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Abstract

Direct and indirect effects of global warming are expected to be pronounced and fast in the Arctic, impacting terrestrial,
freshwater and marine ecosystems. The Barents Sea is a high latitude shelf Sea and a boundary area between arctic and
boreal faunas. These faunas are likely to respond differently to changes in climate. In addition, the Barents Sea is highly
impacted by fisheries and other human activities. This strong human presence places great demands on scientific
investigation and advisory capacity. In order to identify basic community structures against which future climate related or
other human induced changes could be evaluated, we analyzed species composition and diversity of demersal fish in the
Barents Sea. We found six main assemblages that were separated along depth and temperature gradients. There are
indications that climate driven changes have already taken place, since boreal species were found in large parts of the
Barents Sea shelf, including also the northern Arctic area. When modelling diversity as a function of depth and temperature,
we found that two of the assemblages in the eastern Barents Sea showed lower diversity than expected from their depth
and temperature. This is probably caused by low habitat complexity and the distance to the pool of boreal species in the
western Barents Sea. In contrast coastal assemblages in south western Barents Sea and along Novaya Zemlya archipelago in
the Eastern Barents Sea can be described as diversity ‘‘hotspots’’; the South-western area had high density of species,
abundance and biomass, and here some species have their northern distribution limit, whereas the Novaya Zemlya area has
unique fauna of Arctic, coastal demersal fish. (see Information S1 for abstract in Russian).
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Introduction

Direct and indirect effects of global warming are expected to be

pronounced and fast in the Arctic, impacting terrestrial, freshwater

and marine ecosystems [1]. The Arctic marine ecosystems

comprise the deep Arctic Ocean with its surrounding continental

shelves and marginal seas, of which the Barents Sea (BS) is the

largest (1.6 million km2) extending from the shelf break towards

the Norwegian Sea in the south (ca. 68uN) to the shelf break in the

high Arctic at around 81uN (Figure 1).

The Norwegian pioneer natural historian Michael Sars (1851,

cited in [2]) may have been the first to note that the BS is a

boundary area between arctic and boreal faunas. The species

belonging to different faunas are likely to respond differently to

climate variation and trends. Species distributions in the BS largely

reflect the oceanographic conditions comprising of Arctic and

Atlantic water masses. Outflow of cold, low-salinity Arctic water

converges with warmer, saline Atlantic inflow water along the

Polar Front (Figure 1, [3]). The position and configuration of the

Polar Front is of particular ecological and biogeographical

importance and is to a large extent determined by geomorpho-

logical features such as deep troughs (.400 meters) and shallow

banks (,100 meters). The Polar Front is relatively stable and well

defined in the western BS, less so in the eastern BS. In winter, the

area north of the Polar Front is covered with ice. Up until recently

the north-eastern BS has had permanent ice-cover, but during the

last decade the entire shelf sea has been ice free during the summer

months [4].

The preference for certain environmental conditions defines

species assemblages, i.e. groups of species consistently co-occurring

within limited subareas, also within the often large zoogeograph-

ical provinces (e.g. [5]). For demersal fish, depth and temperature

are apparently the most important habitat variables (e.g. [6],[7]).

The BS is a very significant fishing area and most of the

commercial fish stocks are monitored regularly. However, more

holistic assessments and monitoring of biodiversity and specifically

fish assemblages and non-target species are lacking. Such

assessments are called for and are now being initiated, however,

and baseline descriptions of the fish assemblages form important

and necessary foundations for subsequent quantitative studies [8].
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More than 200 fish species have been recorded in the BS (e.g.

[9], [10]). By comparison 242 marine fish species have been

recorded for the whole Arctic region [11]. Few BS fish species

have been studied extensively, and in particular many of the Arctic

species are poorly described ecologically and even taxonomically

(e.g. [11]). Comprehensive faunistic studies in the BS have

presented species lists and qualitative classifications of species into

zoogeographical and/or ecological groups [12]. [13], [14], [15].

[9], [16], [17]. According to these about ninety percent of the fish

species in the BS are benthic or benthopelagic demersal fish. With

some notable exceptions (e.g. [12]), the bulk of previous fish

research in the BS focused on the 5–10 commercially important

target species (e.g. [18], [19]); and accounts of spatial distribution

and assemblage structure has only comprised restricted subareas of

the BS [20], [21], [22], [23], [24].

Research vessel surveys provide data potentially suitable for

comprehensive studies of fish assemblages, not only the species

targeted by fisheries. This data base is thus a largely untapped

resource of information on the wider fish community and an aim

of this paper was to fill a significant knowledge gap by identifying

and characterising demersal assemblages based on recent survey

data. We consider such studies timely for several reasons: First,

species composition and distribution of single species and

assemblages within the BS may be affected by the expected

alteration in oceanographic features associated with global and

regional climate change. A comprehensive account of structure

and patterns of distribution of assemblages based on recent data is

needed as a baseline against which possible future developments

are assessed and monitored. Second, as in other highly impacted

marine ecosystems e.g. the North Sea and the Baltic, identifying

areas with unique species composition and diversity ‘‘hot spots’’ is

of clear relevance to management and the monitoring of direct

human impacts (e.g. [25], [7], [26]). The BS is heavily influenced

by fishing and it ranks as one of the most important fishing areas of

the North Atlantic for a range of boreal fish resources, including

the world’s largest stock of Atlantic cod (Gadus morhua). Develop-

ment of oil and gas exploration and exploitation is imminent [27].

This strong human presence places great demands on scientific

investigation and science-based advisory capacity.

The data used here were collected during the period 2004–2009

on the annual ecosystem survey run jointly by the Institute of

Marine Research (IMR), Norway, and the Polar Research

Institute of Marine fisheries and Oceanography (PINRO) of the

Russian Federation. This survey was run in August-September

when the BS has least ice-cover. The study years were the warmest

on record extending back to 1900 (,1uC higher than the long

term mean measured in the Kola section in south eastern Barents

Sea [28]), and in particular the area of Arctic water in summer

(bottom temperatures ,0uC) was reduced from 35.8% (average

1970–2003) to 23% (average 2004–2009 [4]). Furthermore, the

ice-cover was reduced and extensive northern and eastern areas

were ice-free and accessible to the investigations for the first time.

The data set from this survey series is the spatially most extensive

from the BS, allowing a study of the distribution of fish

assemblages across the entire area. No previous analyses

considered the spatial variation in fish diversity and assemblages

including also species inhabiting the understudied northern BS.

Our aim was to create a new baseline by identifying and

characterizing the main demersal fish assemblages in the BS in

relation to gradients in depths and temperature. From our analysis

we identified and characterised six distinct assemblages that were

well separated along depth and temperature gradients. These

included three Arctic and three Atlantic assemblages. There are

indications that climate driven changes have already taken place,

since boreal species were found in large parts of the BS shelf,

including also the northern Arctic area.

Results

Identifying demersal fish assemblages
In total 101 species or species groups were recorded during the

survey series (online Information S2). Of these 75 species groups

were retained and used further in the cluster analyses after

excluding deep (.500 m) and shallow (,50 m) hauls, pelagic

species and after merging some taxa with uncertain identity that

often were identified only to the family or genus level. The latter

were Gymnelus sp (dominated by Gymnelus retrodorsalis), Icelus bicornis

and Icelus spatula which were pooled as Icelus sp., and all liparids

treated as Liparidae. The liparids were mostly either from the genus

Careproctus, which may be 2–6 species (or more) with unresolved

taxonomic status, or Liparis fabricii. The species caught were

classified into zoogeographical groups according to [14]; 31%

belonged to the group of Arctic or Arcto-boreal species, 60%

belonged to Boreal or Mainly Boreal species and 8% belonged to

widely distributed or South Boreal species (Information S2).

The hierarchical cluster analysis of the presence/absence matrix

revealed six prominent clusters at 55% similarity (Table 1,

Figure 2a, Figure S1). In addition several smaller clusters

occurred, consisting of only 1–3 grid cells each. The largest

assemblages were an ‘Atlantic’ assemblage in the south and an

‘Arctic’ assemblage north of the Polar Front, comprising 132 and

114 grid cells, respectively (Figure 2b). To the northeast a ‘High

Arctic’ assemblage was found around Franz Josef’s Land. Along

the coasts of Norway and Russia three different coastal clusters

occurred; one in the southwest, one in the southeast, and one close

to Novaya Zemlya. East of Spitsbergen in the western BS (on the

Svalbard bank), single grid cells clustered with each of the three

eastern assemblages (‘‘High Arctic’’, ‘‘Novaya Zemlya’’ and

‘‘South East coastal’’). These apparently odd grid cells and the

clusters containing only 1–3 grid cells were excluded from further

analysis.

Globally, there was a significant differences in species

composition among the assemblages (p = 0.01). The pairwise tests

(Table 2) revealed significant differences in all six main

assemblages. The ‘‘High Arctic’’ assemblage differed most from

the other assemblages but was most similar to the ‘‘Arctic’’

assemblage (Table 2). The ‘‘South West’’ assemblage was also

distinct and was most similar to the ‘‘Atlantic’’ assemblage. The

‘‘South West’’ and’’ High Arctic’’ were the most dissimilar

assemblages in terms of species composition (Table 2), not

unexpected since they were also the most geographically distant

(Figure 2b). The ‘‘Novaya Zemlya’’ and ‘‘Arctic’’ assemblage was

most similar (dissimilarity = 48.57%). The ‘‘Atlantic’’ and ‘‘Arctic’’

assemblages had a dissimilarity of 50.47%.

Species composition in the assemblages
The occurrence of all species caught by assemblage is given in

Information S2. Four species, cod, Atlantic hookear sculpin, long

Figure 1. The Barents Sea area with main oceanographic features (after Loeng 1991). Green arrows: coastal water, red arrows: Atlantic
inflow and Blue arrows: Arctic water. The position of the polar front (grey) where Arctic and Atlantic water masses meet, is determined by the bottom
topography and is well defined in the western Barents Sea.
doi:10.1371/journal.pone.0034924.g001
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rough dab and daubed shanny, were ubiquitous and all of these

were Mainly Boreal (Information S2). These four species domi-

nated in different assemblages. Long rough dab was among the

five most important species (defined as among the five most

abundant species of the species with highest occurrence in each

assemblage) in all but the ‘‘High Arctic’’ assemblage. Atlantic

hookear sculpin was found in .50% of the grid cells in all

assemblages and was among the five most important species in

both the ‘‘Arctic’’ and the ‘‘Atlantic’’ assemblages, whereas

Daubed shanny was among the top five in the ‘‘South East’’ and

‘‘Arctic’’ assemblages. Cod was among the five most important

species in the southern assemblages (‘‘Atlantic’’, ‘‘South East’’ and

‘‘South West’’).

The ‘Atlantic’ assemblage was dominated by five species, but

only two were found in all 132 grid cells; long rough dab and cod

(Table 3). Also thorny skate, Atlantic hookear sculpin, and

haddock were found in all but a few grid cells. These five species

constituted 44% in terms of numbers and 58 % in terms of

biomass (summed across grid cells averages) in this assemblage.

In the ‘Arctic’ assemblage no species was found in all grid cells,

but 6 species groups were found in all but one or two grid cells;

bigeye sculpin, long rough dab, Atlantic hookear sculpin, Atlantic

poacher, snailfishes (Liparidae), and daubed shanny (Table 3).

Except for long rough dab, these constituted 70% of the catches in

terms of numbers. These are all small species thus contributing

only 28% to the weight of the catches. Cod and Greenland halibut

were the species that together with long rough dab were most

important in terms of biomass in the ‘Arctic’ assemblage.

The ‘High Arctic’ assemblage was dominated by four species,

but only two were found in all grid cells; big eye sculpin and

snailfishes (Table 3). Atlantic hookear sculpin and Greenland

halibut were found in several of the grid cells. The five most

common species constituted 90% in terms of numbers and 95 % of

the weight of the catches in the ‘High Arctic’ assemblage.

The coastal ‘Novaya Zemlya’ assemblage had two species in all

grid cells; the Arctic staghorn sculpin and ribbed sculpin.

Additional four species were found in 34 out of the 35 grid cells;

northern alligatorfish, Atlantic poacher, daubed shanny and long

rough dab (Table 3). The five most abundant species constituted

60% of the catches in numbers and 23 % of the biomass (Table 3).

Cod was found in 33 of the 35 grid cells and contributed 55% of

the biomass.

The ‘South-East’ coastal assemblage had four species found in

all grid cells; long rough dab, cod, haddock and thorny skate.

Daubed shanny was found in all but one grid cell (Table 3). These

5 species represented 95 % both of the numbers caught and of the

biomass in this assemblage.

In the ‘South-West’ coastal assemblage 9 species were found in

all the grid cells. The five most abundant species constituted 69 %

of the catches in numbers and 80 % of the catches in biomass.

Biomass and abundance by assemblage
The average biomass and abundance differed between the

assemblages (Figure 3). The highest biomass and abundance was

found in the ‘‘South West’’ assemblage and the lowest in the

‘‘High Arctic’’. The biomass in the ‘‘South West’’ assemblage was

significantly higher (p,0.001) than the biomass in all other

assemblages except the ‘‘South East’’ assemblage (p = 0.08). The

abundance in the ‘‘South West’’ assemblage was significantly

higher than the abundance in all the other assemblages

(p,0.0001).

The relationship between species assemblages and
depth and temperature gradients

To study the relationship between species assemblages and

depth and temperature we ran a Constrained Correspondence

Analysis with the presence/absence data matrix with grid-specific

average bottom temperatures and depths added (Figure 4,

Figure 5). The first two constrained ordination axes, accounting

for 13.5% (CCA1: 9.2%, CCA2: 4.3%) of the total variation,

summarize the spatial component of variation correlated with

temperature (,CCA1), and depth (,CCA2), respectively

(Figure 4).

The assemblages were quite well separated along the depth and

temperature gradients. Depth separated the shallow ‘‘South East’’,

‘‘South West’’ and ‘‘Novaya Zemlya’’ assemblages from the

deeper ‘‘Atlantic’’, ‘‘Arctic’’ and ‘‘High Arctic’’ assemblages.

Figure 2. Demersal fish assemblages in the Barents Sea indentified from hierarchical clustering. The main clusters are ‘‘South West’’
(red), ‘‘South East’’ (yellow), ‘‘Atlantic’’ (green), ‘‘Arctic’’ (blue), ‘‘High Arctic’’ (turquoise), and ‘‘Novaya Zemlya’’ (purple). Top: Simplified dendrogram
for hierarchical clustering of grid cells showing the six. The full dendrogram is provided in Figure S1. Bottom: Map of the assemblages identified by
the cluster analysis. Grid cells belonging to the same cluster are shown with the same color. The size of the circle is proportional to the grid specific
species density (the average number of species per nautical mile towed).
doi:10.1371/journal.pone.0034924.g002

Table 1. Main assemblages identified from the hierarchical
clustering.

Stations Grid cells % Similarity

Assemblage

Atlantic 1368 132 63.5%

Arctic 967 114 65.8%

High Arctic 20 17 61.0%

Novaya Zemlya 186 35 69.8%

Coastal South West 67 10 75.2%

Coastal South East 187 25 66.7%

The number of stations, number of grid cells (each 35 nm by 35 nm) in each
assemblage and percent similarity between grid cells in the identified
assemblages is provided.
doi:10.1371/journal.pone.0034924.t001

Table 2. Pair-wise percentage dissimilarity between the
assemblages defined by the cluster analysis.

Assemblage
High
Arctic Arctic

Novaya
Zemlya

South
East

South
West Atlantic

High Arctic

Arctic 53.67

Novaya Zemlya 70.18 48.57

South East 85.43 59.39 54.73

South West 92.86 73.15 77.47 59.53

Atlantic 74.1 50.47 61.48 52.82 50.06

The boxes encircles the Northern Assemblages (upper left) and Southern
Assemblages (lower right).
doi:10.1371/journal.pone.0034924.t002
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These two groups of shallow and deep assemblages were both

separated along a temperature gradient. The ‘‘South West’’

assemblage was the warmest, the ‘‘South East’’ was intermediate

and ‘‘Novaya Zemlya’’ was coldest among the shallow, whereas

the ‘‘Atlantic’’ was the warmest, the ‘‘Arctic’’ was intermediate

and the ‘‘High Arctic’’ was the coldest of the deep assemblages.

Species diversity by assemblage
For all six assemblages the species accumulation curves were

asymptotic (Figure 6), suggesting that the sampling level was

adequate to estimate total species numbers. The two assemblages

covering large areas, i.e. the ‘‘Arctic’’ and the ‘‘Atlantic’’ differed

in that the warmer ‘‘Atlantic’’ had higher species richness than the

colder ‘‘Arctic’’ assemblage (Figure 6), but the difference was

rather small. Out of the assemblages covering much smaller area,

the ‘‘South West’’ and ‘‘High Arctic’’ differed most in species

richness, the asymptotic level being twice as high in the South

West than in the High Arctic assemblage (Figure 6). The most

common species appeared to show a higher abundance than

predicted by the log normal distribution in all communities

(Figure 7). In particular, the ’’South East’’ assemblage had a higher

dominance of common species and a lower evenness compared to

the other assemblages (Figure 7).

The species density (s) and Shannon index (H9) varied between

the assemblages (Figure 8). The species density was highest in the

‘‘South West’’ and lowest in the ‘‘High Arctic’’ assemblage. The

species density in the ‘‘South West’’ was significantly higher than

in all other assemblages (p,0.0001). The Shannon index was

lowest in the ‘‘South East’’. There was no significant difference

between the Shannon index in ‘‘South East’’, South West’’ and

‘‘High Arctic’’, but these were significantly lower than the

Table 3. Demersal fish species dominance given as the five most important species in each assemblages (Figure 2, Table 1).

Rank (occ.)
Species with
highest occurrence

Percentage of total
catch by weight

Average catch
(kg/nm)

Percentage of
total abundance

Average catch
(n ind./nm)

Arctic 2 Bigeye sculpin 2 0.8 23 119

Arctic 2 Long rough dab 23 12.6 23 117

Arctic 1 Snailfishes (Liparidae) 1 0.7 11 55

Arctic 1 Atlantic hookear sculpin 1 0.4 9 44

Arctic 2 Daubed shanny ,1% 0.1 4 20

Atlantic 1 Long rough dab 11 12.7 17 110

Atlantic 4 Haddock 21 25 15 101

Atlantic 1 Cod 24 28.7 10 64

Atlantic 3 Atlantic hookear sculpin ,1% 93g 2 13

Atlantic 2 Thorny skate 2 1.9 ,1% 2

High Arctic 1 Snailfishes (Liparidae) 8 0.3 49 37

High Arctic 1 Bigeye sculpin 3 0.1 21 16

High Arctic 2 Greenland halibut 82 3.1 14 11

High Arctic 2 Atlantic poacher 1 29g 3 3

High Arctic 3 Pale eelpout 1 22g 3 2

Novaya Zemlya 2 Long rough dab 20 10.5 34 125

Novaya Zemlya 1 Arctic staghorn
sculpin

,1% 0.9 11 40

Novaya Zemlya 2 Northern alligatorfish ,1% 55g 6 23

Novaya Zemlya 1 Ribbed sculpin ,1% 0.3 5 19

Novaya Zemlya 2 Atlantic poacher ,1% 78g 4 13

South East 1 Long rough dab 12 25.0 40 263

South East 1 Haddock 46 94.0 38 250

South East 1 Cod 36 72.4 16 107

South East 2 Daubed shanny ,1% 15g 1 4

South East 1 Thorny skate 1 2.0 ,1% 2

South West 1 Norway pout 11 34.8 55 1440

South West 1 Haddock 40 132.1 10 273

South West 1 Saithe 18 59.6 2 49

South West 1 Cod 10 33.8 1 37

South West 1 Long rough dab ,1% 1.2 1 31

For each assemblage the species were ranked by occurrence (number of grid cells occupied by the species). The most the five most important species was defined as
the five most frequently occurring, if more than five species had the same high occurrence, these were ranked according to their abundance. For the five most
important species in each assemblage, the species-specific percentages of the total number of individuals caught and total catch in kg, together with the average
number of individuals (n ind./nm) and biomass (kg/nm) (standardised catch per nautical mile towed) is provided.
doi:10.1371/journal.pone.0034924.t003
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Shannon index in the ‘‘Arctic’’, ‘‘Atlantic’’ and ‘‘Novaya Zemlya’’

assemblages (p,0.05).

Species diversity according to depth and temperature
The grid cell specific species density and Shannon index varied

significantly with depth and temperature (p,0.0001), explaining

32.1 and 34.5% of the deviance in species density and Shannon

index, respectively. Shannon index declined and species density

increased non-linearly with temperature (Figure 9). Both Shannon

Index and species density was highest at intermediate depths, but

the pattern was most pronounced for the Shannon index (Figure 9).

There was however, strong spatial variation in the residuals (spline

interaction term between latitude and longitude, p,0.0001, both

Shannon index and species density).

The residuals differed significantly between the assemblages

(Figure 10). The residuals from the depth and temperature analysis

for species density were significantly lower both for the ‘‘South

East’’ and ‘‘High Arctic’’ assemblages (p,0.05). The residuals

from the depth and temperature analysis for the Shannon index

was significantly lower in the ‘‘South East’’ assemblage compared

to the others (p = 0.03). This means that there was significantly

lower diversity in these assemblages than predicted from their

temperature and depth estimated at the scale of the whole of the

BS shelf.

Discussion

In this medium-large scaled (,1.6 million km2) and coarse

grained (,35 by 35 nm sampling units) study we identified

assemblages that all had reasonable levels of internal similarity

(.60%) and that were reasonably distinct (all pairwise dissimilar-

ities .48.5%). These levels of similarity/dissimilarity between

major clusters are in the same range as commonly found in other

investigations on marine assemblages (e.g. [29], [30], [31], [32]).

The spatial distribution of the main assemblages was quite robust

even when analysing species matrices of abundance and biomass

data and when doing the analysis by separate years (Å. Høines

unpublished results). Consequently pooling the data for all years

did not mask or alter the main conclusions. We used the distance

metric and linkage most commonly used for these type of studies

(e.g. [33], [34], [35], [36]), and did not evaluate how these choices

might influence our results. We did however, analyse also data on

abundance and biomass. These analyses did result in one or two

additional noticeable assemblages along the polar front where the

abundance and biomass of the most common species were highest,

compared to the analysis on presence absence.

Species density, often taken to be identical with species richness

[37], may be a sampling artefact of overall individual density, since

the probability of sampling individuals of rare species increase with

overall density, given the same sampling effort. This effect might

contribute to some of our results, e.g. the ‘‘South-West’’

assemblage had high species densities and overall abundances,

whereas the ‘‘High Arctic’’ had low species density and

abundances. However, our species accumulation plots show that

the species pool was higher in ‘‘South West’’ than in the ‘‘High

Arctic’’, a similar sized area; therefore higher species densities

reflect overall higher species richness in addition to higher

abundances.

We used catch data from demersal trawl; a highly selective

sampling gear. Different species of fish behave differently ahead of

the trawl gear (discussed in [38]). The main issue that could bias

the cluster analysis is if there is spatial variation in the species

specific catchability. To estimate absolute species densities and

actual species composition the catchability of the different fishes

under different conditions should have been evaluated [39]. This

would have required targeted studies and was outside the scope of

the present study.

Figure 3. Box plots of grid cell average abundances (bottom)
and biomasses (top) by assemblage. The colors represent the
different assemblages: ‘‘South West’’ (SW, red), ‘‘South East’’ (SE, yellow),
‘‘Novaya Zemlya’’ (NZ, purple) ‘‘Atlantic’’ (Atl, green), ‘‘Arctic’’ (Ar, blue)
and ‘‘High Arctic’’ (HA turquoise).
doi:10.1371/journal.pone.0034924.g003

Figure 4. Constrained Correspondence Analysis biplot of axes I
and II relating species composition (presence/absence) to
environment (bottom temperature and depth). The squares
represent grid cells, and their colors represent the different main
assemblages: unclassified (grey), ‘‘South West’’ (red), ‘‘South East’’
(yellow), ‘‘Atlantic’’ (green), ‘‘Arctic’’ (blue), ‘‘High Arctic’’ (turquoise), and
‘‘Novaya Zemlya’’ (purple).
doi:10.1371/journal.pone.0034924.g004
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Our identified assemblages can be used as baseline when

studying future changes. Like in [23] studying a restricted area in

the western BS, we found a discontinuity between the Atlantic and

Arctic part of the BS. The northern, Arctic part is ice covered in

winter, whereas the Boreal/Atlantic part is more influence by

Atlantic inflow. The Northern ‘‘High Arctic’’, ‘‘Novaya Zemlya’’

and ‘‘Arctic’’ assemblages had small catch rates, especially in terms

of biomass, and small-bodied species dominated in terms of

occurrence. In contrast, the southern group of assemblages, the

‘‘Atlantic’’, ‘‘South East’’ and ‘‘South West’’ had high catch rates

in kg and higher occurrence of large bodied species like cod and

haddock.

Still, the spatially extensive ‘‘Atlantic’’ and ‘‘Arctic’’ assemblages

were not very distinct in terms of species composition and

diversity, probably partly attributable to the intrusion of seasonally

migrating boreal species into the northern part of the BS at this

time of year (August-September). Our finding that boreal species

occurred in large parts of the BS, including also the Arctic north of

the polar front, may be an indication that distributional changes

due to the recent warming trend has already taken place, probably

caused by extended seasonal migrations in the exceptionally warm

study years [28]. In particular, the northern part of the BS was

warmer than normal. In this area Arctic water was heated by sub-

ducted Atlantic water following the western slope of the BS Shelf,

north along the western part of Spitsbergen and entering from the

north between the Svalbard/Spitsbergen archipelago and Franz

Josef Land [4].

Like in previous warm periods in the BS (e.g. the 1930’s, [40]),

new southern species are expected to extend into the BS and

change the species composition and increase species richness in the

Southern BS. Many of the species that are expected to occur

already co-exist in the North Sea with the boreal species present in

the BS. Common boreal species already present in the BS will

probably extend further into the northern BS, and our results

suggest that this is already taking place. The boreal species are

constrained by their migration potential, but if climate change

induces changes in the spawning areas toward the north these

spatial constraints are relieved and major changes in spatial

distribution and species composition of the assemblages could be

expected.

Figure 5. Depth and bottom temperature in the Barents Sea. The depth contours is shown in the top panel (A) and the average bottom
temperatures from 2004–2009 is shown at the bottom (B).
doi:10.1371/journal.pone.0034924.g005

Figure 6. Species accumulation plots for each of the main Barents Sea assemblages. Y-axis: cumulative number of species recorded, x-axis:
number of stations sampled.
doi:10.1371/journal.pone.0034924.g006
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A relevant question is whether changes due to climate variability

and trends can be detected in an area such as the BS where there is

a strong influence of fishing, especially on boreal species. Fishing,

while mainly targeting certain species, may have a structuring

effect on assemblages. The southern BS is similar both in fish

species composition and fishing effort to several other North

Atlantic shelf ecosystems like the North Sea [41]. In general, fish

diversity and fish community structure in these systems have been

studied much more extensively than the BS communities. In the

Figure 7. The log abundance species rank plot for each main assemblage. The dots represents the species, the solid line represents the Log
normal distribution fitted to the species abundance distribution for each assemblage.
doi:10.1371/journal.pone.0034924.g007

Figure 8. Box plots of grid cell average Shannon index
(bottom) and species density (top) by assemblage. The colors
represent the different assemblages: South West’’ (SW, red), ‘‘South
East’’ (SE, yellow), ‘‘Novaya Zemlya’’ (NZ, purple) ‘‘Atlantic’’ (Atl, green),
‘‘Arctic’’ (Ar, blue) and ‘‘High Arctic’’ (HA turquoise).
doi:10.1371/journal.pone.0034924.g008

Figure 9. Shannon index (top) and Species density (bottom) as
function of depth (left) and temperature (right). The relationships
were fitted with generalized additive models, with grid cells as the
statistical unit (n = 374).
doi:10.1371/journal.pone.0034924.g009
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North Sea, spatial variation in hydrographical regimes determines

the structure of demersal fish community and spatial structure of

the fish community was much stronger than temporal variation

across a period of 18 years [31]. Similar results have been found in

Iceland [42]. However, over a longer time period (71 years) the

species composition of demersal fish in the North Sea has changed

[43]. This change was mostly induced by fishing since the

proportion of fish species that were vulnerable to fishing decreased

(e.g. slow growing species with late maturation).Size distributions

have often been used to assess changes in fish communities (e.g.

[44]) and this is of special relevance when assessing the impact of

fishing since fishing removes large-bodied species and individuals

[45]. The Arctic fish species in the BS is mostly small bodied;

therefore the identity of the species and the species composition is

more relevant than the size distribution per se when evaluating the

impact of climate in relation to fishing on the BS fish community.

Furthermore, the spatial variation in fishing pressure has to be

taken into account, up to date, the fishing activity in the Northern

BS is limited.

Solar radiation/ energy declines with depth and latitude and

increases the productivity [46], [47]. Sea temperature is often used

as a proxy for solar radiation, energy and productivity in marine

systems and therefore servers ti explain the latitudinal gradient in

species richness in demersal fish and other marine taxa (e.g. [48],

[49], [50]). The effect of depth on species richness in marine

ecosystems is equivalent to the effect of altitude in terrestrial

systems. Two general patterns are often found: 1) either a decline

in species richness with depth/altitude consistent with a drop in

energy/productivity (e.g. [51], [52]), or 2) a peak in richness at

intermediate depths/altitudes [48], [53]. This latter relationship is

explained in terms of the mid-domain effect which is caused by

species ranges randomly arranged in a limited domain, will

produce a dome shaped relationship between e.g. depth and

species richness [54]. For the other aspect of diversity, evenness the

empirical relationships with energy, production and depth/

altitude and latitude, are less consistent (e.g. [47]).

At the scale of the whole BS, we found a non linear increase in

species density with temperature and a dome shaped relationship

with depth. The Shannon index, taking both the evenness and

species richness into account, had a similar dome shape

relationship with depth as species density, but the relationship

with temperature was negative. This can be attributed to a

decrease in evenness with temperature as judged from the

assemblage specific species rank abundance plots.

When accounting for the large scale relationships between

diversity, depth and temperature for the whole BS, we found that

the species densities and Shannon index in the ‘‘South East’’

assemblage was lower than expected. There are several possible

explanations. There is a fishery by demersal trawl mainly for

flatfish in the South Eastern part of the BS and demersal trawling

can have negative impact on both targeted species and certain

vulnerable species taken as by-catch (e.g. [55]). There is, however,

area-based data on fishing activity by Norwegian and Russian

vessels, and although the data are not directly comparable, it is

known that the fishing activities are higher in other parts of the

southern BS. Therefore, fishing activity alone is most likely not

responsible. Then there is a potential effect of habitat complexity,

which might increase fish diversity (e.g. [56]). The area covered by

the ‘‘South East’’ assemblage is flat and rather homogenous, and

this might contribute to the low diversity. Finally, the ‘‘South East’’

assemblage is far from the entrance of the BS to the Atlantic

Ocean, i.e. far from the pool of Atlantic/boreal species. A decline

in the number of species from the BS and eastwards to the White

Sea and the Kara and Laptev Seas was also found in [57]. Decline

in species richness from west to east attributable to distance from

the Atlantic Ocean, although at a larger scale, has been found in

the Mediterranean (e.g. [58]). The ‘‘High Arctic’’ assemblage is

rather similar to fish community in the species poor Kara Sea [59],

[60]. In the ‘‘High Arctic’’ assemblage, the lower than expected

species density cannot be attributable to fishing, or habitat

homogeneity, but the distance to source of Atlantic species might

be important [53]. Furthermore, the strong seasonality in this

northern area including long periods with ice cover limiting

annual productivity might be just as important as the temperature

measured during the survet in determining the low species density

and species richness (e.g. [61], [62]).

The ‘‘South-East’’ and ‘‘High-Arctic’’ assemblages had low

species densities compared to their depth and temperature,

whereas the ‘‘South-West’’ and ‘‘Novaya Zemlya’’ can be

considered as diversity ‘‘hot spots’’. The ‘‘South-west’’ assemblage

had high species richness compared to the relatively small area it

encompassed, and the species density was high. The Shannon

index and evenness was low however, since some species was very

abundant (e.g. the Norway pout). This area is the distribution limit

of several more southerly coastal boreal fish species [63] and the

area is very rich in sponges and other benthic invertebrates

creating complex three-dimensional habitats (L. Lindal Jørgensen

personal communication). The ‘‘’’Novaya Zemlya’’ assemblages

had, even though the bottom temperatures were the lowest

measured during the study, relatively high species density and

species richness (e.g. compared to the ‘‘South East’’ assemblage

covering a similar sized area) as well as relatively high Shannon

index and evenness (as judged from the species rank abundance

plot). This area has the highest occurrence of Arctic coastal

demersal fishes in the BS, some of which are only found in this

part of the BS [64]. These two coastal assemblages thus exemplify

the boreal and Arctic faunas characterizing the Barents Sea [2].

Figure 10. Box plots of residuals from modeling diversity as
function of temperature and depth by assemblage. Residuals
from fitting the Shannon index is shown at the bottom and residuals
from fitting species density are shown at the top. The colors represent
the different assemblages: ‘‘South West’’ (SW, red), ‘‘South East’’ (SE,
yellow), ‘‘Novaya Zemlya’’ (NZ, purple) ‘‘Atlantic’’ (Atl, green), ‘‘Arctic’’
(Ar, blue) and ‘‘High Arctic’’ (HA turquoise).
doi:10.1371/journal.pone.0034924.g010
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In conclusion, we identified and characterized a basic structure

of six assemblages and since this is the first study with data

available for the entire BS, these can serve as important references

when evaluating variation and trends e.g. induced by factors such

as climate or direct human impacts (e.g. [42], [65])

Materials and Methods

Sampling and input data
The data used were collected on the Joint IMR PINRO

ecosystem survey run annually in August and September since

2004 (e.g. [66]). Fish were sampled with a Campelen 1800 bottom

trawl towed on double warps [67]. The mesh size was 80 mm

(stretched) in the front and 16–22 mm in the codend, allowing the

capture and retention of small-sized fish. The trawl configuration

and bottom contact was monitored remotely by Scanmar trawl

sensors. The horizontal opening was 17 m, and the vertical

opening 4–5 m. A rockhopper ground gear was used throughout.

The standard distance between bottom trawl hauls was 35 nautical

miles (3561852 m). However, in certain areas where additional

investigations were carried out, sampling density was higher. The

standard procedure was to tow 15 minutes after the trawl had

made contact with the bottom, but the tow duration actually

ranged between 5 minutes and 1 hour, and 25% of the tows

deviated more than 62 minutes from the standard towing time.

Towing speed was 3 knots, equivalent to a towing distance of 0.75

nautical miles (ca. 1400 m) in a 15 min tow.

Temperature was measured with a conductivity, temperature

and depth (CTD) profiler at every sampling site, except in areas

with a denser bottom station grid, here a CTD was run at every

second bottom trawl station.

In the study period (2004–2009), 3282 bottom trawl hauls were

made. Of these 262 were carried out opportunistically specifically

to identify and sample echo sounder records of sound-scattering

organisms, and these were excluded from our analyses. We also

excluded 68 hauls due to technical problems with the trawl gear or

operation. Since we were studying demersal fish within the BS

proper, i.e. on the continental shelf but not in sublittoral coastal

waters, we excluded catches from areas deeper than 500 m

(217 hauls) and shallower than 50 m (27 hauls). The dataset

analysed thus comprised 2707 valid hauls.

Fish catches were immediately sorted to lowest possible

taxonomic level, preferably species. For each species, the wet

ungutted catch weight and the number of individuals in the catch

was recorded. Pre-analysis data quality checking involved critically

examining records. Species not previously reported from the BS

were only retained if the specimens (or a photograph of it) had

been identified by taxonomists. Some obvious misidentifications

occurred of species very unlikely to inhabit the BS were excluded.

The numbers of excluded records were low, i.e. about 100 out of

more than 35,000 records. More details on the fish records are

provided in the BS Fish Atlas resulting from the same survey data

[64]. The catches, i.e. weights and numbers per tow, were

standardized by dividing catches by the towing distance in nautical

miles prior to analysis.

[14] classified 163 fish species recorded in the BS into seven

zoogeographical groups (Arctic, Mainly Arctic, Arcto-boreal,

Mainly Boreal, Boreal, South Boreal and widely distributed). We

classified the species in our data by these categories (Informa-

tion S2). The species were also categorised into demersal and

pelagic species following [14]. Catches of pelagic species in these

hauls were excluded (Information S2).

The Shannon index (H9) of diversity was calculated for each tow

as:

H 0~{
Xs

i~1

pilnpi

Where S in the total number of species per haul, pi is the

proportion of abundance of species i in the haul of the total

abundance summed across all species caught in the haul.

The data were gridded into a 35 nm by 35 nm grid with 374

grid cells based on the survey design. We calculated grid cell

averages of: the standardized number of individuals by species per

haul, total number of individuals summed across species per haul,

the total biomass in kg summed across species per haul, the species

density (that is the number of species per haul),and the Shannon

index.

Statistical analyses
To identify assemblages of fish from co-occurrence hierarchical

cluster analysis was applied [35,68] using PRIMER (Plymouth

Routines in Multivariate Ecological Research) for Windows

version 6.1.6 (2006). All biotic grid cell similarity matrices used

in these analyses were constructed using the Bray-Curtis similarity

index [33]. Average linkage was used.

Initially, the hierarchical cluster analyses were run on the

gridded species matrix, for presence/absence–, abundance

(individuals per nm towed)–and biomass data (kg per nm towed).

The abundance–and biomass analyses can often be over-

dominated by a small number of highly abundant species, which

then fail to reflect similarity of overall community composition

[35], [69] and the analyses using the abundance or biomass matrix

showed patterns that were strongly influenced by the most

common species. Reduction of the data to simple presence/

absence values gives rare species equal weight as common ones.

Further, due to the undefined uncertainty in the sampling and

highly skewed distributions of the species biomass and abundance

data, a reduction of the data matrix to simple presence or absence

of each species are justified and the final clustering on presence/

absence data was presented here.

To test for global differences and pairwise comparisons between

the identified species assemblages the Analyses of Similarities

(ANOSIM) routine implemented in Primer v6 [68] was used. In all

the analyses 999 permutations were used.

To estimate species richness by assemblage, species accumula-

tion plots were obtained by using the R package vegan [70] on

station level presence-absence data.

The species abundance distributions were obtained for each

assemblage on the gridded standardized abundance data using the

package vegan [70] was used.

To relate the structural variation in the demersal fish

communities to gradients in depth and temperature Canonical

Correspondence Analysis (CCA) was used (R package vegan, [70]).

To relate the Shannon index and species density to tempera-

tureand depth we used generalised additive models (gams)

allowing for non linear relationships (R package mgcv [71]).

Supporting Information

Information S1 Abstract in Russian

(DOC)

Information S2 List of fish species recorded at the
ecosystem survey in the Barents Sea 2004–2009. The

species were caught in demersal trawl surveys during the summers

2004–2009 in the Barents Sea. The zoogeographical affinities

following [14]: Arctic (A), Mainly Arctic (MA), Arcto-boreal (AB),
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Mainly boreal (MB), Boreal (B), South Boreal (SB) and Widely

Distributed (WD) is shown for each species. Species excluded from

the analyses (Excl.) are marked with either p (pelagic), d
(deep.500,) or s (shallow,50 m). Notes on identification for

certain groups are given below the table. The species are listed

together with their frequency of occurrence in the species

assemblages resulting from the hierarchical clustering (see text

and Fig. 2). The frequency of occurrence is expressed as number of

grid cells with records of the species as a proportion of the total

number of grid cell in each assemblage. The names of the

assemblages are abbreviated: South West: SW, Atlantic: Atl, South

East: SE, Novaya Zemlya: NZ, Arctic: Ar, High Arctic: HA.

(DOC)

Figure S1 The full dendrogram from the hierarchical
clustering on the grid cells (n = 374). The cut-off line at 55%

similarity used to determine the clusters is shown in red. The main

assemblages discussed in the text are identified by colored lines at

the bottom of the dendrogram.

(TIF)
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