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Abstract

Dyrk1A phosphorylated multiple proteins in the clathrin-coated vesicle (CCV) preparations obtained from rat brains. Mass
spectrometric analysis identified MAP1A, MAP2, AP180, and a- and b-adaptins as the phosphorylated proteins in the CCVs.
Each protein was subsequently confirmed by [32P]-labeling and immunological methods. The Dyrk1A-mediated
phosphorylation released the majority of MAP1A and MAP2 and enhanced the release of AP180 and adaptin subunits
from the CCVs. Furthermore, Dyrk1A displaced adaptor proteins physically from CCVs in a kinase-concentration dependent
manner. The clathrin heavy chain release rate, in contrast, was not affected by Dyrk1A. Surprisingly, the Dyrk1A-mediated
phosphorylation of a- and b-adaptins led to dissociation of the AP2 complex, and released only b-adaptin from the CCVs.
AP180 was phosphorylated by Dyrk1A also in the membrane-free fractions, but a- and b-adaptins were not. Dyrk1A was
detected in the isolated CCVs and was co-localized with clathrin in neurons from mouse brain sections and from primary
cultured rat hippocampus. Previously, we proposed that Dyrk1A inhibits the onset of clathrin-mediated endocytosis in
neurons by phosphorylating dynamin 1, amphiphysin 1, and synaptojanin 1. Current results suggest that besides the
inhibition, Dyrk1A promotes the uncoating process of endocytosed CCVs.
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Introduction

Dual-specificity tyrosine phosphorylation-regulated kinase

(Dyrk1A) is a proline-directed serine/threonine kinase [1,2], and

is a highly conserved protein [3,4,5]. The Dyrk1A gene ortholog in

Drosophila, minibrain, is required for the proliferation of neuro-

blasts during post-embryonic neurogenesis. Knock-down muta-

tions of the gene cause a reduction in brain size of adult flies

(hence, the name ‘‘minibrain’’), but do not affect gross anatomy

[6]. Dyrk1A is also involved in the early development of the

central nervous system of vertebrates (see a review by Tejedor and

Hammerle) [7]; it is expressed strongly in the central nervous

system and heart, suggesting significant roles for Dyrk1A in the

development of these organs. Despite its role in early development,

Dyrk1A is expressed persistently throughout adulthood in the

brain [8,9,10]. The temporal and spatial distributions of Dyrk1A

suggest that this gene plays an important role in controlling adult

brain functions.

Many endogenous substrates for this kinase have been identified

(see a review by Aranda et al.) [11]. We have found that Dyrk1A

phosphorylates multiple proteins engaged in regulated endocytosis

in neurons: dynamin 1 [12], amphiphysin 1 [13], and synaptojanin

1 [14]. Dynamin 1 phosphorylation takes place primarily at Ser857

in the proline-rich domain (PRD) [15], which contributes to the

reduction in dynamin binding to the Src homology 3 (SH3)

domains of amphiphysin 1 and endophilin 1 [15]. Amphiphysin 1

is phosphorylated at the Ser293 within a PRD located in the middle

part of the protein, and the phosphorylated amphiphysin exhibited

reduced binding to endophilin 1 [13]. Phosphorylation of

synaptojanin 1 by Dyrk1A also alters its binding to SH3 domains

[14], yet the phosphorylation sites remain to be mapped. After

exocytosis of neurotransmitters, rapid endocytosis occurs via

clathrin-mediated endocytosis to recycle synaptic vesicle constit-

uents. Our results strongly suggest that Dyrk1A functions to

regulate the onset of clathrin-mediated endocytosis in neurons.

Various types of adaptor proteins and accessory proteins link

clathrin to membrane cargos and lipids, and regulate clathrin coat

assembly and disassembly [16,17]. At the nerve terminus, clathrin-

mediated endocytosis is regulated by many proteins, which

undergo dephosphorylation-phosphorylation cycles during the

exocytosis-endocytosis cycles of synaptic vesicles [18,19]. Recently,

we found that Dyrk1A was able to bind clathrin heavy chain

(CHC), endophilin 1, and dynamin 1 and that Dyrk1A

phosphorylated multiple proteins associated with the clathrin
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coated vesicles (CCVs) isolated from rat brains [20]. The current

study was carried out to identify the Dyrk1A substrates associated

with the brain CCVs. We report here that the substrate proteins of

Dyrk1A are MAP1A, MAP2, AP180, and a- and b-adaptins and

that the phosphorylation promotes dissociation of these proteins

from the CCV membranes. To our knowledge, this is the first

report to describe phosphorylation-dependent dissociation of

clathrin-adaptor proteins from CCV membranes. Our findings

suggest that Dyrk1A may regulate multiple steps of the CCV

cycling processes at the onset of CCV formation and uncoating of

the endocytosed CCVs.

Materials and Methods

Materials–(Antibodies)
Mouse monoclonal antibodies against a- and b-adaptins,

SNAP91 (AP180), and MAP1A (all used for immunoprecipitation)

were purchased from GeneTex (San Antonio, TX). Additional

monoclonal antibodies against a- and b-adaptins, AP180, and

CHC (solely used for immunoblotting) were obtained from BD

Biosciences (Lexington, KY). Rabbit monoclonal anti-b-adaptin

antibody was obtained from Santa Cruz (Santa Cruz, CA) whereas

polyclonal and monoclonal antibodies specific to the m subunit of

the AP2 complex were from GenWay (San Diego, CA).

Monoclonal anti-MAP2 antibody, rabbit polyclonal anti-N-

terminal Dyrk1A (made against synthetic peptide corresponding

to amino acids 32–51 of human DYRK1A), and alkaline

phosphatase–conjugated goat antibodies against mouse IgG

(absorbed with rat serum) as well as rabbit IgG were purchased

from Sigma-Aldrich (St. Louis, MS). Monoclonal anti-Dyrk1A

antibodies (8D9 and 7F3) were produced ‘‘in-house’’ [10,20].

Donkey anti-mouse and anti-rabbit IgGs, conjugated with Alexa

Fluor 488 and Alexa Fluor 555, respectively, and goat anti-mouse

IgG conjugated with Alexa Fluor 488 were obtained from

Invitrogen (Carlsbad, CA). Antibody 7F3 was directly conjugated

with Alexa Fluor 568 by using a Protein Labeling Kit (Invitrogen)

as suggested by the manufacturer. (Other Reagents): Phosphatase

inhibitors (cocktail I) was purchased from Sigma-Aldrich. A

complete protease inhibitor cocktail was purchased from Roche

Diagnostics (Indianapolis, IN), and [c-32P]-ATP was from MP

Biomedicals (Costa Mesa, CA). Freshly excised rat brains were

purchased from Pel-Freez (Rogers, AR) (shipped overnight on ice).

Proteins
Full length- and truncated Dyrk1A without C-terminal PEST

domain fused with GST (GST-Dyrk1A497) were generated and

prepared as described [12,20,21]. Dyrk1A497, harboring Y319F

and Y321F mutations, was prepared as previously described [22].

CCVs and microtubules (MTs) were prepared from the rat brains

according to the methods described by Campbell et al. [23] and

Pedrotti & Islam [24], respectively, and stored at 280uC until use.

Protein concentrations were measured by the Lowry method using

BSA as a standard.

Tris-HCl extract and cytosol were prepared as follows: rat brain

was homogenized in five volumes of MES buffer (0.1 M MES at

pH 6.5, 0.5 mM MgCl2, and 1 mM EGTA) [23] containing a

cocktail of protease inhibitors and centrifuged first at 10006g for

10 min. The supernatant (S1) was then centrifuged at 100,0006g

for 45 min, and both precipitated (post-nuclear precipitates, PNPs)

and supernatant fractions were collected. PNPs were suspended in

a small volume of 10 mM Tris-HCl (pH 7.4) containing the

protease inhibitors. The supernatant fraction was mixed with

ammonium sulfate at a 66% saturation at 4uC, and the resultant

aggregates were collected by centrifugation at 20,0006 g for

30 min, suspended in a small volume of dialysis buffer (20 mM

Tris-HCl at pH 7.4, 0.5 mM DTT, 0.5 mM EDTA, 0.5 mM

EGTA, and 0.12 M NaCl), and dialyzed overnight against the

same buffer. The soluble fraction (cytosol) was obtained by

microcentrifuging the dialysate at maximum speed for 20 min.

The suspended PNPs were mixed with 0.5 M Tris-HCl (pH 7.4),

1 mM EDTA, and protease inhibitors at 4uC for 1 hr to strip the

membrane-bound proteins. After centrifugation at 100,0006g for

45 min, the supernatant fraction (PNP extract) was collected. Both

cytosol and PNP extract were stored at 280uC. Immediately

before use, the PNP extract was diluted with 5 mM MgCl2,

0.12 M NaCl, 0.1 mM EGTA, 0.2 mM DTT, and a cocktail of

protease inhibitors to reduce the Tris-HCl concentration to

0.125 M. Both cytosol and the diluted PNP extract were clarified

by ultracentrifugation at 100,0006 g before use to remove

precipitates. Where indicated, an aliquot of S1 described above

was centrifuged to obtain P2 (precipitates at 19,0006g for 40 min)

and P3 (precipitates at 100,0006 g for 1 hr of the 19,0006 g

supernatant). These precipitates were re-suspended in the

homogenization buffer.

Phosphorylation Assay
The standard reaction was carried out at 30uC for 30 min by

incubating 3–20 mg proteins with 0.5–3.7 mg GST-Dyrk1A497 and

0.1–0.2 mM [c-32P]-ATP (0.5–1 mCi/tube) or 1–2 mM cold ATP

in kinase buffer (25 mM of HEPES at pH 7.4, 5 mM MgCl2,

0.1 M NaCl, and 0.1 mM DTT) in a final volume of 30 ml, unless

otherwise indicated. Protease inhibitors were always included in

the reaction mixtures. After the reaction was stopped by adding

10 mM EDTA, a mixture of phosphatase inhibitors (Na3VO4,

Na2MoO4, okadaic acid, and phosphatase inhibitor cocktail I) was

added. The reaction mixtures were either boiled in SDS-sample

buffer or ultracentrifuged to separate the proteins dissociated from

the CCV membranes, unless otherwise specified. A mixture of

phosphatase and protease inhibitors was present in all SDS sample

buffers for the phosphorylated samples.

SDS-PAGE and Western Blotting
SDS-PAGE was carried out according to the method of

Schagger [25] using either mini- (10 cm67 cm) or regular-size

gels (14 cm615 cm) composed of 7% acrylamide and 0.128% bis-

acrylamide. Proteins separated by SDS-PAGE were either stained

by Coomassie Blue or transferred to PVDF membranes. The

membranes were either stained directly with Coomassie Blue or

blocked with 5% milk followed by immunoblotting. The

membranes with the transferred [32P]-labeled proteins were

processed for autoradiography first and then subjected to

immunoblotting, or vice versa. In the former case, the PVDF

membranes were sealed within plastic envelopes containing a

small volume of 5% milk and exposed to x-ray films at 280uC;

they were then subjected to immunoblotting by using the

appropriate antibody. The antibody-reactive bands were visual-

ized by either color development or chemiluminescence detection

using CDP star reagent (New England BioLabs; Ipswich, MA).

Mass Spectrometric (MS) Analysis of the Proteins
Phosphorylated by Dyrk1A

CCVs in duplicate tubes were incubated with recombinant

GST-Dyrk1A497 in the standard assay conditions with cold- or

[c-32P]-ATP. After SDS-PAGE using regular-size gels, the [32P]-

labeled samples were stained with Coomassie Blue, dried, and

subjected to autoradiography to locate the positions of the [32P]-

labeled protein bands. Each band corresponding to the [32P]-
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labeled proteins was cut out from the gels containing cold-labeled

samples and processed for LC-MS/MS analysis to identify the

phosphorylated proteins according to the methods described

previously [20].

Immunoprecipitation
Immobilized protein A/G (30 ml gel suspension) (Thermo

Scientific; Rockford, IL) was washed, suspended in a small volume

of phosphate-buffered saline with 0.05% Tween-20 (PBS-T), and

incubated with a primary antibody at room temperature first for

10 min, and then at 4uC for 1 h by adding 50 ml of 5% BSA in

PBS-T (BSA blocking buffer). For immunoprecipitation of MAP2

and MAP1A, the soluble proteins after phosphorylation of MTs

were collected by ultracentrifugation and used directly with

appropriate antibodies. The CCV-associated proteins were

stripped from the vesicles, either before or after phosphorylation

reaction, by incubation with 0.5 M Tris-HCl (pH 7.5) and 1 mM

EDTA as described above in the presence of various protease and

phosphatase inhibitors. The Tris-HCl concentrations of the CCV-

and PNP-extracts were diluted by adding 3 volumes of PBS-T

containing various protease inhibitors (and phosphatase inhibitors

where appropriate). To the CCV extract, BSA (1 mg/ml) was

added before immunoprecipitation. For immunoprecipitating the

AP2 complex from cytosol, Tris-HCl at 0.125 M was added prior

to mixing with the protein A/G resins pre-incubated with an

appropriate antibody. Following the incubation at 4uC overnight,

the protein A/G resins were washed three times, by brief

centrifugation and suspension in 1 ml each of IP buffer (1%

Triton X-100, 0.15 M NaCl, 10 mM Tris-HCl at pH 7.4,

0.1 mM EGTA, and 0.5% NP-40) containing various protease

and phosphatase inhibitors. The proteins recovered with the resins

were subjected to SDS-PAGE followed by Coomassie-Blue

staining, autoradiography, and immunoblotting. Alternatively,

the immunoprecipitates were subjected to phosphorylation by

Dyrk1A. Where indicated, the stained gels or immunoblots were

scanned using an Epson V700 scanner, and the staining intensities

of each band were quantified using Image-J (National Institutes of

Health, Bethesda, MD).

Cell Culture
CHO and PC 12 cells were obtained from ATCC (Manassas,

VA). CHO and PC12 cells were grown in DMEM containing 10%

fetal calf serum (FCS) and 12.5% horse serum plus 2.5% FCS,

respectively. Four hrs after exchanging with fresh media, the cells

were rinsed with cold PBS and harvested by scraping into

Beckman microcentrifuge tubes. The cell pellets were suspended in

small volumes (75–200 ml) of AP complex-extraction buffer

(20 mM HEPES at pH 7.4, 1 mM EGTA, 0.12 M NaCl,

2.5 mM MgCl2, and 0.2 mM DTT) containing cocktails of

various protease- and phosphatase inhibitors. The cell suspensions

were frozen and thawed 10 times, and centrifuged at 100,0006 g

for 45 min to obtain soluble and insoluble fractions. The insoluble

fractions were suspended, by sonication, into the original volumes

of AP complex-extraction buffer containing a cocktail of protease

inhibitors. The volumes of the suspended precipitates were

adjusted to match the volumes of supernatants. E18 primary rat

hippocampal neurons purchased from Genlantis (San Diego, CA)

were cultured in B27/Neurobasal medium with 0.5 mM gluta-

mine and 25 mM glutamate for 4 days and then without glutamate

for another 6 days, as per provider instructions.

Immunostaining of Brain Sections and Primary Cultured
Neurons

Animals were treated under a protocol that was approved by the

Institutional Animal Care and Use Committee of the New York

State Institute for Basic Research in Developmental Disabilities

and conforms to the guidelines set forth in the Guide for the Care and

Use of Laboratory Animals (National Research Council). Adult female

mice (B6EiC3) (Jackson Laboratory; Bar Harbor, ME) were

perfused with 0.5% glutaraldehyde/2% formaldehyde in 0.1 M

PBS, and various parts of the brain were dissected out as described

before [26]. Immunofluorescence was performed on 40-mm free-

floating Vibratome sections, according to the methods described

earlier [26] but with modifications. In brief, each brain section was

blocked for 4 hr at room temperature in 10% FCS/PBS with

0.1% saponin, then incubated for 24 hr at 4uC with primary

antibodies diluted in 10%FCS/PBS/1% saponin. Dilution ratios

for rabbit polyclonal anti-N-terminal Dyrk1A and mouse mono-

clonal anti-CHC antibodies were 1:500 and 1:200, respectively.

After several rinses, sections were incubated for 4 hr with species-

specific secondary antibodies (from a donkey source) conjugated

with Alexa Fluor 488 (1:1,000 dilution) and Alexa Fluor 555

(1:2,000 dilution) for mouse and rabbit IgG, respectively. After

several rinses, the sections were mounted on microscope slides and

cover slipped with mounting medium (Vector Laboratories Inc.;

Burlingame, CA). Differentiated hippocampal neurons as de-

scribed above were washed once with PBS and fixed with 2%

formaldehyde in PBS for 20 min at room temperature followed by

incubation in blocking buffer (PBS with 2% BSA, 2% goat serum,

and 0.05% saponin) for 1 hr. Cells were first incubated with anti-

CHC antibody (1:250 dilution) for 1 hr and then with Alexa Fluor

488-conjugated goat anti-mouse IgG (1:500 dilution) for another

1 hr. Afterward, cells were washed 3 times with PBS/0.05%

saponin, blocked again for 1 hr, and incubated with Alexa Fluor

568-conjugated anti-Dyrk1A (7F3, 3 mg/ml in blocking buffer) for

1 hr to complete the double staining. Fluorescent images were

captured with a Nikon C1 laser-scanning confocal system mounted

on Nikon 90i microscope. Where indicated, Z-stack major

projections were generated by collecting images at 0.15-mm steps

along the Z-axis. Optical images were processed by using Adobe

Photoshop 6.0 and Image J software. Omission of the primary

antibodies served as a control of the method specificity.

Results

Identification of the Dyrk1A Substrates Associated with
Brain CCVs

Various proteins required for CCV formation are known to be

phosphoproteins [27]. In an earlier study, we found that

recombinant Dyrk1A phosphorylated multiple proteins in a brain

CCV preparation [20]. To test whether these proteins exhibit

altered binding to the vesicles upon phosphorylation by Dyrk1A,

we analyzed the recovery of the [32P]-labeled proteins in the

soluble (S) and precipitated (P) fractions (Fig. 1). In agreement with

our previous results, we identified five distinctive protein bands

phosphorylated by Dyrk1A (panel 32P, ATP/Dyrk1A). Without

exogenous kinase, only one band of around 58 kDa was [32P]-

labeled (ATP); this protein was assumed to be m-adaptin of the AP2

complex phosphorylated by cyclin G-associated kinase (GAK)/

auxilin 2 [28], a kinase that purifies with the CCVs. After

incubation with recombinant Dyrk1A and [c-32P]-ATP, most of

the radioactivity associated with bands 1 and 2 (estimated

molecular sizes 400 kDa and 350 kDa, respectively) and band 5

(approximately 32 kDa) was recovered in the supernatant. Protein

bands 3 and 4 (estimated molecular weights 145 kDa and

Phosphorylation of CCV Proteins by Dyrk1A
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110 kDa, respectively), autophosphorylated Dyrk1A, and the

endogenously phosphorylated m-adaptin were partially recovered

in the supernatant (lanes S). Obviously, substantial levels of clathrin

heavy chain (CHC) (*, panel CB) were dissociated from CCVs

under the assay conditions, regardless of the presence of exogenous

Dyrk1A.

We then aimed to identify the Dyrk1A substrates in the CCV

preparations by using the supernatant fractions from the

phosphorylated CCVs because this fraction had cleaner back-

ground staining. Phosphorylation reactions were carried out in

parallel by using [c-32P]-ATP and cold ATP. After autoradiog-

raphy, the protein bands corresponding to each radioactive band

were located in the gels of the cold-labeled samples to excise for

MS analysis. The results are summarized in Table 1. MS analyses

of multiple sets of the samples identified the phosphorylated

protein in band 1 as MAP1A. CHC was ruled out from band 1

because of its molecular weight. Besides, its intrinsic band was not

phosphorylated by Dyrk1A (*, Fig. 1). Similarly, MS analysis

revealed that band 2 consisted of both MAP2 and MAP1A.

MAP1A contains the consensus sequences for Dyrk1A phosphor-

ylation (RPXSP and RXSP) [1] at multiple locations, whereas

MAP2 does not. Accordingly, we tested whether MAP1A and

MAP2 were indeed substrates for Dyrk1A, by [32P]-phosphory-

lating both CCVs and purified microtubules (MTs) from rat brains

and subjecting them to Western blotting followed by autoradiog-

raphy (Fig. 2A). After the proteins were transferred to PVDF

membranes, single lanes were cut into two strips; the strips were

probed with either an antibody against MAP1A (a) or MAP2 (b), or

stained with Coomassie Blue (c) (panel WB/CB). Immunoblotting

revealed that the CCV preparations contained both MAP1A and

MAP2, and autoradiography suggested that both protein bands

were [32P]-labeled only when Dyrk1A was added (panel 32P).

Immunoblotting also showed that there was some degraded

MAP1A located in close proximity to the MAP2 band (CCV, strip

a). As seen in Fig. 2B, after Coomassie Blue staining of a

polyacrylamide gel, two bands of high molecular-weight proteins

were clearly identified for both the CCVs and MTs at positions

where MAP1A and MAP2 would be expected to migrate. In

addition, the discrete bands of MAP1A and MAP2 from MTs

visualized by Coomassie-Blue staining of the PVDF membranes

were matched to the bands revealed by immunostaining (strips a-c,

panel WB/CB, MT) (Fig. 2A). The MAP2 band from MTs had

detectable basal phosphorylation by endogenous kinase(s) (panel
32P). Addition of Dyrk1A significantly enhanced the [32P]-

phosphate incorporation into the bands matched with the position

of MAP1A and MAP2.

The phosphorylation of MAP1A and MAP2 by Dyrk1A was

further confirmed by immunoprecipitating these proteins from the

soluble fraction obtained after phosphorylating MTs (Fig. 2C).

Coomassie Blue staining (CB) and autoradiography (32P) con-

firmed that the MAP1A and MAP2 bands containing [32P]-

phosphate were immunoprecipitated by the antibodies specific to

each protein (M1A and M2). The phosphorylation efficiencies of

MAP1A and MAP2 in MTs were estimated semi-quantitatively by

measuring the relative intensities of each band from protein

staining (CB) and from autoradiogram (32P) of the original MT

extract (lane Ori). The MAP1A to MAP2 ratio measured by protein

staining was calculated to be 1:1.9 whereas the ratio measured by

phosphorylation was 1:2.1. This suggests that Dyrk1A phosphor-

ylated MAP1A and MAP2 in MTs with similar efficiencies. By

confirming that both MAP1A and MAP2 are equally phosphor-

ylatable by Dyrk1A, we next verified, by immunoprecipitation,

that the phosphorylated protein bands 1 and 2 in the CCV

preparations were the MAP proteins. After incubating the stripped

proteins from the [32P]-phosphorylated CCVs with anti-MAP1A

antibody, one major band that reacted with the antibody and

contained the radioactivity was observed (Fig. 2D). Intensities of

the bands from immunoblots (WB) and autoradiogram (32P) were

significantly increased after immunoprecipitation (IP) from the

starting materials (Ori). Without the primary antibody, no band

was detected (not shown). Therefore, we concluded that the

phosphorylated protein in band 1 from brain CCVs (Fig. 1) was

MAP1A. In contrast to the result obtained from MTs (Fig. 2C), so

far we were unable to immunoprecipitate MAP2 from the CCV

extracts, even when we employed the same antibody as in Fig. 2C

(made against rat brain MAPs) at higher concentrations or used a

different source of the antibody (made against peptide aa1–300 of

human MAP2) (data not shown). Regardless, we concluded that

band 2 (Fig. 1) contained the phosphorylated MAP2 because 1)

Dyrk1A phosphorylated MAP2 equally to MAP1A, 2) brain CCVs

contained both MAP1A and MAP2, and 3) multiple peptides

derived from MAP2 were identified by MS from band 2 (Table 1).

We speculate that the sites on MAP2 recognized by these

antibodies may be blocked in the CCV extract, thus preventing

precipitation.

The phosphorylated protein in band 3 (145 kDa) was identified

by MS as SNAP91/AP180 (AP180). Like MAP2, the amino acid

sequence indicates that AP180 lacks a consensus Dyrk1A

phosphorylation site. Therefore, the MS result was verified, first,

by subjecting the [32P]-labeled CCVs to SDS-PAGE followed by

immunoblotting, Coomassie Blue staining, and autoradiography.

A single lane cut into two pieces was stained with either anti-

Figure 1. Dissociation of the phosphorylated proteins from
CCVs. Rat brain CCVs (20 mg) were incubated with 0.1 mM [c-32P]-ATP
with or without GST-Dyrk1A497 (3.7 mg) as described in MATERIALS AND
METHODS. After mixing with EDTA and phosphatase inhibitors, the
samples were transferred on ice and ultracentrifuged at 70,000 rpm for
15 min using a Beckman TLA-100 rotor. The supernatants (S) were
collected, and the precipitates (P) were suspended in the original
volume of the kinase buffer containing protease- and phosphatase-
inhibitors. Each sample was subjected to SDS-PAGE followed by
Coomassie Blue staining (CB) and autoradiography (32P). Half of each
SDS sample was applied per lane. The numbers in the right panel refer
to the phosphorylated protein bands 1–5. Dyrk1A497 was used in most
of our experiments, because this truncated form 1) is highly purified in
contrast to the full-length protein, which always contains kinase bands
degraded to various extents [20], and 2) exhibits the similar kinase
activity as the full-length protein [21]. *, denotes clathrin heavy chain
(CHC). (n = 3; the assay was repeated three times by using different CCV
preparations giving similar results.)
doi:10.1371/journal.pone.0034845.g001
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AP180 antibody (WB) or Coomassie Blue (CB) (Fig. 3A). A band

that strongly reacted with anti-AP180 antibody (arrowhead)

matched well with a protein band faintly stained by Coomassie

Blue, located below the major band of CHC (*). Autoradiography

of the strips (32P) indicates that the band recognized by the

antibody was [32P]-labeled (arrowhead). Next, we carried out an

immunoprecipitation assay using the stripped proteins from the

[32P]-phosphorylated CCVs by using the same strategy as that

used for MAP1A. Anti-AP180 antibody precipitated a single

protein band containing the radioactivity (Fig. 3B). The intensities

of the band in both immunoblots (WB) and the autoradiogram

(32P) were significantly increased after immunoprecipitation (+)

from the starting materials (Ori). Therefore, we concluded that

band 3 was AP180.

The MS analyses suggest that the 110-kDa proteins in band 4

contained a1- and/or a2-adaptins from the AP2 complex and b1-

and/or b2- adaptins from the AP1 and AP2 complexes. The

results were verified, again, by immunoprecipitation. Anti-b-

adaptin antibody, which recognizes both b1- and b2 isoforms,

successfully precipitated one major band of b-adaptin (WB:b)

containing [32P]-phosphate (32P) (Fig. 3C, lanes +). Without the

antibody, no radioactivity was detected. To show the relative

positions of a- and b-adaptins separated by SDS-PAGE, a single

lane of the original CCV extract was cut into two strips, which

were incubated with antibodies specific to either anti-b- (strip 1) or

anti-a-adaptin (strip 2) antibody. Although a- and b-adaptins

migrated in close proximity, they were clearly separated (WB).

Autoradiography of the original extract showed a diffused band

that overlapped both a- and b-adaptins (32P, lanes 1–3). To analyze

the extent that the co-precipitated a-adaptin contributed to the

radioactive band, the same blot from Fig. 3C [lanes (+) & strip 1]

was re-probed with anti-a-adaptin antibody. The latter blotting

detected a new band of a-adaptin in the original CCV extract

(Fig. 3D, strip 1, b+a) at the same position recognized by anti-a-

adaptin antibody (a) alone (strip 2). However, to our surprise, the

re-blotting revealed that the immunoprecipitation of b-adaptin did

not increase the a-adaptin level in proportion to the enhanced b-

adaptin level. A ratio of a- to b-adaptin in strip 1 was roughly

estimated to be 1:2.7, whereas that in lane (IP:b) was at least

1:40.5. These results suggest that dissociation between a-adaptin

and b-adaptin occurred upon phosphorylation with Dyrk1A.

Therefore, a-adaptin was immunoprecipitated from the resulting

unbound fraction after the first immunoprecipitation for b-adaptin

and tested to determine if the precipitated protein was also [32P]-

phosphorylated. We found that anti-a-adaptin antibody precipi-

tated two anti-a-adaptin antibody-reacting bands from the anti-b-

adaptin unbound fraction (Fig. 3E, WB:a). Autoradiography gave

a diffuse band covering the area of the two bands (32P). Thus, we

confirmed a-adaptin also as a Dyrk1A substrate.

Under native conditions, a-, b2-, m2-, and s2-adaptins associate

together to form the AP2 complex. Because EDTA was added to

terminate the phosphorylation reaction, we tested whether EDTA

caused the dissociation of AP2 complex. The proteins stripped

from the unphosphorylated CCVs by 0.5 M Tris-HCl with either

2.5 mM Mg2+ or 5 mM EDTA were subjected to immuno-

precipitation using anti-b-adaptin antibody. The resultant precip-

itates together with the original extracts were immunoblotted with

anti-a- and b-adaptin antibodies (Figure 3F). Overall immuno-

precipitation efficiencies of the Tris-HCl extracts from the un-

phosphorylated CCVs were low; however, the anti-b-adaptin

antibody precipitated not only b-adaptin but also a-adaptin,

regardless of the presence of Mg2+ or EDTA (Fig. 3F).

Furthermore, the levels of a-adaptin co-precipitated with b-

adaptin did not appear to be different between the two samples,

indicating that the apparent lack of co-precipitation of a- and b-

adaptins observed in the Dyrk1A-phosphorylated CCVs (Fig. 3D)

was not due to the EDTA-mediated dissociation of the AP2

complex. In summary, we conclude that band 4 in Fig. 1 consists

of both a- and b-adaptins and that most of these adaptins are

dissociated from each other upon phosphorylation by Dyrk1A.

Protein band 5 was identified as a fragmented GST-Dyrk1A

(Table 1).

Recovery of MAP1A and MAP2 in the Soluble Fraction
As seen in Fig. 1, significant amounts of the [32P]-labeled

proteins were found in the soluble fraction. Therefore, we

analyzed the effect of Dyrk1A on the release of MAP1A and

MAP2 from CCVs. Neither MAP1A (Fig. 4A, lanes 1–4) nor

Figure 2. Identification of the phosphorylated protein bands 1
and 2 as MAP1A and MAP2. (A) MAP1A and MAP2 in the
phosphorylated CCVs and MTs. CCVs (20 mg) and purified MTs (5 mg)
were incubated with [c-32P]-ATP with (+) or without (2) GST-Dyrk1A497

as described in Fig. 1, followed by SDS-PAGE without ultracentrifuga-
tion. Approximately 9 mg and 2 mg of CCVs and MTs, respectively, were
applied per lanes. After transferring proteins, each lane of the PVDF
membranes was cut into two strips for immunostaining either with anti-
MAP1A (a) or anti-MAP2 (b) antibody, or for Coomassie Blue staining (c).
The strips were reassembled (WB/CB) and subjected to autoradiography
(32P). (n = 2). (B) Coomassie Blue-staining of the CCV and MT preparations.
Ten and five mg of CCVs and MTs, respectively, were applied per lane.
(C) Immunoprecipitation of MAP1A and MAP2 from the phosphorylated
MTs. MTs (200 mg) were phosphorylated for 1 hr with GST-Dyrk1A497

(18 mg) and 0.2 mM [c-32P]-ATP in a final volume of 250 ml. After the
reaction, the soluble fraction was subjected to immunoprecipitation (IP)
by using anti-MAP2 (M2) or anti-MAP1A (M1A) antibody as described in
MATERIALS AND METHODS. A negative control for the immunoprecip-
itation (2) was obtained without primary antibody. The immunopre-
cipitates were applied to SDS-PAGE followed by Coomassie Blue
staining (CB) and autoradiography (32P). (n = 1; various preliminary
performances carried out to lead the final assay conditions are not
included). Scanning of the MAP1A and MAP2 bands from the original
material used for immunoprecipitation (Ori) gave the arbitrary units for
these proteins as 3306 and 6323, respectively, whereas those for the
radioactivity were 6056 and 12582, respectively. (D) Immunoprecipita-
tion of MAP1A from the extract of the phosphorylated CCVs. CCVs (60 mg)
were incubated with GST-Dyrk1A497 (7 mg) and 0.2 mM [c-32P]-ATP for
1 hr in a final volume of 120 ml. The phosphorylated CCVs were
extracted with 0.5 M Tris-HCl, diluted the Tris-HCl concentration, and
used for immunoprecipitation with anti-MAP1A antibody (IP). The
immunoprecipitates were subjected to blotting (WB) with anti-MAP1A
antibody followed by autoradiography (32P). (n = 2). St, pre-stained
standard proteins; M1A, MAP1A; M2, MAP2.
doi:10.1371/journal.pone.0034845.g002
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MAP2 (not shown) was recovered in the soluble fraction if

exogenous Dyrk1A was omitted. Addition of Dyrk1A and ATP

caused a release of MAP1A into the soluble fraction (lanes 7 & 8).

The kinase alone also released MAP1A but at much lower levels

(lanes 5 & 6). When MTs were used under the similar assay

conditions, in contrast to CCVs, both MAP1A and MAP2 were

released in the soluble fraction in an ATP-dependent but Dyrk1A-

independent manner (data, not shown).

The effect of the Dyrk1A-mediated phosphorylation on

dissociation of MAP proteins from CCVs was further studied by

measuring the MAP2 and MAP1A levels in the whole reaction

mixtures (W) and in the soluble fraction (S) after phosphorylation

reaction with either wild-type (wt) or a kinase-defective mutant

harboring Y319F and Y321F double mutation (DF) [22] (Fig. 4B).

In the presence of ATP, Dyrk1A-wt released most MAP1A and

MAP2 from the CCVs whereas the DF mutant released only small

amounts of the MAP proteins, suggesting that the release of MAP

proteins from CCVs required Dyrk1A activity and occurred

mostly after phosphorylation.

Dissociation of the Clathrin Adaptor Proteins from CCVs
Next, we studied the effect of Dyrk1A on dissociating the

clathrin adaptor proteins from CCVs (Fig. 5A). AP180 was slightly

released from CCVs in the absence of Dyrk1A (lanes a, b). Addition

of both ATP and Dyrk1A clearly enhanced the dissociation of

AP180 and b-adaptin (lanes c, d). Apparently, the mere presence of

Dyrk1A also enhanced the AP180 release (lane c). Therefore, the

Dyrk1A effect without enzymic action was further studied by using

various concentrations of Dyrk1A in the absence of ATP (Fig. 5B).

The basal release levels of a- and b-adaptins were higher in

HEPES buffer at pH 7.4 (phosphorylation buffer) than in MES at

pH 6.5 (CCV isolation buffer), and Dyrk1A was more effective in

Table 1. Summary of the MS analysis for identification of the rat proteins in the Coomassie Blue-stained bands.

Band # (size) Accession Number* Protein identified (Peptides) % Seq.

Sample 1

Band 1 (400 kDa): NP_112257.1 MAP1A (4) 1.7

NP_062172.1 Clathrin heavy chain (3) 2.1

Band 2 (350 kDa): No data

Band 3 (145 kDa): NP_113916.1 SNAP 91/AP180 (5) 4.7

Band 4 (110 kDa): NP_001100981.1 AP2 a1-adaptin (6) 6.6

NP_058973.1 AP1 b1-adaptin (5) 6.6

NP_542150.1 AP2 b1-adaptin (4) 5.2

NP_062172.1 Clathrin heavy chain (2) 1.4

NP_001101419.1 DNAJ Hsp40 homolog (2) 2.4

Band 5 (30 kDa): No data

Sample 2

Band 1 (400 kDa): NP_112257.1 MAP1A (13) 5.5

NP_062172.1 Clathrin heavy chain (8) 4.5

Band 2 (350 kDa): NP_062172.1 Clathrin heavy chain (3) 1.8

NP_112257.1 MAP1A (3) 1.4

NP_037198.1 MAP2 (2) 1.4

Band 3 (145 kDa): NP_062172.1 Clathrin heavy chain (24) 12.0

NP_113916.1 SNAP 91/AP180 (9) 7.4

NP_476459.1 Contactin 1 precursor (5) 4.4

Band 4 (110 kDa): NP_112270.2 AP2 a2-adaptin (9) 8.9

NP_542150.1 AP2 b1-adaptin (6) 7.0

NP_001100981.1 AP2 a1-adaptin (4) 3.2

Band 5 (30 kDa): NP_062039.1 Dyrk1A (5) 14.1

GT26_SCHJA Synaptogyrin 1 (2) 10.3

Glutathione S transferase{ (14) 36.7

Sample 3

Band 1 (400 kDa): NP_112257.1 MAP1A (4) 1.6

Band 2 (350 kDa): NP_062172.1 Clathrin heavy chain (3) 1.8

Band 3 (145 kDa): NP_113916.1 SNAP 91/AP180 (8) 6.6

NP_062172.1 Clathrin heavy chain (7) 4.0

NP_112399.1 Tripeptidyl peptidase II (5) 4.1

*All database searches were performed using the rat-specific RefSeq database (version 9-21-2009).
{The identifications of glutathione S transferase (GST) and the GST-Dyrk1A fusion protein were made from searches of the SwissProt database (version circa 2005) and a
version of that database containing several GST fusion protein sequences, including GST-Dyrk1A.
doi:10.1371/journal.pone.0034845.t001
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promoting the release of a- and b-adaptins at pH 7.4. Dyrk1A also

dissociated AP180 and m2-adaptin from CCVs in a kinase

concentration–dependent manner (Fig. 5C). Thus, Dyrk1A

promoted the release of clathrin-adaptor proteins by phosphory-

lation and physical interaction. However, Dyrk1A did not have

any significant effect on dissociating CHC (Fig. 5A,C).

Effect of Dyrk1A-Mediated Phosphorylation on
Dissociation of Clathrin Adaptor Proteins

Successive studies were carried out to estimate the effect of

Dyrk1A-mediated phosphorylation on releasing the CCV-associ-

ated proteins. Because clathrin and its adaptor proteins dissociated

spontaneously from CCVs (basal dissociation) under the standard

phosphorylation conditions employed in this study, we sought

assay conditions that could support Dyrk1A activity and provide a

lower basal dissociation of the CCV-associated proteins. HEPES

buffer at pH 7.0 appeared to meet both criteria; although MES

buffer provided a more stable association of the adaptor proteins

(Fig. 5B), MES buffer was avoided since it strongly inhibited

Dyrk1A activity over a wide pH range. The basal dissociation of

clathrin adaptor proteins could be further reduced if free Mg2+

was present in the mixtures throughout the assay process (Fig. 6A).

Therefore, the following studies were performed with HEPES at

Figure 3. Identification of the phosphorylated protein bands 3
and 4. (A) Migration patterns of AP180 and band 3 in SDS-PAGE. After
[32P]-phosphorylation, CCVs were subjected to SDS-PAGE followed by
blotting with anti-AP180 antibody (WB), Coomassie-Blue staining (CB),
and autoradiography (32P) as in Fig. 2A. (n = 2). Approximately 1.3 mg
proteins were applied per lane, and a single lane of the PVDF
membrane was cut into two strips. Arrowheads, AP180; asterisk, CHC.
Two lower bands in the autoradiogram are band 4 and the autopho-
sphorylated GST-Dyrk1A497. (B) Immunoprecipitation of AP180 from the
extract of the phosphorylated CCVs. CCVs were incubated with GST-
Dyrk1A497 and [c-32P]-ATP, extracted with Tris-HCl, and used for
immunoprecipitation (IP) using anti-AP180 antibody (anti-SNAP91), as
described in Fig. 2D. The resultant immunoprecipitates were subjected
to blotting using anti-AP180 antibody (WB:AP180) followed by
autoradiography (32P). (n = 2). (2) and (+), immunoprecipitation without
and with anti-AP180 antibody, respectively; Ori, the CCV extract used
for immunoprecipitation. (C) Immunoprecipitation of b-adaptin. The CCV
extract prepared as in (B) was subjected to immunoprecipitation
without (2) or with (+) anti-b-adaptin antibody (IP:b). (n = 2). One lane
of the starting extract (Ori) was cut into two strips; one was probed with
anti-b-adaptin (strip 1) together with the immunoprecipitates (WB:b),
and the other (strip 2) and lane 3 were incubated with anti-a-adaptin
antibody (a). All strips were reassembled for autoradiography (32P). The
lower band in the WB panel is IgG heavy chain. (D) Immunoprecipitation
of b-adaptin but not a-adaptin by anti-b-adaptin antibody. The
membranes containing lane (+) and strip 1 from (C) were re-blotted
with anti-a-adaptin (WB:b+a) and re-assembled with strip 2 from (C).
The ratios in relative intensities of a- (APa) to b (APb)-adaptins in the IP:b
lane and strip 1 shown in here were 1:40.5 and 1:2.7, respectively. (E)
Immunoprecipitation of a-adaptin. After the first immunoprecipitation
using anti-b-adaptin antibody (C), the unbound fraction was incubated
with (+) or without (2) anti-a-adaptin antibody (IP:a) for the second
immunoprecipitation. The precipitates were subjected to immunoblot-
ting using anti-a-adaptin antibody (WB:a) followed by autoradiography
(32P). (n = 1). (F) Co-precipitation of a- and b-adaptins from the extracts of
unphosphorylated CCVs. CCVs in two tubes were diluted in kinase buffer,
mixed with either H2O (Mg2+) or 10 mM EDTA, and extracted with 0.5 M

Tris-HCl for immunoprecipitation with anti-b-adaptin antibody as in (C).
(n = 3). The immunoprecipitates (IP) and the original extracts (Ori) were
blotted using antibodies against a- or b-adaptin (WB: a, b).
doi:10.1371/journal.pone.0034845.g003

Figure 4. Release of MAP1A and MAP2 into the soluble fraction
after phosphorylation. (A) Release of MAP1A. CCVs (20 mg) were
phosphorylated and ultracentrifuged as described in Fig. 1 except for
using 2 mM cold ATP and with or without GST-Dyrk1A497. The resultant
supernatants were blotted with anti-MAP1A antibody (M1A). (n = 3). (B)
Phosphorylation-dependent dissociation of MAP1A and MAP2. CCVs were
incubated as in (A) in duplicate tubes containing ATP and either wild
type (wt) or double mutant (DF) GST-Dyrk1A497. After adding EDTA, one
set of tubes was kept on ice, whereas the other set was ultracentrifuged
to collect the soluble fractions. Aliquots of whole mixtures (W) and the
supernatants (S) were subjected to immunoblotting. Both MAP1A (M1A)
and MAP2 (M2) were identified in the same lane by blotting the PVDF
membrane first with anti-MAP2 then with anti-MAP1A antibodies. (n = 1,
various preliminary performances carried out to lead the final assay
conditions are not included).
doi:10.1371/journal.pone.0034845.g004
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pH 7.0 without adding EDTA at the end of the phosphorylation

reaction. As seen in Fig. 6B (lanes 1–6 & W), both a- and m-

adaptins of the AP2 complex were not detected in the soluble

fraction under any assay conditions when Mg2+ was present. On

the other hand, the release of b-adaptin was markedly enhanced

when CCVs were incubated with both Dyrk1A and ATP (lanes 3

& 4). The selective release of b-adaptin subunit indicates that

Dyrk1A phosphorylation caused dissociation of b-adaptin from the

a- and m-subunits of the AP2 complex. The kinase itself did not

appear to dissociate any of the adaptin subunits (lanes 1 & 2), while

ATP alone released minimal amounts of b-adaptin (lanes 5 & 6).

Dissociation of AP180 from CCVs was also enhanced after

incubation with Dyrk1A and ATP (Fig. 6B, lanes 3 & 4). However,

unlike b-adaptin, either Dyrk1A or ATP alone also induced

AP180 dissociation at some levels. It appears, therefore, that three

factors affect the dissociation of AP180: ATP, Dyrk1A, and

phosphorylation. By comparison, release of CHC was, again,

unaffected under the experimental conditions employed.

Phosphorylation of the Membrane-Unbound Form of
AP180 and a- and b-Adaptins

To further study the Dyrk1A-mediated regulation of the

clathrin adaptor protein functions, we then tested if the adaptor

proteins in their soluble forms were also phosphorylated by

Dyrk1A. Two sources for the free form of the adaptor proteins

Figure 5. Effect of Dyrk1A on dissociation of adaptor proteins
from CCVs. (A) Effect of phosphorylation. CCVs (3.5 mg) were incubated
with 61 mM cold ATP and 6 Dyrk1A (0.5 mg), as indicated in the panel,
and ultracentrifuged as described in Fig. 1. The resultant supernatants
were immunoblotted (WB) using the antibodies indicated in the figure.
(n = 2). (B) Release of a- and b-adaptins by Dyrk1A without phosphory-
lation. CCVs (3.75 mg) were incubated with various amounts of GST-
Dyrk1A497, but without ATP, either in kinase buffer (pH 7.4) or MES
buffer (pH 6.5) containing 0.1 M NaCl, 5 mM MgCl2. Appropriate
amounts of GST were added into each tube to compensate for the
different kinase amounts. After chilling on ice, the reaction mixtures
were ultracentrifuged as described in Fig. 1. The supernatants were
blotted by using anti-a- or b-adaptin antibody. (n = 2). (C) Release of
multiple CCV proteins by Dyrk1A without phosphorylation. The same
samples from (B) at pH 7.4 were analyzed by using various antibodies as
indicated. Lanes (2) and 1–5 represent the kinase concentrations at 0,
0.1, 0.25, 0.5, 1.0, and 2 mg/assay. One mg Dyrk1A/assay is equal to
4.261027 M by assuming the enzyme purity as 100%.
doi:10.1371/journal.pone.0034845.g005

Figure 6. Effect of phosphorylation on dissociation of adaptor
proteins in the presence of Mg2+. (A) Effect of Mg2+ on AP180
dissociation. CCVs (3 mg) were incubated with Dyrk1A and cold ATP as
described in Fig. 5A, but with modified conditions including 75 mM
HEPES (pH 7.0), 1 mg/ml BSA, and a mixture of phosphatase-inhibitors.
After the reaction, the tubes were mixed with either 10 mM EDTA
(EDTA) or with H2O (Mg2+) and ultracentrifuged. The resultant
supernatant fractions were blotted with anti-AP180 antibody. (n = 3).
Duplicated samples were shown. (B) Effect of phosphorylation on
adaptor protein dissociation. CCVs were incubated as in (A) with 6
Dyrk1A and 6 ATP as indicated in the panel. The reaction mixtures were
ultracentrifuged without adding EDTA. The same volumes of the
supernatants and whole reaction mixtures (W) were immunoblotted
using the indicated antibodies. Duplicated samples were shown. (n = 1,
various preliminary performances carried out to lead the final assay
conditions are not included).
doi:10.1371/journal.pone.0034845.g006
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from rat brains were employed for the experiments; a) cytosol and

b) 0.5 M Tris-HCl extract from the post-nuclear precipitated

fraction (PNP extract) diluted to the final Tris-HCl concentration to

0.125 M. Both AP180 and AP2 complexes were found in cytosol

and in the PNP extract at comparable levels (not shown).

However, the PNP extracts contained much lower concentration

of total protein and many fewer protein bands phosphorylated by

Dyrk1A (Fig. 7A). AP180 was immunoprecipitated equally well

from cytosol and the PNP extract, giving the PNP extract an

advantage for use as a starting material. Therefore, AP180 in the

PNP extract was analyzed by the following two approaches; 1)

immunoprecipitation of the adaptor proteins after phosphoryla-

tion reaction and 2) phosphorylation of the immunoprecipitated

proteins. After incubating the extract with Dyrk1A and [32P]-ATP,

the AP180 was clearly [32P]-labeled in the immunoprecipitates

(Fig. 7A). Similarly, the AP180 immunoprecipitated from the PNP

extract was [32P]-phosphorylated on Protein A/G resins by

Dyrk1A (Fig. 7B). These results demonstrate that Dyrk1A

phosphorylates AP180 both in the CCV bound- and unbound

forms.

Consistent with the observation for the CCV extract (Fig. 3F),

we found that the immunoprecipitation efficiencies of the AP2

complexes were rather poor from the PNP extracts. The

immunoprecipitated a- and b-adaptins from the phosphorylated

PNP extract did not contain 32P-phosphate (Fig. 7C). The

radioactive band that migrated at a close proximity to the a-

and b-adaptin bands in the original mixture did not match with

these adaptins. The same anti-a and anti-b adaptin antibodies

used in Fig. 3 failed to immunoprecipitate the AP2 complex from

cytosol. Premixing the cytosol with 0.125 M Tris-HCl helped the

immunoprecipitation to some extent. However, the adaptin

subunits immunoprecipitated from the phosphorylated cytosol

were not 32P-labeled (Fig. 7D). We next tested whether Dyrk1A

could phosphorylate the immunoprecipitated AP2 complexes.

After incubation of the immunoprecipitates with Dyrk1A and 32P-

ATP, Dyrk1A (*) was the major band labeled with [32P]-

phosphate. In contrast to the kinase bands, there was no 32P-

labeled bands specific to the immunoprecipitation. From these

results, we concluded that Dyrk1A phosphorylated only the

membrane-bound form of a- and b-adaptins. Interestingly, the

Protein A/G resins pre-incubated with cytosol enhanced [32P]-

labeling of the Dyrk1A band, to the level much higher than those

with the PNP extract, and the enhancement was independent to

the presence of antibody (Fig. 7E). The observed enhancement

could be due to autophosphorylation of the kinase stimulated by a

co-factor(s) or mediated by other kinase(s), derived from cytosol

and non-specifically bound to Protein A/G resins.

Relative Ratios of Adaptin Subunits in the Soluble and
Insoluble Fractions from Cultured Cells

Our in vitro studies show that the Dyrk1A-mediated phosphor-

ylation dissociates the adaptin subunits, and free b-adaptin can be

released into cytoplasm in vivo. We expected that more b-adaptin

could be recovered in cytosol than other adaptin subunits from the

cells active in endocytosis. Therefore, the relative ratios of each

adaptin subunit (a, b, c, and m) in cytosol (Sup) and the membrane

bound (Ppt) fractions were estimated for multiple samples from

CHO and PC12 cells. After scanning the immunoblots, the ratios

of each adaptin subunit recovered in cytosol to precipitate were

calculated. As summarized in Fig. 8, the ratios of b-adaptin in

cytosol to precipitate were the highest among the adaptin subunits

tested. In addition, these ratios of b-adaptin were clearly higher

than those of c-adaptin, thus excluding a possibility that the

released b-adaptin was derived solely from the AP1 complex.

Dyrk1A in the CCV Fraction
We have demonstrated previously that Dyrk1A is able to bind

CHC and co-assembled into clathrin cages under in vitro assays

[20], which suggests the presence of this kinase in CCVs.

Therefore, we examined the Dyrk1A level in the CCV preparation

together with other subcellular fractions. Immunoblotting of S1

(sup at 1,0006 g), P2 (ppt at 19,0006 g), P3 (ppt at 100,0006 g),

and CCVs with anti-Dyrk1A antibody (8D9) revealed that the

relative kinase levels gradually increased from S1, P2, P3 to CCVs,

such that CCVs contained the highest level of Dyrk1A per unit

protein (Fig. 9). Scanning of the immunoblot gave the ratios of

Dyrk1A in P2, P3, and CCV as 1.3, 2.3, and 5.9, respectively, by

normalizing S1 as 1. Re-blotting the same PVDF membrane with

anti-CHC revealed that clathrin was strikingly accumulated in

CCVs. By following the same approach as described above, the

relative levels of CHC in P2, P3, and CCV were estimated to be

0.8, 2.1, and at least 52.2, respectively. Our results suggest that the

Dyrk1A level is elevated in CCVs, but not particularly enriched

there in proportion to CHC.

Co-Localization of Clathrin and Dyrk1A in Brain Sections
and Primary Cultured Neurons

We examined whether Dyrk1A is associated with CCVs in vivo

by performing double immunostaining of various brain sections

with anti-Dyrk1A and anti-CHC antibodies. Images captured by

laser-scanning confocal microscopy are shown for the sections

from the hippocampus (a–c), thalamus (d–f), and cerebellum (g–i) in

Figure 10. Consistent with the observation that Dyrk1A has a

nuclear localization sequence [2], some Dyrk1A was observed in

the nucleus. This kinase was also found in soma (open arrows) and

dendrites (arrows), which is consistent with the earlier results using

mouse monoclonal antibodies 7F3 [10] and 7D10 [26]. Clathrin

was detected in the perinuclear area of the cell soma (open arrow)

and in dendrites and axons (arrows in panels b,e), but not in the

nuclei. Both anti-Dyrk1A and clathrin antibodies visualized the

punctated and vesicular-like structures. Co-localization of Dyrk1A

with CHC in the soma of neurons was sparse (open arrows; a–f

and the insets in d–f). In contrast, these proteins often co-localized

in dendritic processes (arrows in a–f and the insets in a–c) in all

brain regions examined. There were also structures containing

either only Dyrk1A or clathrin within a single process (c, f). By

analysing sequential confocal images collected at 0.15 mm steps

along the Z-axis (panels j–m), the Dyrk1A and/or CHC-positive

structures were found in various areas of the cytoplasm of

dendrites, including sub-plasmalemmal regions. Dyrk1A was also

found in some axonal terminals (arrows in g). The numerous axon

terminals of basket cells forming contacts with Purkinje cell somata

in the cerebellar cortex showed strong co-localization of Dyrk1A

with clathrin (arrows in g–i and their insets).

Association of Dyrk1A with CCVs was also examined in

primary cultured neurons from the E-18 rat hippocampus (Fig. 11).

Again, both Dyrk1A and CHC were found as punctated structures

in the soma (a, b) and in the processes (b, c) of the cultured cells.

Co-localization of these two proteins was very prominent in the

processes but was less significant in the soma of E-18 neurons.

Immunostaining showed that Dyrk1A in the primary cultured

neurons was more abundant in nuclei than in the cytoplasm.

Individual confocal images collected along the Z-axis confirmed

that clathrin was mostly absent in the nuclei (arrows in Fig. 11a).

Thus, co-localization of Dyrk1A with CHC was evident in both

mouse brain as well as cultured primary neurons from rat

hippocampus. From the results in Figs. 9, 10, and 11 we conclude

that in vivo, certain fractions of Dyrk1A are associated with CCVs

either directly or indirectly.
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Discussion

We have identified five Dyrk1A substrate proteins in rat brain

CCVs, MAP1A, MAP2, AP180, and a- and b-adaptins, and found

that phosphorylation enhanced the release of these substrates from

CCVs. Although several kinases are known to be associated with

CCVs, Dyrk1A is the first kinase shown to promote the

dissociation of adaptor proteins from CCVs.

I. Phosphorylation of MAP1A and MAP2
a) Identification as Dyrk1A Substrates. The CCV

preparations employed in the current study contained both

MAP1A and MAP2, and our results indicate that both proteins

are Dyrk1A substrates (Fig. 2). Based on consensus sequences for

Dyrk1A phosphorylation, RPX(S/T)P and RX(S/T)P [1], rat

MAP1A contains three potential Dyrk1A sites (RRT2059P,

RPAS2221P, and RPS2546P) in the heavy-chain. This is similar to

rat MAP1B which contains multiple consensus Dyrk1A sites and

Figure 7. Phosphorylation of the membrane-unbound adaptor proteins. (A) Immunoprecipitation of AP180 from the phosphorylated PNP
extract. The Tris-HCl extract from PNP (diluted, 300 ml) prepared as in MATERIALS AND METHODS was phosphorylated for 1 hr in a mixture containing
0.2 mM [c-32P]-ATP, 9 mg Dyrk1A, 5 mM MgCl2, 0.12 M NaCl, 0.1 mM EGTA, and 0.2 mM DTT. After the reaction, the mixture was subjected to
immunoprecipitation by using anti-AP180 antibody as in Fig. 3B. (n = 2). The immunoprecipitate (IP) and an aliquot of the original phosphorylation
mixture (Ori) were subjected to immunoblotting (WB) and autoradiography (32P). (B) Phosphorylation of the immunoprecipitated AP180. The PNP
extract was first subjected to immunoprecipitation with (+) and without (2) anti-AP180 antibody. The pellets of Protein A/G resins were washed three
times with PBS-T and once with kinase buffer, and suspended in a small volume of kinase buffer (20 ml). Phosphorylation reaction was carried out in
the presence of 0.2 mM [c-32P]-ATP and Dyrk1A (2 mg) in a final liquid volume of 25 ml. Aliquots of the reaction mixtures were subjected to SDS-PAGE
followed by Coomassie-Blue staining (CB) and autoradiography (32P). Arrow, AP180. (n = 1). (C, D) Immunoprecipitation of a- and b-adaptins after
phosphorylation reaction. The PNP extract (C) and cytosol (D) were incubated with Dyrk1A and [32P]-ATP and subjected to immunoprecipitation with
(IP) and without (2) corresponding antibodies. The immunoprecipitates and the aliquots of original reaction mixtures (Ori) were subjected to
immunoblotting and autoradiography. (n = 3). (E) Incubation of the immunoprecipitated adaptins with Dyrk1A. Cytosol and the PNP extract were first
subjected to immunoprecipitation without (2) and with (+) anti-a-adaptin antibody. The resultant precipitates were incubated with Dyrk1A and
[c-32P]-ATP followed by immunoblotting (WB) and autoradiography (32P) as described in (B). (n = 1, various preliminary performances carried out to lead
the final assay conditions are not included). a, a-adaptin; b, b-adaptin; PNP-Ext, PNP extract; arrowheads, a-adaptin; arrow, b-adaptin;
*, autophosphorylated Dyrk1A.
doi:10.1371/journal.pone.0034845.g007
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phosphorylated by the kinase [29]. MAP2, on the other hand, does

not contain any of the consensus sequences. However, the

phosphorylation efficiencies of MAP1A and MAP2 in MTs were

very similar (Fig. 2C). We believe that Dyrk1A can phosphorylate

these MAPs equally in the CCV preparations as well. Our CCV

preparations were relatively crude and contained tubulin; thus,

MTs might exist as contaminants. Alternatively, because MAP1A

has been identified as one of the proteins bound (directly or

indirectly) on the a-appendage of the AP2 complex [30] and

because the epsin N-terminal homology/AP180 N-terminal

homology (ENTH/ANTH) domain has been shown to bind

tubulin [31], the presence of MTs in the CCV preparations might

be physiologically relevant.

b) Effect of Phosphorylation. We found that Dyrk1A

phosphorylated the bound (or insoluble) form of MAPs in the

CCV preparations and released the proteins into the solution

(Fig. 4). Because MAPs are the proteins which promote MT

assembly and stabilize MT dynamics [32,33,34,35,36], the

Dyrk1A-mediated phosphorylation could have a destabilizing

effect on MTs via dissociating MAP1A and MAP2. However,

under similar assay conditions, the release of MAPs from the

purified MT preparations was independent of Dyrk1A (data, not

shown). Therefore, we speculate that the phosphorylation by

Dyrk1A may disrupt the bindings between MAPs and the CCV-

associated proteins, rather than the destabilizing MTs. In either

case, CCVs could be released from the MT cytoskeleton after

MAP phosphorylation. A recent report indicates that Dyrk1A is a

priming kinase required for subsequent phosphorylation of

MAP1B by GSK3b, which reduces MT stability [29]. We

speculate that Dyrk1A could function as the priming kinase also

for MAP1A and MAP2 as well and subsequently affects the MT

dynamics via GSK3b action.

II. Phosphorylation of Clathrin-Adaptor Proteins by
Dyrk1A

a) Identification of Proteins. Similar to MAP2, AP180 does

not contain any sequences matching the consensus Dyrk1A

phosphorylation site, but immunoprecipitation analysis

confirmed AP180 as a Dyrk1A substrate associated with brain

CCVs (Fig. 3). We conclude that Dyrk1A can phosphorylate

AP180 both in membrane-bound and unbound forms, because 1)

AP180 dissociation from CCVs was clearly less if phosphorylation

did not take a place (Fig. 6B), 2) significant amounts of the [32P]-

labeled AP180 were still associated with the CCVs (Fig. 1), and 3)

Dyrk1A phosphorylated AP180 in cytosol (not shown) and in the

PNP extracts (Fig. 7).

Dyrk1A phosphorylated both a- and b-adaptins almost

exclusively at serine residue(s) (not shown). Rat a1- and a2-

adaptin isoforms of the AP2 complexes contain one (at S518) and

two (at S179 and S518) potential kinase sites, respectively, whereas

Figure 8. Ratios of adaptin subunits recovered in cytosol to the precipitated fractions from cultured cells. Cytosol (Sup) and
precipitated (Ppt) fractions from CHO and PC12 cells were prepared as described in MATERIALS AND METHODS. SDS-PAGE was carried out by applying
equal volumes of the soluble and insoluble fractions in each lane side-by-side. Immunoblotting was performed by using corresponding antibodies
derived from mouse and rabbit. The first blots with mouse and rabbit antibodies were stripped (stripping buffer, PIERCE) and re-blotted with rabbit
and mouse antibodies, respectively, for detecting other adaptin subunits in the same membranes. The antibodies used were mouse monoclonal
antibodies against anti-a and c-adaptins, rabbit monoclonal anti-b-adaptin antibody, and rabbit polyclonal anti-m adaptin antibody. Each adaptin
band in the Sup and Ppt was scanned, and the Sup to Ppt ratio was calculated. Four independent samples per each cell type were shown.
doi:10.1371/journal.pone.0034845.g008

Figure 9. Relative kinase concentrations in the CCV fraction. Rat
brain fractions S1, P2, P3 were prepared as described in MATERIALS AND
METHODS. These fractions together with CCVs were subjected to SDS-
PAGE followed by immunoblotting using 8D9 (Dyrk1A). Fifteen mg of
protein were applied per each lane. After stripping, the same
membrane was re-blotted with anti-CHC antibody. (n = 1, various
preliminary performances carried out to lead the final assay conditions
are not included).
doi:10.1371/journal.pone.0034845.g009
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the b1- and b2-adaptin isoforms do not contain any consensus

kinase site at serine residue. Because the anti-b-adaptin antibody

used in the current study recognizes both b1 and b2 isoforms of

the AP1 and AP2 complexes, respectively, it is not yet possible to

conclude whether Dyrk1A phosphorylated b1, b2, or both

isoforms. Judging from their extensively homologous amino acid

sequences, both b-adaptin isoforms could be the Dyrk1A

substrates. In contrast to AP180, a- and b-adaptins were

phosphorylated by the kinase only when they were associated

with CCVs. We assume that the Dyrk1A sites of a- and b-adaptins

in the soluble form of AP2 could be blocked sterically through

interacting with its binding protein(s). Alternatively, the kinase sites

are embedded inside the AP2 complex; the conformational

changes caused by binding to the membrane-lipids [37] could

expose the sites. In addition to the complete failure in their

phosphorylation, we also found it difficult to immunoprecipitate

the AP2 complexes from cytosol. Although we employed multiple

commercial monoclonal and polyclonal antibodies against a- and

b-adaptins (immunogens were; peptide aa38–215 and purified

AP2 complex for a-adaptin; peptides aa650–949 and aa75–245 as

well as purified AP2 complex for b-adaptin), all failed. Addition of

Tris-HCl (at 0.125 M) helped somewhat to pull down the complex

from the cytosol (Fig. 7D,E). Tris-HCl at high concentrations

might loosen the conformation (or interaction with binding

proteins) of each adaptin subunit in the AP2 complexes.

Nonetheless, the causes for the failure of immunoprecipitation

and phosphorylation appear to be unrelated because the

immunoprecipitated AP2 could not be phosphorylated by Dyrk1A

(Fig. 7E).

Figure 10. Co-localization of endogenous Dyrk1A and clathrin in the adult mouse brains. Forty micrometer sections of the mouse brain
tissues were incubated with polyclonal anti-Dyrk1A (red, a, d, and g) and monoclonal anti-CHC (green, b, e, and h) antibodies as described in
MATERIALS AND METHODS. Presented are Z-stack images collected from the subiculum (a–c), the medio-posterior thalamic nucleus (d–f), and
individual confocal images from the cerebellar Purkinje cell layer (g–i). Structures showing co-localization of Dyrk1A and CHC are visible on merged
images (yellow in c, f, i). The dotted squares shown in a–i are enlarged in the upper right corners. Scale bar = 10 mm. Panels (j–m) show three
consecutive scanning images from subiculum. Pearson’s correlation coefficients for three consecutive scanning images from subiculum and the
medio-posterior thalamic nucleus were calculated as 0.439 and 0.499, respectively, by using NIH Image J with the JACoP plug-in [65].
doi:10.1371/journal.pone.0034845.g010
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b) Effect of Phosphorylation on the Clathrin Adaptor

Proteins. To our surprise, the Dyrk1A-mediated

phosphorylation caused separation of b-adaptin from the a-

adaptin subunit (Fig. 3C–F), and only b-adaptin was released from

the CCV membranes when free Mg2+ was present in the system

(Fig. 6). These results suggest that phosphorylation of a- and b-

adaptins by Dyrk1A induces disassembly of the AP2 complex on

the CCV membranes and that when Mg2+ tightens the binding of

a- and m-adaptins to the membrane lipids (PIP2), b-adaptin

becomes free from the membranes. Because the anti-b-adaptin

antibody we employed reacts with both b1- and b2-adaptin

isoforms and cannot distinguish between the AP1 and AP2

complexes, one might argue that the phosphorylation simply

affected the membrane binding of AP1 complex and that what was

seen solely reflected the release of AP1 complex from CCV

membranes. However, we strongly believe that this was not the

case because a-adaptin failed to co-precipitate together with b-

adaptin only after phosphorylation with Dyrk1A (Fig. 3). In

support of our argument from the in vitro studies, the ratios of b-

adaptin recovered in cytosol to that in the precipitate from CHO

and PC12 cells were indeed higher than any other adaptin

subunits (Fig. 8). Variations in the a- to b-adaptin ratios were also

seen in a report where brain cytosol was used for the binding to

various phospholipids [38]. The physiological significance of

disassembling the AP2 complex is not clear. The disassembly

may moderate the pool size of the AP2 complexes available for the

next endocytosis cycle, or may provide synaptojanin better access

to the membrane PIP2 after b-adaptin is removed and, thus,

accelerating the release of the PIP2-binding proteins from the

vesicle membranes. We expect that the adaptin subunits released

in the cytoplasm could re-assemble back into AP2 complexes after

dephosphorylation by phosphatases such as calcineurin. Further

studies are required to address these possibilities.

Similar to the AP2 complex, Dyrk1A phosphorylation of AP180

accelerated its release from the CCV membranes (Figs. 5 & 6). Yet

the majority of the phosphorylated AP180 (as well as a- and b-

adaptins) remained associated with the CCV membranes as seen

in Fig. 1. These proteins may need to be phosphorylated at

multiple sites to effect dissociation from the membranes.

Alternatively, both AP180 and the AP2 complex must be

phosphorylated simultaneously for their dissociation. AP180 binds

to both a- and b-adaptins [39]. The fact that, in the presence of

Mg2+, phosphorylation released AP180 and b-adaptin but not a-

adaptin from CCVs (Fig. 6B) suggests that the binding between

AP180 and the AP2 complex was disrupted by the Dyrk1A-

mediated phosphorylation. A more complete understanding of the

basis for the altered binding to the CCV membrane will require

identification of the actual phosphorylation sites for these proteins.

III. Phosphorylation of the Endocytic Proteins
a) The Kinases Associated with Isolated CCVs. Multiple

protein kinases have been found to be associated with isolated

CCVs: CKII, CVAK104, and auxilin2/GAK [23,28,40,41,42,

43,44]. Apparently, m2-adaptin is the only CCV-associated protein

phosphorylated by endogenous kinase when intact CCVs are

incubated with [c-32P]-ATP (Fig. 1), consistent with a previous

report [28]. This phosphorylation reaction is mediated by

auxilin2/GAK that co-purifies with CCVs [28,43]. Phos-

phorylation by other CCV-associated kinases seems to be less

relevant; first, the CCV-bound CKII is inactivated by binding to

phosphatidylinositols of the CCV membrane [45]. Secondly,

although CVAK104 binds directly to both clathrin triskelia and

Figure 11. Localization of Dyrk1A and clathrin in the primary cultured neurons. E-18 rat hippocampal neurons were differentiated, fixed
with 2% formaldehyde, and immunostained with monoclonal anti-CHC followed by Alexa Fluor 488 conjugated goat anti mouse IgG. After
completion of CHC staining, the cells were incubated with monoclonal anti-Dyrk1A antibody (7F3), directly conjugated with Alexa Fluor 568 as
described in MATERIALS AND METHODS. (a), single confocal images; (b and c), Z-stack images. (n = 2). Pearson’s correlation coefficient for single
scanning images was 0.645 as calculated as in Fig. 10.
doi:10.1371/journal.pone.0034845.g011
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the isolated AP2 complex and co-fractionates with the adaptor

proteins, this kinase phosphorylates b2-adaptin only when isolated

AP2 is employed [44].

We have shown here that Dyrk1A was also associated with

brain CCVs (Fig. 9). In various neurons from mouse brain sections

and rat primary cultures, certain fractions of the endogenous

Dyrk1A were co-localized with clathrin (Figs. 10,11). Based upon

our in vitro analysis, recombinant Dyrk1A could bind directly to

CHC, endophilin 1, and dynamin [20], but apparently did not

exert effects on the assembly of clathrin cages [20] and on the

disassembly of clathrin from CCVs (Figs. 5,6). The exogenous

Dyrk1A also seemed to form complexes with AP180 and AP2 on

the CCV membrane because Dyrk1A alone (without ATP) could

dissociate these adaptors from the membranes in a concentration-

dependent manner when EDTA was added at the end of the

incubation (Fig. 5B,C). Such complexes appeared to remain

associated with CCVs in the presence of Mg2+ (Fig. 6). Because

Dyrk1A was not accumulated in CCVs at the same ratio as CHC

(Fig. 9) and because certain fractions of the CHC-positive

structures did not contain Dyrk1A (Fig. 10), we speculate that

the binding between Dyrk1A and CCVs in vivo is a transitory event

and can be influenced by other factor(s). This could explain why

only a fraction of the CCVs contained Dyrk1A. Alternatively, two

distinct types of CCVs, one with and the other without Dyrk1A,

may be formed at the discrete endocytosis sites (Fig. 10, panel i).

Either way, the endogenous kinase alone was insufficient to

phosphorylate the substrates in the isolated CCVs to significant

levels (Fig. 1). We do not know the reason for such insufficiencies.

As reported for CKII [45], the CCV-associated Dyrk1A must also

be inactivated by some mechanism(s). Further studies will be

required to address this point.

b) Regulation of CCV Formation. Phosphorylation may

regulate the assembly of CCVs both positively and negatively.

Phosphorylation of the m2-adaptin is required for endocytosis by

enhancing cargo recruitment into coated pits [46]. CHC is

phosphorylated by Src kinase at Tyr1477 after EGF stimulation of

A431 cells [47], and inhibition of the phosphorylation prevents

redistribution of clathrin and delays EGF receptor endocytosis. In

contrast, several proteins at nerve terminals (dynamin 1,

amphiphysin 1 and 2, synaptojanin, AP180, epsin, and Eps15)

are recognized as dephosphins, which are essential for synaptic

vesicle endocytosis and are rapidly and coordinately

dephosphorylated by calcineurin, Ca2+-calmodulin–dependent

phosphatase, after Ca2+ influx [19]. Multiple kinases are

reported for phosphorylating these dephosphins; PK C, CDKs

[19], GSK 3 [48], and Dyrk1A [12,13,14]. In addition, CKII

phosphorylates a- and b-adaptins and AP180. The

phosphorylation of a- and b-adaptins occurs within their hinge

regions and reduces their clathrin binding in vitro, whereas that of

AP180 reduces its binding to AP2 complex, which in turn lowers

the co-operative clathrin assembly activity of these adaptors [49].

Apparently CKII phosphorylates the unbound form of the adaptor

proteins [49] and it is not clear whether the exogenous CKII in an

excess amount can phosphorylate the CCV-associated substrates.

In this regard, Dyrk1A is the first identified kinase that is capable

of phosphorylating clathrin adaptors bound to the intact CCVs

and to dissociate them from CCV membranes.

We propose that Dyrk1A affects multiple steps in regulating

synaptic vesicle endocytosis (Fig. 12). The fact that AP180, a brain-

specific adaptor protein, was phosphorylated by Dyrk1A not only

in the membrane-bound form but also the membrane-free form

may imply that Dyrk1A affects not only dissociation of proteins

from synaptic vesicles (uncoating) but also inhibits assembly of

endocytic proteins at the vesicle formation sites (nucleation/

invagination). We speculate that the phosphorylated AP180 in

cytoplasm would slow a recruiting process of the AP2 complex and

Figure 12. Proposed Dyrk1A functions in regulating synaptic vesicle endocytosis. Dyrk1A phosphorylated AP180 in cytosol. The
phosphorylated AP180 may decrease its binding affinity to the AP2 complex; we hypothesize here that the decrease in such binding affinity would
reduce recruitment of clathrin at the nucleation and invagination sites. Phosphorylation of dynamin 1, amphiphysin 1, and synaptojanin 1 at their PRD
reduces the interaction between the PRDs and the SH3 domains of amphiphysin and endophilin. This likely slows down the invagination and fission
steps of synaptic vesicle formation. Once endocytosed, the vesicle-associated proteins are quickly removed from the membranes (uncoating). The
Dyrk1A-mediated phosphorylation releases first AP180 and b-adaptin from the vesicle membranes, while both a- and m-adaptin subunits remain
bound with the membranes. Additional factor(s) are required to release the membrane-bound subunits. Clathrin release from the vesicles is
independent from Dyrk1A. We speculate that the adaptin subunits released in cytoplasm may reassemble into the AP2 complex after
dephosphorylation.
doi:10.1371/journal.pone.0034845.g012
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clathrin at their assembly sites. Phosphorylation of dynamin 1,

amphiphysin 1, and synaptojanin 1 by Dyrk1A within their PRD

modifies the PRD binding to the SH3 domain of amphiphysin and

endophilin [12,13,14]. This is expected to reduce the invagina-

tion/fission stages of CCVs. From our current results, it is clear

that Dyrk1A phosphorylation enhances the uncoating step of the

endocytosed synaptic vesicles. The release of AP180 and b-adaptin

might be mediated by reductions in the binding affinities between

AP180 and AP2, between AP180 and membrane lipids, and

among the adaptin subunits of the AP2 complex. Uncoating of

clathrin-adaptor proteins has been proposed to be mediated by

dephosphorylation of PIP2 via phosphatidylinositol 59-phosphatase

activity of synaptojanin [50,51,52]. However, the involvement of

synaptojanin for the observed adaptor release is highly unlikely in

our system because this protein was not detected in our CCV

preparations and the Dyrk1A-mediated phosphorylation of

synaptojanin 1 has no effect on its 59-phosphatase activity [14].

Uncoating of clathrin, on the other hand, is mediated by auxilin

and Hsc70 in an ATP-dependent manner [53,54,55]. Because

clathrin dissociation may take place prior to dissociation of

adaptor proteins, further studies are necessary to evaluate the

effect of clathrin molecules on the Dyrk1A-mediated phosphory-

lation and dissociation of the adaptor proteins from CCVs. In the

current studies, we employed the truncated form of Dyrk1A

(Dyrk1A497) missing the C-terminal domain from aa498 to aa763

for in vitro assays. This was done because the truncated form (1) is

highly purified in contrast to the full-length protein which always

contains variously degraded kinase products [20,56] and/or

contaminants and (2) exhibits the similar kinase activity as the

full-length protein [21]. Indeed, we confirmed that all kinase

preparations (full length Dyrk1A, GST-full-length Dyrk1A, and

GST-Dyrk1A497) phosphorylated the CCV-associated substrates

very similarly (Figure S1). Although the role of the C-terminal

domain in regulation of Dyrk1A functions is unclear, removal of

the domain did not seem to affect the substrate specificity of

Dyrk1A, at least when CCVs were used. It is noteworthy that

because we have identified these substrates by in vitro assays using

recombinant kinase, the findings need to be confirmed in vivo

through other techniques, such as kinase-site specific antibodies.

Both Dyrk1A and the calcineurin inhibitor RCAN1/DSCR1/

MCIP1 are encoded within the DS critical region [57,58,59], and

their expression levels are elevated in individuals with DS

[60,61,62,63]. Dyrk1A is expressed strongly in the central nervous

system of vertebrates, and many endocytic proteins expressed in

brain are substrates for Dyrk1A. Indeed, over-expression of

Dyrk1A seems to impair synaptic vesicle endocytosis [64].

Aberrant phosphorylation of multiple endocytic proteins would

alter the cycling of synaptic vesicle endocytosis-neurotransmitter

release, which in turn may alter plasticity of neurons and may

result in mental retardation observed in Down syndrome.

Supporting Information

Figure S1 Phosphorylation of the CCV-Associated Pro-
teins by Full-Length and Truncated Dyrk1A. Four different

CCV preparations (a–d) were incubated with full-length Dyrk1A

(DyrkFL), GST-full-length Dyrk1A (GST-DyrkFL), or GST-trun-

cated Dyrk1A (GST-Dyrk497) under the conditions as described in

Fig. 1. The ultracentrifugation step was omitted, and the reaction

mixtures were directly subjected to SDS-PAGE followed by

autoradiography. Two distinct kinase preparations (#1 and #2)

were used for each DyrkFL and GST-DyrkFL. (A) CCV

(preparation a, 12 mg/assay) was incubated with 1.25 mg each of

DyrkFL (#1) and GST-Dyrk497. The reaction mixtures were

subjected to SDS-PAGE using 7% acrylamide-0.128% bis-

acrylamide gels as in Fig. 1. In this panel, the two lanes with

DyrkFL were exposed twice as long as those with GST-Dyrk497.

Under our SDS-PAGE conditions, DyrkFL migrated with an

apparent molecular weight (,115 kDa) greater than the calculat-

ed value of DyrkFL (87 kDa) for both endogenous (expressed in rat

brain) and recombinant kinases. (B) Two CCV preparations (b

and c; 7 and 14 mg, respectively) were phosphorylated by 0.5 mg

each of GST-DyrkFL (#1) and GST-Dyrk497. To avoid co-

migration of the autophosphorylated Dyrk1A band and band 4,

SDS-PAGE was carried out using 7% acrylamide-0.22% bis-

acrylamide gels. Autoradiogram is shown. All lanes have the same

exposure time. The phosphorylated bands 1+2, 3, and 4 were

scanned, and the relative ratios of the 32P-labeled bands 1+2 to

bands 3 and 4 were calculated for each CCV preparation (b & c)

phosphorylated with either truncated or full-length Dyrk1A; the

ratios were 1:0.69:0.75 and 1:0.73:0.78 for CCV-b with truncated

and full-length Dyrk1A, respectively. Similarly, the ratios were

1:0.70:0.54 and 1:0.80:0.61 for CCV-c with truncated and full-

length Dyrk1A, respectively. (C) CCVs (preparation d) were

incubated with DyrkFL (#2), GST-DyrkFL (#2), or GST-Dyrk497,

and subjected to SDS-PAGE as described in (B). In the panel, the

CCV lanes with DyrkFL were exposed twice as long than those by

GST-DyrkFL and GST-Dyrk497. The phosphorylation patterns of

bands 1–4 were very similar with all three kinase preparations.

Relative ratios of phosphorylated bands 1+2 to bands 3 and 4 were

1:0.74:0.53, 1:0.84:0.68, and 1:0.71:0.49 for phosphorylation with

DyrkFL, GST-DyrkFL, and GST-Dyrk497, respectively. Thus, full-

length and the truncated forms of Dyrk1A recognize the CCV-

associated substrates with a similar manner. For the CCVs with

GST-DyrkFL, the ratios were not normalized for the autopho-

sphorylated kinase band. Note that full-length kinases showed

much higher autophosphorylation levels than that of GST-

Dyrk497. This is because the C-terminal domain contains multiple

autophosphorylation sites and truncated kinase should be less

autophosphorylated than the full-length kinase. Reduction in the

autophosphorylation levels when incubated with the substrates

may indicate that the autophosphorylation of Dyrk1A is in

intermolecular, not intramolecular, event. *, autophosphorylated

GST-Dyrk497.
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