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Abstract

CTCF is a highly conserved, multifunctional zinc finger protein involved in critical aspects of gene regulation including
transcription regulation, chromatin insulation, genomic imprinting, X-chromosome inactivation, and higher order chromatin
organization. Such multifunctional properties of CTCF suggest an essential role in development. Indeed, a previous report
on maternal depletion of CTCF suggested that CTCF is essential for pre-implantation development. To distinguish between
the effects of maternal and zygotic expression of CTCF, we studied pre-implantation development in mice harboring a
complete loss of function Ctcf knockout allele. Although we demonstrated that homozygous deletion of Ctcf is early
embryonically lethal, in contrast to previous observations, we showed that the Ctcf nullizygous embryos developed up to
the blastocyst stage (E3.5) followed by peri-implantation lethality (E4.5–E5.5). Moreover, one-cell stage Ctcf nullizygous
embryos cultured ex vivo developed to the 16–32 cell stage with no obvious abnormalities. Using a single embryo assay that
allowed both genotype and mRNA expression analyses of the same embryo, we demonstrated that pre-implantation
development of the Ctcf nullizygous embryos was associated with the retention of the maternal wild type Ctcf mRNA. Loss
of this stable maternal transcript was temporally associated with loss of CTCF protein expression, apoptosis of the
developing embryo, and failure to further develop an inner cell mass and trophoectoderm ex vivo. This indicates that CTCF
expression is critical to early embryogenesis and loss of its expression rapidly leads to apoptosis at a very early
developmental stage. This is the first study documenting the presence of the stable maternal Ctcf transcript in the
blastocyst stage embryos. Furthermore, in the presence of maternal CTCF, zygotic CTCF expression does not seem to be
required for pre-implantation development.
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Introduction

CTCF (CCCTC-binding factor) is a highly conserved, ubiqui-

tously expressed 11 Zn finger DNA binding protein that was

originally identified as a factor interacting with specific sequences

in the c-myc gene promoters [1,2,3]. CTCF utilizes different

combinations of its Zn- fingers to bind a relatively large number of

highly divergent target sequences throughout genome [3,4,5,6,7].

CTCF was originally characterized as a transcription factor

involved in repression [2,3,8,9] or activation of transcription

[10,11], but its activity has now been extended to include a variety

of other roles in gene regulation, including chromatin insulation

[4,12,13]. Indeed, genomic regions displaying chromatin insulator

activity harbor CTCF binding sites, and CTCF binding is

required for their insulator activity [6,14,15,16]. Moreover, CTCF

binding has been shown to mark boundaries between distinct

chromatin domains in the genome [6,17,18]. Methylation-

sensitive CTCF binding plays a critical role in regulating genomic

imprinting at several genomic loci, including the Igf2/H19 locus

[19,20,21,22]. In addition CTCF plays an important role in X-

chromosome inactivation [23,24], and genes which escape X-

inactivation are separated from stably inactivated X-chromosome

genes by CTCF binding sites [25]. CTCF has also been shown to

be involved in organizing higher order chromatin structure

including the interchromosomal association of transcriptionally

active genes [12,13,26].

Given the multifunctional nature of CTCF in regulating gene

expression and a recent report on the essential function of CTCF

in pre-implantation development using the oocyte-specific RNAi

approach [27], we wished to determine what effect a complete loss

of zygotic CTCF expression would have on embryogenesis.

Accordingly, we engineered mice harboring a complete loss of

function Ctcf allele. While mice heterozygous for this allele

appeared phenotypically normal, nullizygous mice displayed early

embryonic lethality at the peri-implantation stage. Interestingly,

Ctcf nullizygous embryos appeared morphologically normal up to

the blastocyst stage of development, which was associated with

expression of the maternal wild type Ctcf transcript and protein.
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Subsequent loss of this stable maternal transcript was temporally

associated with loss of CTCF protein expression, apoptosis and

embryonic lethality.

Results

Generation of Ctcf (+/2) mice
We previously observed that the coding region of CTCF exhibits

marked (.93%) evolutionary conservation in chickens, mice and

humans [3], and we therefore utilized a human CTCF cDNA

probe to clone the mouse Ctcf genomic locus. Utilizing the Jackson

Laboratory Interspecific Backcross DNA Panels [28] together with

a polymorphic CAA repeat marker that we identified in the second

intron of the mouse Ctcf locus, we mapped Ctcf to a single locus in

distal mouse chromosome 8 (Figure 1). Subsequently we observed

that the Ctcf locus in mouse (Figure 2A) and human [5,29] has a

virtually identical exon/intron structure consisting of two non-

coding and ten coding exons.

Our efforts to engineer Ctcf knockout mice via homologous

recombination in mouse embryonic stem (ES) cells are detailed in

Materials and Methods. We first isolated the mouse Ctcf genomic

locus from a 129sv mouse genomic library, engineered a targeting

vector from the Ctcf genomic clones and used this vector to

generate a null allele (Figure 2A). We chose to generate an allele

that deleted all coding exons of Ctcf since only partial deletion may

result in production of an aberrant CTCF protein arising from

internal cryptic translation initiation sites and alternative splicing.

The linearized targeting vector was electroporated into ES cells,

and positive recombination was scored by Southern blots with the

designated 5-prime and 3-prime probes located outside of the

targeting cassette (Figure 2A, B). Seven positive ES clones were

selected to produce chimeric mice and two clones of Ctcf (+/2)

heterozygous knockout mice were established, as confirmed by the

presence of both the wild type and deleted Ctcf alleles documented

by Southern blot hybridization of EcoRV-digested tail genomic

DNA (Figure 2B). To excise the neo cassette, one clone (5-3) of Ctcf

(+/2) heterozygous knockout mice was crossed to the MORE

(Mox2Cre) mice, which express the Cre recombinase from the

Mox2 locus [30]. The resulting neo-excised Ctcf allele was

documented by PCR using primers flanking the remaining LOX

site shown in Figure 2A.

Deletion of the Ctcf locus in the Ctcf knockout allele was also

confirmed utilizing a FISH assay on metaphase chromosomes

from lymphocyte cultures derived from Ctcf (+/2) and Ctcf (+/+)

mice (Figure 2C). As a Ctcf probe we utilized a 17 kb lambda Ctcf

genomic clone (19.1) containing all of the coding exons that were

deleted in the Ctcf knockout allele (Figure 2A). As a positive control

we used a centromeric probe from mouse chromosome 8 where

Ctcf maps (170 kb BAC clone MGB 11301). The Ctcf probe was

visualized with fluorescein (green) and centromeric probe for

chromosome 8 was visualized with Cy3 (red). Only a single

chromosome from the Ctcf (+/2) metaphase spreads displayed a

Ctcf signal, while two signals were clearly seen in similar spreads

from the Ctcf (+/+) mice (Figure 2C).

Ctcf knockout mice exhibit embryonic lethality
To study the effect of CTCF knockout on embryonic

development, we generated the Ctcf (+/2) heterozygous mice by

crossing C57/BL6 Ctcf (+/+) mice to 129sv Ctcf (+/2) mice. The

C57BL6/129sv F1 Ctcf (+/2) mice were viable and displayed no

apparent phenotypic abnormalities. However, when intercrossing

heterozygotes we observed a selective absence of Ctcf (2/2) pups

in the newborn offspring (Table 1, top row) indicating that the

absence of functional CTCF is lethal to the developing embryo.

To determine at what stage of embryonic development this

lethality occurs we genotyped embryos obtained at different stages

of development following the breeding of Ctcf (+/2) heterozygotes.

For this genotyping we utilized a multiplex PCR- based assay that

distinguishes the wild type from mutant Ctcf alleles (Figure 3B). We

observed a Mendelian ratio of genotypes at embryonic day 3.5

(E3.5) (Table 1). Ctcf (2/2) E3.5 blastocysts had a distinct

blastoceal and intact zona pellucida, displaying no phenotypic

abnormalities compared with their wild type or heterozygous

littermates (Figure 4A). However, no Ctcf (2/2) embryos were

observed at embryonic day 5.5 (E5.5) and beyond (Table 1).

Notably, the number of empty deciduae in E5.5–6.5 heterozygous

intercrosses was markedly increased in comparison to control

crosses (Table 2). Taken together our data indicate that the Ctcf

(2/2) embryos fail to implant and become non-viable between

E4.5 and E5.5.

Ctcf (2/2) embryos reach the blastocyst stage but fail to
develop further, which is associated with the loss of the
maternal Ctcf mRNA and CTCF protein

To gain further insight into the embryonic defects resulting

from the absence of CTCF we isolated newly fertilized eggs from

Ctcf heterozygous crosses, cultured these embryos ex vivo and then

genotyped them. Cultures of explants from E0.5 one cell stage Ctcf

Figure 1. Ctcf maps to mouse chromosome 8. The Jackson
Laboratory interspecific backcross panels (BSS and BSB) [28] were
utilized to map the Ctcf locus to mouse chromosome 8. The loci are
listed in order with the most proximal at the top. The black boxes
represent the C57BL6/JEi allele and the white boxes the SPRET/Ei allele.
The number of animals with each haplotype is given at the bottom of
each column of boxes. The percent recombination (R) between
adjacent loci is given to the right of the lower figure together with
the standard error (SE) for each R.
doi:10.1371/journal.pone.0034915.g001

Peri-Implantation Lethality of Ctcf Null Embryos
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Figure 2. Generation of Ctcf knockout mice. (A) A schematic diagram of the mouse Ctcf locus and the targeting vector derived from the wild
type Ctcf allele as described in Materials and Methods are shown. E1–E12 denote Ctcf exons 1 through 12. Restriction enzyme sites shown on map are
as follows: E denotes EcoRI, X denotes XbaI, and S denotes SpeI. The locations of both the 5-prime and 3-prime Ctcf genomic probes for the Southern
blot analysis are indicated. Red arrows show the locations of genotyping primers. A schematic diagram of genomic digest with EcoRV of the Ctcf
knock-out and wild type alleles is shown below. (B) A Southern blot analysis of EcoRV digested genomic DNA utilizing the 5-prime and 3-prime Ctcf
genomic probes distinguishes the wild type (14 kb or 25 kb) from the mutated (8 kb or 13 kb) Ctcf alleles. (C) FISH analysis of chromosome spreads
from lymphocyte cultures derived from Ctcf heterozygous (+/2) and wild type (+/+) mice. The probe for Ctcf, a lambda phage clone 19.1 containing a
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(+/+), (+/2) and (2/2) embryos all underwent cell division with

many embryos successfully reaching the 32 cell blastocyst stage

within four days (Figure 3A and Table 3). We observed no gross

phenotypic abnormalities in the cultured pre-implantation stage

Ctcf (2/2) embryos compared with their wild type or heterozy-

gous littermates.

To confirm the absence of CTCF expression in the Ctcf (2/2)

E3.5 blastocyst stage embryos, we developed a single embryo assay

that allowed both genotyping and mRNA expression analysis of

the same embryo as detailed in Materials and Methods. For both

genotyping and RT-PCR, we utilized multiplex PCR conditions to

control for quality of genomic DNA and cDNA, respectively.

Unexpectedly, RT-PCR analysis of mRNA extracted from E3.5

blastocyst stage embryos isolated from Ctcf (+/2) intercrosses

revealed Ctcf transcripts not only in the Ctcf (+/+) and (+/2)

embryos but also in the Ctcf (2/2) embryos (Figure 3B, left panel).

In contrast, we could not detect any Ctcf transcripts in the freshly

isolated E4.5 stage Ctcf (2/2) embryos (Figure 3B, right panel).

These observation were confirmed utilizing a quantitative real-

time RT-PCR assay of the Ctcf (+/+), (+/2), and (2/2) embryos

(Figure 3C). The presence of the Ctcf mRNA in the Ctcf (2/2)

blastocyst stage embryos likely represents the retention in the

developing embryo of the maternal oocyte Ctcf transcripts that

appear to remain up to E3.5 stage of development but are lost by

E4.5. Although we found it technically difficult to perform both

Ctcf mRNA quantitation and anti-CTCF immunohistochemistry

on the same embryo, we observed that all (16/16) E3.5 embryos

from Ctcf heterozygous intercrosses were positive by immunohis-

tochemistry for CTCF protein expression (Figure 4B). The chance

that none of these 16 embryos were Ctcf (2/2) according to the

expected Mendelian ratio of genotypes is less than 0.05. This

strongly suggests that the Ctcf mRNA present in the E3.5 Ctcf (2/

2) embryos is indeed associated with CTCF protein expression.

To gain further insight into the mechanism of early embryonic

lethality of the Ctcf (2/2) embryos, we isolated E3.5 blastocyst

stage embryos from Ctcf heterozygous intercrosses and cultured

them ex vivo. The cultured embryos were then PCR genotyped and

assessed for Ctcf transcript expression utilizing RT-PCR. We

observed that while the ex vivo cultures of the Ctcf (+/+) and (+/2)

E3.5 stage embryos actively proliferated over 2–4 days to form an

inner cell mass and trophoectoderm (Figure 4A, top panel), the

Ctcf (2/2) E3.5 embryos explants failed to outgrow and the inner

cell mass and trophoectoderm did not develop (Figure 4A, bottom

panel). While both Ctcf transcripts and CTCF protein were

observed in the Ctcf (2/2) E3.5 blastocyst stage embryos

(Figure 3B,C and Figure 4B), following 2 days of ex vivo culture

these embryos no longer expressed Ctcf mRNA or protein (data not

shown and Figure 4C). Apoptosis as assessed by TUNEL assay was

much more pronounced in the cultured Ctcf (2/2) blastocysts

compared with the cultured Ctcf (+/+) blastocysts (Figure 4C).

Discussion

The ubiquitous expression of CTCF, its marked evolutionary

conservation and its central role in controlling gene expression by

regulating DNA methylation, genomic imprinting, insulator

activity, and interchromosomal associations [4,5,12,13] suggests

that it may be a crucial regulator of cell viability, proliferation, and

differentiation. This is indeed confirmed in the present study in

which we observe that mouse embryos nullizygous for Ctcf become

arrested in development very early in embryogenesis. Embryos

undergo initial cell division and reach the blastocyst stage (E3.5).

However, these Ctcf nullizygous embryos appear incapable of

uterine implantation and invariably undergo extensive apoptosis

between E4.5 and E5.5.

Given the recently documented essential role for CTCF in pre-

implantation development [27,31], together with the previous

observation that conditional loss of CTCF expression in cell

culture is associated with the rapid onset of apoptosis [32,33], it is

perhaps surprising that the Ctcf nullizygous embryos are even

capable of repeated cell division to reach the 32 cell blastocyst

stage. We clearly demonstrate here that this initial cell prolifer-

17 kb Ctcf genomic DNA insert that includes all coding Ctcf exons that were deleted in the Ctcf knockout allele (Figure 2A), was visualized with
fluorescein (green fluorescence). The probe for chromosome 8 identification, a BAC clone (MB11301, Research Genetics), was visualized with Cy3 (red
fluorescence). Examples of single metaphase cells from the Ctcf (+/2) and Ctcf (+/+) mice after hybridization to the Ctcf and chromosome 8 probes
are shown. Both homologues of chromosome 8 are labeled with a red and a green signal in the wild type mouse, whereas absence of green signals
on one homologue of chromosome 8 confirmed the presence of a deletion of Ctcf in the Ctcf (+/2) mouse.
doi:10.1371/journal.pone.0034915.g002

Table 1. Ctcf nullizygous mice display early embryonic lethality.

Cross Stage Average number of pups or embryos per cross Ctcf genotype

Female6Male +/+ +/2 2/2

(+/2)6(+/2) Postnatal 7.2 39 84 0

(+/2)6(+/+)* Postnatal 7.1 29 27 NA

(+/+)6(+/2)* Postnatal 7.4 18 19 NA

(+/2)6(+/2) E12.5 7.5 4 11 0

(+/2)6(+/2) E10.5 8.1 8 16 0

(+/2)6(+/2) E8.5 7.6 13 26 0

(+/2)6(+/2) E6.5 8 10 24 0

(+/2)6(+/2) E5.5 7 6 14 0

(+/2)6(+/2) E3.5 8.5 18 34 14

*Control crosses.
NA = not applicable.
doi:10.1371/journal.pone.0034915.t001
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ation/viability exhibited by the Ctcf (2/2) embryos is associated

with the retention of the wild type maternally-derived Ctcf

transcript at the preimplantation stage. Maternal transcripts in

general are well documented to be present in the embryo up to the

two-cell stage, when the zygotic transcription is activated, however

recent evidence suggests that certain maternal transcripts are still

retained up to the blastocyst stage [34,35,36]. In fact, many

embryonically lethal null mutations are believed to be masked by

prolonged maternal expression of the genes and therefore rarely

result in early cleavage-stage pre-implantation lethality [37,38,39].

Indeed, we reproducibly detected Ctcf maternal transcripts in the

Ctcf nullizygous blastocysts corresponding to E3.5 (Figure 3B,C),

suggesting that the presence of this wild type transcript may be

involved in maintaining the viability of the Ctcf (2/2) embryo

during pre-implantation development. Consistent with this

hypothesis, we observed that by E4.5 stage of development, the

Ctcf maternal transcript is no longer detected in the Ctcf nullizygous

embryos, and this is temporally associated with the onset of

apoptosis.

In mammals, the transition between oocyte and embryo

development occurs in the absence of active transcription and

depends on the presence and coordinated translation of stored

mRNAs transcribed in the growing oocyte [40,41,42]. The

stability and translation of such maternal transcripts was found

to correlate with the presence of cytoplasmic polyadenylation

elements (CPE) within about 90–120 nucleotides 5-prime of the

nuclear polyadenylation signal, AAUAAA [43]. Consistently,

cytoplasmic polyadenylation of some maternal transcripts was

shown to be necessary for oocyte maturation and initiation of pre-

implantation development in the mouse [44]. Several RNA-

binding proteins including the CPE-binding protein (CPEB) were

shown to bind CPEs to form a translation-repressing complex that

upon activation would release the mRNA allowing formation of

the initiation complex [41,45,46]. The CPE was originally

identified as an UUUUAU sequence in 3-prime UTRs of

maternal transcripts. Survey of 3-prime UTRs of a series of

maternal mRNAs that are relatively abundant in the mouse oocyte

and zygote expanded this consensus to (A)UUUU(UU)A(UAA)

[43]. In our study, we identified a stable maternal Ctcf mRNA that

Figure 3. Ctcf (2/2) embryos retain maternal Ctcf mRNA and develop to the blastocyst stage. (A) E0.5 one-cell stage embryos were
isolated from Ctcf (+/2) heterozygous intercrosses and cultured ex vivo as detailed in Materials and Methods. (B) A single embryo assay shows
genotyping and RT-PCR analysis of DNA and RNA simultaneously isolated from the same freshly isolated E3.5 and E4.5 pre-implantation stage
embryos. The top panel shows a representative multiplex PCR-based genotyping analysis of genomic DNA from these embryos, which distinguishes
wild type and mutated Ctcf alleles. The next panel shows multiplex RT-PCR analysis of mRNA from the same pre-implantation embryos for the
presence of Ctcf and Gapdh transcripts. The bottom panel shows ‘no RT’ controls for the same samples. The displayed results are representative of
over 60 pre-implantation embryos that were analyzed from intercrosses of Ctcf (+/2) heterozygous mice. HaeIII digested QX DNA was utilized as DNA
molecular weight markers in these gels. (C) Real time RT-PCR analysis of Ctcf expression was performed on genotyped E3.5 and E4.5 embryos from
Ctcf (+/2) heterozygous intercrosses. Ctcf RNA levels were normalized to Gapdh expression. The results represent the mean of 3–6 independent
embryos of the indicated genotype. Each embryo was assayed in triplicate, data represents mean +/2 standard error.
doi:10.1371/journal.pone.0034915.g003

Peri-Implantation Lethality of Ctcf Null Embryos
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Table 2. Analysis of E5.5 and E6.5 Ctcf embryos.

Cross Total # of deciduae Ctcf genotype of embryos # of empty deciduae

Female Male +/+ +/2 2/2

Heterozygous crosses

+/2 +/2 72 16 38 0 18

Control crosses

+/2 +/+ 15 6 9 NA 0

+/+ +/2 23 7 15 NA 1

NA = not applicable.
doi:10.1371/journal.pone.0034915.t002

Figure 4. Ctcf nullizygous embryos fail to develop beyond the E3.5 stage and undergo apoptosis. (A) Ex vivo outgrowth of E3.5 embryos.
Blastocysts (E3.5) were isolated from Ctcf heterozygous (+/2) intercrosses and cultured ex vivo for the indicated number of days. At the end of the
culture period the embryos were harvested and PCR genotyping and RT-PCR performed. The cultured Ctcf (+/+) and (+/2) embryos outgrew to form
an inner cell mass (ICM) and trophoectoderm (TE) while little proliferation was noted in the cultured Ctcf (2/2) embryos (406). (B) E3.5 blastocyst
stage embryos isolated from the indicated crosses were subjected to DAPI staining and anti-CTCF immunochemistry (406). All (16/16) embryos
analyzed from the Ctcf (+/2) heterozygous intercrosses were positive for CTCF protein expression, displaying staining patterns similar to the two
representative embryos shown here. The expected Mendelian ratio of genotypes in such crosses indicates that the chance that none of these 16
embryos were Ctcf (2/2) is less than 0.05 (i.e. (3/4)16>0.01). (C) Day two outgrowths of E3.5 embryos of the indicated genotype. Blastocysts (E3.5)
were cultured ex vivo for two days and then subjected to DAPI staining, anti-CTCF immunohistochemistry and TUNEL assay (406). Ctcf (+/+) and (+/2)
embryos outgrew and expressed CTCF, while cultured Ctcf (2/2) embryos failed to outgrow and exhibited loss of CTCF protein expression and
increased apoptosis. The observations displayed here involve one Ctcf (+/+) and two Ctcf (2/2) embryos cultured ex vivo and are representative of
over 60 embryos that were analyzed from Ctcf (+/2) heterozygous intercrosses.
doi:10.1371/journal.pone.0034915.g004
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is efficiently translated and present in the embryo up to the

implantation stage, suggesting that Ctcf transcripts might have a

potential CPE element in its 3-prime UTR. Indeed, a CPE-like

sequence, AUUAUUUUA, is located ,80 nt upstream from a

classic nuclear polyadenylation signal AAUAAA in the mouse Ctcf

mRNA. Moreover, this potential CPE in Ctcf 3-prime UTR is

100% conserved between mouse (NCBI Accession Number:

NM_181322) and human (NCBI Accession Number:

NM_006565).

Maternal-effect genes are usually transcribed in oocytes and

essential for early embryonic development [47,48,49,50]. Chro-

matin structure has been shown to be important for reprogram-

ming gene expression during zygotic genome activation (ZGA) in

pre-implantation development [38,51,52,53]. Perhaps it is not

surprising that CTCF that is involved in chromatin insulation and

organization of higher order chromatin structure was found to be

highly expressed in both oocytes and pre-implantation embryos

[21,27,54]. Moreover, a recent transgenic study using the oocyte-

specific Ctcf RNAi approach [27] demonstrated its essential role in

pre-implantation development suggesting that Ctcf may also be a

maternal-effect gene. The authors reported that maternal

depletion of CTCF resulted in both meiotic defects in oocyte

development and mitotic defects in the embryo and that mitotic

defects and apoptosis occurred at an earlier embryonic develop-

mental stage (morula) than we observed (peri-implantation). This

apparent discrepancy between the previous and our present work

can be readily explained by the completely different technical

approaches utilized in these studies. The previous RNAi-based

approach would likely have efficiently depleted both maternal and

zygotic Ctcf mRNA, likely resulting in earlier apoptosis. Thus these

previous experiments did not clearly distinguish between the

effects of maternal and zygotic expression of CTCF on pre-

implantation development. Our present study, which utilizes a

genetic knockout of the Ctcf locus, would not have affected the

maternal Ctcf mRNA, which likely prolonged the viability of the

embryo beyond the morula to the blastocyst stage. Thus our

present observations clearly demonstrate that in the absence of the

zygotic expression of CTCF, stable maternal Ctcf transcripts are

sufficient to maintain pre-implantation development of the

embryo, establishing Ctcf as a maternal-effect gene.

Materials and Methods

Ethics Statement
This study involved mice that were bred and housed in the

centralized AAALAC accredited Fred Hutchinson Cancer Re-

search Center Animal Facilities. All experimental procedures were

performed in compliance with and approved by the Fred

Hutchinson Cancer Research Center Institutional Animal Care

and Use Committee (IACUC) protocol # 1271. Animals were

euthanized humanely by carbon dioxide overdose as recom-

mended by the Panel of Euthanasia of the American Veterinary

Medical Association (AVMA).

Chromosome mapping of the mouse Ctcf gene
The chromosomal location of Ctcf was determined by using the

Jackson Laboratory interspecific backcross panels: (C57BL/6J6M.

spretus) F16C57BL/6J, called Jackson BSB, and (C57BL/

6JEi6SPRET/Ei) F16SPRET/Ei, called Jackson BSS [28]. A

polymorphic region encompassing a simple sequence repeat

located in the second Ctcf intron was used to distinguish between

the C57BL/6J and the M. spretus Ctcf alleles. PCR primers used to

amplify this region include: Forward: 59 CCA GGA GAG CCA

AGG ATA TAT AGT GAG ACC 39 and Reverse: 59 GGT TAG

GAT TAC AGT GTA CAT CAC CAT ACC 39 with a product

size of 320 bp for the C57BL/6J Ctcf allele and 340 bp for the M.

spretus allele.

Targeted disruption of the Ctcf locus
The mouse Ctcf genomic locus was isolated from a 129sv mouse

genomic library and overlapping lambda genomic clones encom-

passing all coding exons of Ctcf were mapped and partially

sequenced. To make the targeting vector (Figure 2A) we employed

a three-step ligation strategy. First the ‘‘left arm’’, a 3.5 kb EcoR1

fragment from the lambda clone 4.12 was cloned into pZErO

(Invitrogen), then the Not1-Apa1 fragment from the pPGKneob-

paAlox2PGKDTA plasmid (from Phil Soriano) was cloned into

pZero3.5EE, resulting in pleftArm plasmid. Finally the ‘‘right

arm’’, a 2.6 kb SpeI fragment from the lambda clone 13.2 was

ligated into a compatible and unique Nhe1 site of the pLeftArm

plasmid. This targeting construct harbors the PGK-neo cassette

for positive selection and a PGK-DTA toxin expression cassette

for negative selection. This linearized vector was electroporated

into ES cells, and positive recombination was scored by Southern

blots with the designated 5-prime and 3-prime probes located

outside of the targeting cassette (Figure 2A, B). ES clones, positive

for the wild type and mutated Ctcf EcoRV fragments, were selected

to produce chimeric mice (Figure 2B). To excise the neo cassette,

the Ctcf (+/2) heterozygous knockout mice were crossed to the

MORE (Mox2Cre) mice, which express Cre recombinase from

Mox2 locus [30]. The resulting neo-excised Ctcf allele was

documented by PCR using primers flanking the remaining LOX

site as described under Genotyping. The heterozygous Ctcf (+/2)

mice were backcrossed to 129sv genetic background. For

embryonic lethality studies, the C57BL6/129sv F1 Ctcf (+/2)

mice were generated by crossing C57/BL6 Ctcf (+/+) mice to

129sv Ctcf (+/2) mice.

FISH analysis
Metaphase chromosomes preparations were obtained from

mice heterozygous for the Ctcf deletion and from control wild type

mice. Spleens were dissected from the mice and short-term

lymphocyte cultures were stimulated by lipopolysaccharide.

Chromosome preparations were harvested using 0.75 M KCl

and methanol: acetic acid (3:1). Slides were denatured as described

previously [55]. A 17 kb Ctcf genomic DNA fragment cloned in

lambda phage (lambda 19.1, Figure 2A) was labeled with biotin by

nick-translation using a Bionick kit from Invitrogen. A 170 kb

BAC clone (MB11301, Research Genetics) used to mark the

proximal region of mouse chromosome 8 was labeled with

digoxygenin by nick-translation. Both probes were hybridized in

the presence of mouse Cot1 DNA and of lambda phage DNA.

Hybridization and washes were done as described previously [55].

The biotin-labeled Ctcf probe was revealed by an anti-biotin

antibody made in goat followed by an anti-goat antibody labeled

Table 3. Ctcf nullizygous embryos can develop ex vivo to the
morula/blastocyst stage.

Ctcf genotype 1–8 cell Morula/Blastocyst Total

+/+ 6 7 13

+/2 or 2/+ 10 18 28

2/2 5 4 9

doi:10.1371/journal.pone.0034915.t003
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with fluorescein. A Cy3-labeled anti-digoxygenin antibody re-

vealed the digoxygenin-labeled M11301 probe. Slides were stained

with Hoechst and actinomycin D and signals examined by

fluorescence microscopy.

Ex vivo culture of pre-implantation stage embryos
All mouse studies were approved by the local Institutional

Animal Care and Use Committee (IACUC) and all efforts were

made to minimize suffering. Ctcf heterozygous intercrosses

produced an average of 8–9 pre-implantation stage embryos per

mating. All embryos collected were from natural matings without

the use of hormone-stimulated super-ovulation. To isolate E0.5

one cell-stage embryos, mice on the day of cervical plug formation

were sacrificed, and under an inverted microscope the egg sac was

dissected from the oviduct and incubated briefly in M2 media

(Specialty Media) plus hyaluronidase (100 ug/ml) to remove the

cumulus layer as previously described [56]. The fertilized eggs

were then isolated and cultured individually in 100 ul droplets of

M16 media (Specialty Media) in 35 mm Petri dishes flooded with

mineral oil. For the culture of E3.5 blastocyst stage embryos, mice

were sacrificed three days after cervical plug formation and the

uterus flushed with DMEM supplemented with 10% FBS. Under

the inverted microscope, individual blastocysts were isolated and

then cultured on pre-coated 0.1% gelatinized 6-well plates in

DMEM, 10% FBS, and LIF (Leukaemia Inhibitory Factor,

ESGRO, 1000 U/ml, Millipore) in a 37C incubator with 5%

CO2. DNA and RNA was extracted from the freshly isolated or ex

vivo cultured embryos.

Genotyping and RT-PCR analysis of pre-implantation
stage embryos

DNA and mRNA were simultaneously extracted from the

freshly isolated or ex vivo cultured pre-implantation stage embryos

using the modified DNA/RNA extraction protocol using the

Dynal Dynabeads (Invitrogen). Briefly, pre-implantation stage

embryos were collected in a drop of M2 media, rinsed in RNAse

Away solution (Molecular Bioproducts) and then placed in 10 ul of

the ‘cleared Dynabeads solution’ (DNA lysis buffer) for DNA

processing according to the Dynabeads DNA Direct Universal kit

protocol (Invitrogen). Following the lysis of the embryo and the

DNA/Dynabeads complex formation using 170 ul of the resus-

pended Dynabeads per embryo, the supernatant was transferred to

a clean, pre-chilled tube with 100 ul of the RNA lysis buffer from

the Dynabeads mRNA Direct Kit (Invitrogen) and stored on ice

for mRNA extraction until the DNA processing was complete.

mRNA extraction was carried out using Oligo(dT)25 Dynabeads

according to the mRNA Direct Kit protocol (Invitrogen).

For genotyping, the DNA was subjected to multiplex PCR

utilizing primer sets recognizing the mutated and wild type Ctcf

alleles. The primer pair for the wild type Ctcf allele is the following:

Forward: 59 GAG AAA GTA GTT GGT AAT ATG AAG CCT

CC 39 and Reverse: 59 GGA CAT GTG TAA CTG CAA AGC

TCA CAC TG 39, with a product size of 420 bp. The primer pair

identifying the knockout Ctcf allele includes: Forward: 59 GGC

ATG CTG GGG ATG CGG TGG GCT CTA TGG 39 and

Reverse: 59 CCA GTG CCC TCT GAT ACA TGA TTG TGA

TCC 39, with a product size of 600 bp. Neo-excised allele

genotyping primers are: Forward: 59 TGA CCT AAC CCT AAC

CCT AGC TGA 39 and Reverse: 59 TGA AAC TGA CTC TGA

GCA AAG GGA 39, with a product size of 516 bp.

For standard RT-PCR analysis the mRNA extracted from the

embryos was reversed transcribed utilizing Superscript III

(Invitrogen) under the following conditions. Random hexamers

were added to 1–3 mg of RNA and incubated at 70uC for

5 minutes in a thermocycler. The temperature was cycled to 50uC
and the RNA/primer mixture equilibrated for 5 minutes. Next,

the reaction mixture (nuclease free H2O, 56 buffer, RNase

inhibitor, dNTPs, DTT, and RT, except for no RT control), pre-

equilibrated at 50uC, was added to the RNA/primer mixture and

incubated for two hours at 50uC, followed by heat inactivation at

70uC for 5 minutes. Ctcf expression was analyzed using multiplex

PCR conditions for both Ctcf and control Gapdh transcripts.

Primers for the Ctcf transcript (GENBANK U51037.1) included:

Sense: 59 GAG CCT GCT GTA GAA ATT GAA CCT GAG

CC 39, (2188–2216) and Antisense: 59 CCA ATA GTC CTG

GTG CCG AGC AAG GCC CC 39, (2551–2522) with a product

size of 363 bp spanning Ctcf exons 11 and 12. Primers for the

control Gapdh transcript included: Sense: 59 CGT ATT GGG

CGC CGT GTC ACC AGG GC 39, and Antisense: 59 GCC

ATG AGG TCC ACC ACC CTG TTG CTG 39, with a product

size of 950 bp. RNA was tested for DNA contamination using a

no-RT control and primers were verified by amplification of

genomic DNA. The exact PCR conditions are available upon

request.

For the real time RT-PCR analysis, cDNA was generated with

SuperScript II reverse transcriptase (Invitrogen) under the

following conditions. Random hexamers were added to 1.5 ug of

RNA and incubated at 75uC for 5 min then transferred

immediately to ice. Next, the reaction mix including 56
SuperScript II buffer, 0.1 M DTT, RNase inhibitor, dNTPs,

and SuperScript II RT was added to the RNA/primer mixture

and incubated at 45uC for 1 hour, then 50uC for 10 min, followed

by heat inactivation at 75uC for 15 min. Real Time PCR analysis

was performed on the automated ABI 7900 PCR machine

(Applied Biosystems) using TaqMan Universal PCR Master Mix

(Applied Biosystems) and a Ctcf-specific Taqman probe and

primers spanning the junction between Ctcf exons 9 and 10 as

follows: CTCF_mRNA_F1: 59-TGC CTT TGT CTG TTC CAA

GTG T-39, probe: 59-6FAM-ATT CAC CCG CCG GAA CAC

AAT GGC A-NFQ-39, mCTCF_mRNA_R1: 59-CAG CAC

AGT TAT CTG CAT GTC-39. Amplification of Gapdh was

performed in parallel reactions with primers and a Taqman probe

as follows: forward primer: 59-CCCGTAGACAAATGGT-

GAAGG-39, probe: 59- 6FAM-CGGTGTGAACG-

GATTTGGCCGTATT-3BHQ_1-39, and reverse primer: 59-

AAATGGCAGCCCTGGTGA-39. PCR was performed accord-

ing to the manufacturer’s instructions in 20 uL reactions, using

2 uL of 1:1 dilution of cDNA from RT reaction described above.

Standard ABI 7900 cycling conditions were followed. Sequence-

specific amplification was detected by FAM (reporter dye)

fluorescent signal during the amplification cycles. The standard

curve assay (as described by Applied Biosystems) with serial

dilutions of a standard was used for absolute quantification.

Following quantification, Ctcf-mRNA levels were normalized to

Gapdh expression. Each sample was assayed in triplicate; data

represents mean +/2 standard error.

Immunofluorescence and TUNEL assay
Blastocysts were cultured on pre-coated 0.1% gelatinized glass

slides or Lab-Tek permanox chamber slides (Nunc), fixed with

3.7% formaldehyde/PBS for 15 minutes and permeabilized with

0.5% Triton X-100/PBS at room temperature. The embryos were

washed with PBS/PVP (3 mg/ml) and incubated with a blocking

solution containing 10% NGS (ImmunoPure normal goat serum,

Pierce Biotechnology)/PBS/0.1% Triton X-100 for 1 hour at

room temperature followed by overnight incubation with a

primary rabbit monoclonal anti-CTCF antibody (Cell Signaling)

diluted 1:300 in 2% NGS/PBS/0.1% Triton X-100 at 4uC.
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Following a PBS/PVP/0.1% Triton X-100 wash, the embryos

were incubated with a secondary goat Texas red-conjugated anti-

rabbit antibody (1:200) (Jackson Laboratory) for 1 hour at room

temperature. After washing, slides were counterstained with DAPI.

Apoptosis was assessed using the DNA fragment end labeling kit

(FragEL, Calbiochem) following the manufacturer’s instructions.
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