member of

the PP2C subfamily) were sensitive to M. grisea, and its function

was contrary to that of phosphatase OsPFA-DSP2 [17].

We also demonstrated that AtPFA-DSP4 acts as a negative

regulator in the host response to Pst DC3000 infection. The

AtPFA-DSP4 mutant showed reduced bacterial proliferation and

enhanced resistance to Pst DC3000, but OX8 and OX11 plants

were susceptible to Pst DC3000 at 3 dpi (Figure 4C and D).

Several studies have shown that AtMKP1 and AtPTP1 negatively

regulate the AtMPK3/6 signaling pathway, and act to inhibit

biosynthesis of salicylic acid (SA). However, the AtMKP1 mutant

displayed growth defects and enhanced resistance to pathogen Pst

DC3000 [20,42]. The function of AtPFA-DSP4 was found to be

similar to that of AtMKP1, and was contrary to the function of

AtMKP2 [18,20].

Pathogen infection leads to the generation and accumulation of

ROS in plants; H2O2 is an important component of ROS, and

plays key roles in plants, such as regulating growth and

development, signal transduction and oxidative damage

Figure 3. Histochemical detection of H2O2 by 3,3-diaminobenzidine (DAB at 1 mg/mL) staining and detection of defense-related
genes using qRT-PCR. (A) Production and accumulation of H2O2 in leaves at 2 hpi after M. grisea infection and mock inoculation (distilled water
containing 0.01% Tween 20). (B) Detection of OsPR1a and OsPR5 expression at 6 hpi and 12 hpi following M. grisea infection by qRT-PCR. Each
experiment consistd of three-independent replicates, given the representative group, **P,0.01.
doi:10.1371/journal.pone.0034995.g003
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Figure 4. Phenotypes of atpfa-dsp4 mutant, Col-0 and AtPFA-DSP4-overexpression plants following Pst DC3000 infection. (A) Genomic
structure and transcription of AtPFA-DSP4 detected using RT-PCR. The T-DNA was inserted into the fifth exon. (B) Expression of AtPFA-DSP4 in Col-0
and overexpression plants was quantified using qRT-PCR. (C) Phenotype of Col-0, atpfa-dsp4 mutant, and AtPFA-DSP4-overexpression plants at 3 days
after Pst DC3000 infection. (D) Bacterial counts in leaves of Col-0, atpfa-dsp4 mutant, and AtPFA-DSP4-overexpression plants at different days after
inoculation with Pst DC3000. The experiment was repeated with three biological replicates *P,0.05.
doi:10.1371/journal.pone.0034995.g004

Figure 5. Photosynthesic inhibition and accumulation of H2O2. (A) The effects of AtPFA-DSP4 on inhibition of photosynthesis. The
photosynthesic capacity of Col-0, atpfa-dsp4 mutant and AtPFA-DSP4-overexpression plants was detected using the IMAGE-PAM system at days zero,
two and three following Pst DC3000 inoculation. The experiment was repeated with three replicates (plants: n = 10), and averaged, **P,0.01,
compared with Col-0 under same treatment condition. (B) Detection of H2O2 in leaves at 2 hpi after mock (distilled water) treatment and Pst DC3000
inoculation. The experiment was repeated with three independent replicates (leaves: n = 4).
doi:10.1371/journal.pone.0034995.g005

Phosphatases Regulate Plants Resistence

PLoS ONE | www.plosone.org 7 April 2012 | Volume 7 | Issue 4 | e34995



[4,43,44,45]. The results of our study showed that OsPFA-DSP2

and AtPFA-DSP4 inhibited the production and accumulation of

H2O2 in leaves of overexpression lines in the early stages of

infection. Recent studies have reported that endogenous and

exogenous H2O2 inhibited pathogen cell growth, penetration and

proliferation at the infection site by inducing PCD [3,8,9]. H2O2

levels in transgenic plants overexpressing OsPFA-DSP2 or AtPFA-

DSP4 did not accumulate to control levels, which lead to

inactivation of downstream signaling molecules and reduced

expression of defense-related genes, such as PR genes. Pst

DC3000 grew and proliferated rapidly in the overexpression lines,

which were more susceptible to pathogens. However, because the

appearance of black spots on the leaf surface of OX13 and OX21

plants was observed at 7 dpi, we suggest that H2O2 in the

overexpression lines is produced during the later stages of fungal

infection, leading to the appearance of HR symptoms (Figure 2F).

The results presented here show that AtPFA-DSP4 and OsPFA-

DSP2 (data not shown) inhibited the photosynthesic capacity

during the later stages of infection. Pathogen inoculation may

result in the production and accumulation of H2O2, but a certain

percentage of H2O2 is derived from the chloroplast [4,5,7,45].

H2O2 as a signaling molecule can negatively regulate photo-

synthesic capacity [46]. Therefore, we presumed that the integrity

of chloroplasts was impaired by intense H2O2 production during

the later stages of infection, leading to the observed decrease in

photosynthesis in the overexpression lines. However, the produc-

tion and accumulation of H2O2 in overexpression plants was not

synchronous with the inhibition of photosynthesis. On the one

hand, as a first defense system, the burst of H2O2 is rapid; on the

other hand, chloroplast act as a semi-independent organelle, have

the ability of auto-repair, resulting in delaying the inhibition of

photosynthesic capacity. H2O2 is an upstream signaling molecule,

and is involved in regulating the MAPK cascade [20,42,47].

In conclusion, we have demonstrated that two novel homolo-

gous genes from rice and Arabidopsis, OsPFA-DSP2 and AtPFA-

DSP4, function as negative regulators in the pathogen response

through the H2O2-mediated pathway. However, H2O2 plays

critical roles in different signaling cascades, and which H2O2-

mediated pathway is modulated by OsPFA-DSP2 and AtPFA-

DSP4 is not clear. To further understand the functions of OsPFA-

DSP2 and AtPFA-DSP4 in response to biotic stress, it will be

critical to identify the upstream and downstream effectors which

function in the OsPFA-DSP2 and AtPFA-DSP4 signaling

pathways, and to demonstrate whether OsPFA-DSP2 and AtPFA-

DSP4 function in biotic response.
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