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Abstract

Most manipulation experiments simulating global change in tundra were short-term or did not measure plant growth
directly. Here, we assessed the growth of three shrubs (Cassiope tetragona, Empetrum hermaphroditum and Betula nana) at a
subarctic heath in Abisko (Northern Sweden) after 22 years of warming (passive greenhouses), fertilisation (nutrients
addition) and shading (hessian fabric), and compare this to observations from the first decade of treatment. We assessed the
growth rate of current-year leaves and apical stem (primary growth) and cambial growth (secondary growth), and
integrated growth rates with morphological measurements and species coverage. Primary- and total growth of Cassiope
and Empetrum were unaffected by manipulations, whereas growth was substantially reduced under fertilisation and
shading (but not warming) for Betula. Overall, shrub height and length tended to increase under fertilisation and warming,
whereas branching increased mostly in shaded Cassiope. Morphological changes were coupled to increased secondary
growth under fertilisation. The species coverage showed a remarkable increase in graminoids in fertilised plots. Shrub
response to fertilisation was positive in the short-term but changed over time, likely because of an increased competition
with graminoids. More erected postures and large, canopies (requiring enhanced secondary growth for stem reinforcement)
likely compensated for the increased light competition in Empetrum and Cassiope but did not avoid growth reduction in the
shade intolerant Betula. The impact of warming and shading on shrub growth was more conservative. The lack of growth
enhancement under warming suggests the absence of long-term acclimation for processes limiting biomass production.
The lack of negative effects of shading on Cassiope was linked to morphological changes increasing the photosynthetic
surface. Overall, tundra shrubs showed developmental plasticity over the longer term. However, such plasticity was
associated clearly with growth rate trends only in fertilised plots.
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Introduction

The Arctic is the region which will likely experience the most

pronounced alteration in climate and environment due to global

change [1]. As arctic ecosystems are very sensitive to changes in

environmental conditions and store a significant amount (12%) of

the global soil carbon (C), extensive research efforts have been

made in the last three decades to understand the future feedback of

arctic ecosystems to the greenhouse effect and global climate [1–

3]. In particular, manipulation experiments have been set up to

mimic the expected changes in arctic climate and their impact on

ecosystems [4–6]. Many experiments have focused on the effect of

warming during the growing season, of crucial importance for the

arctic plant communities adapted to a short and cool summer [7].

Focus has been on plant growth, which (i) can be considered as a

surrogate for plant fitness and as such a crucial process for plant

subsistence and development, (ii) represents the amount of C taken

up annually by the vegetation, and (iii) determines, through the

process of C allocation to plant organs with different life-spans and

decomposition rates, the C release by the ecosystem in the long-

term [8].

The impact of warming on plant growth can be direct or

indirect. The direct effect of warming has been mimicked by

enhancing air and soil temperature, e.g. with open top chambers

[9,10]. Indirect effects of warming are manifold [11,12]. However,

the increase in nutrient availability through enhanced net

mineralization is thought to be one of the most important indirect

effects of warming for arctic plant communities, which are

commonly nutrient limited [13,14]. This indirect effect of

warming has been mimicked by adding fertilisers during the

growing season [15], under ambient or enhanced temperature. A

second indirect effect (particularly important in the Subarctic and

Low Arctic), is the potential increase in competition due to tree-

line advancement and shrub expansion [16–18]. Such impact has

been mimicked by shading [9,10]. In the Subarctic and Low

Arctic, manipulative experiments have shown that fertilisation has

a strong effect on the growth of deciduous species in tussock

tundra, and of all vascular species (and particularly graminoids) in
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heath tundra, whereas warming and shading have small or non

significant effects [5,11]. However, these findings rely mainly on

studies not longer than a decade.

In this study, we aimed to broaden the current knowledge on

the long-term impact of warming, fertilisation and shading in

subarctic ecosystems by assessing the long-term responses in

growth of the widespread dwarf-shrubs Cassiope tetragona (L.) D.

Don., Empetrum hermaphroditum Hagerup and the low shrub Betula

nana L., at a tree-line heath in Northern Sweden after 22 years of

manipulation. The experiment is unique as we are not aware of

similar well-replicated experiments of such duration in the

Subarctic and Low Arctic. Furthermore, the experimental site is

particularly suited for this analysis as it was intensively investigated

in the first decade of manipulation, providing reports on the

shorter term responses of shrub growth to manipulations. In the

first decade of manipulation, warming yielded a modest positive

response in the growth of Cassiope and no response in Empetrum and

Betula, fertilisation led to a positive response in Cassiope and

particularly in Empetrum but not in Betula, whereas shading gave a

negative response, strong for Betula and modest for Cassiope and

Empetrum [5,13,19,20,21]. After more than two decades of

treatment, we expected the growth responses of arctic shrubs to

differ from the short-term responses for three reasons. First, the

steady changes in community composition, favouring graminoids,

which were observed in fertilized plots in the short-term [22], and

the competition for light that graminoids exert on prostrate shrubs

[5], are likely to negatively affect the shrub growth over the longer

term. Second, the mechanisms that buffered the negative effect of

shading in the first years of treatment (e.g. usage of stored

resources, short-term acclimations) [19,21], were expected to

weaken over the longer term, in particular for the less shade

tolerant species such as Betula and Cassiope. Third, the rate of

physiological processes that counterbalanced the positive effect of

warming on gross photosynthesis over the shorter term (e.g.

respiration, tissue turnover) [9,11] was expected to decrease

because of long-term acclimation [9,23].

The stem secondary growth of shrubs (cambial growth or

increase in stem diameter) accounts for a significant portion of

aboveground net primary production in tundra ecosystems (e.g. up

to ,50% at species level (Salix pulchra [24]) and ,20% at plant

community level (subarctic heath [25])) and it is sensitive to

environmental perturbations [26]. Nevertheless, secondary growth

is seldom investigated. The physiological function of secondary

growth differs from the one of primary growth. In fact, whereas

primary growth assures light interception and photosynthetic

uptake, secondary growth sustains the C uptake (e.g. by producing

new conduits for water and sugar transport) but also provides the

essential mechanical support to the canopy [26]. In a recent study

on the growth of arctic shrubs, Campioli et al. [27] found that

changes in primary and secondary growth between sites with

different environmental conditions were not proportional.

In detail, we tested two hypotheses. Hypothesis 1. The growth

responses of arctic shrubs to long-term environmental manipula-

tions differ from the short-term growth responses. Over the longer

term, warming was expected to have a more positive effect,

fertilisation a less positive effect (or even a negative effect) and

shading a more negative effect. Hypothesis 2. The responses of

primary and secondary growth to environmental manipulations

differ according to the concurrent morphological changes. If the

manipulations promoted morphological changes implying en-

hanced mechanical support for the shrub stem (e.g. increase in

shrub height or branching), the response of the secondary growth

is expected to differ from the response of the primary growth. On

the other hand, if the morphology of the shrub was not altered by

the manipulations, primary and secondary growth are expected to

present similar response patterns.

Results

Growth rates
The long-term environmental manipulations did not affect the

total growth of Cassiope and Empetrum (Fig. 1a,b; Table 1). By

contrast, the secondary growth increased under fertilisation for

both species (Fig. 1a,b; Table 1). The total growth of Betula was

significantly reduced (by a factor 2.0–2.4) under shading and

fertilisation (Fig. 1c; Table 1). For Betula, the primary growth

presented significant trends similar as for the total growth, whereas

the secondary growth increased under fertilisation (Fig. 1c;

Table 1).

Samples from the control treatment showed that the total

growth rate was largest for Betula (,130% year21), intermediate

for Empetrum (,110% year21) and lowest for Cassiope (,70%

year21), and that the primary growth represented 80–85% of the

total growth for each species (Fig. 1a,b,c). Leaf production

accounted for the large majority of primary growth: 85% for

Cassiope and Empetrum and 98% for Betula.

Shrub height and length
Shrub height was positively affected by warming for each

species and by fertilisation for Empetrum and Betula (Fig. 2a,b,c;

Table 1). Increase in height was of particular relevance in the

warming plus fertilisation treatment (WF), where shrubs were 2–3

times taller than in the control (Fig. 2a,b,c). Shading had no effect

on shrub height (Fig. 2a,b,c; Table 1). The impact of the

environmental manipulations on shrub length was similar to the

impact on shrub height (Fig. 2g,h,i). In contrast to shrub height,

shrub length of Cassiope was positively affected by shading (Fig. 2g;

Table 1) which relates to a significant increase in the number and

length of the branches (see below).

Branch number, branch length and apical increment
Shading exerted mainly a positive impact on the number and

length of the youngest branches, particularly for Cassiope (Fig. 3a,d).

Fertilisation had mainly a negative impact on the number and

length of old branches of Empetrum and, particularly, Cassiope and a

positive impact on the length of the youngest branches (up to 3

year-old) of all species (Fig. 3). The impact of warming was minor

and affecting only Cassiope and Empetrum, with reduced branch

numbers in few old cohorts and increased branch length in few

young cohorts (Fig. 3a,b,d,e). The F and p values of the ANOVA

analyses are reported in

Table S1.

The apical increment of Cassiope was positively affected by

shading and warming, whereas the apical increment of Empetrum

and Betula was positively affected by fertilisation (Fig. 2d,e,f;

Table 1). Overall, the number of branches was similar for Cassiope

and Empetrum but much lower (a factor of 2–4) for Betula

(Fig. 3a,b,c). Cassiope and Empetrum presented branch length larger

than Betula for young cohorts but similar branch length for older

cohorts (Fig. 3d,e,f).

Species coverage
Fertilisation had a positive impact on the coverage of

graminoids and Empetrum and negative on the coverage of Cassiope,

whereas warming had a positive effect on Betula (Fig. 4; Table 2).

Overall, the total vascular cover was positively affected by

warming and fertilisation and negatively affected by shading
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(Fig. 4; Table 2). Graminoids increased by a factor of 6 in the WF

treatment (Fig. 4).

Discussion

Our expectations were only partially confirmed, with differences

among treatments and species. Both hypotheses were overall valid

under fertilisation but not under warming. For shading, the

expectations were confirmed for Empetrum and Betula only partially

and were not confirmed for Cassiope. Besides the growth patterns,

the study showed that the investigated shrubs developed a

significant plasticity over the longer term.

Hypothesis 1: growth responses change over the longer
term

Fertilisation. As expected, the effect of fertilisation became

less favourable over the longer term for each species. The effect of

fertilisation on Empetrum and Cassiope changed from positive to

non-significant (Table 3). This reveals that the positive effect of

nutrient addition on the growth of evergreen dwarf-shrubs was

transient at our experiment because of the concomitant positive

effect of fertilisation on graminoids. A progressive shrub decline

concurrent to an increase in graminoids has previously been

observed in other subarctic and low arctic fertilised heaths [28,29].

Furthermore, the growth of evergreen dwarf-shrubs degenerated

in tussock tundra after 3 and 9 years of fertilisation because of the

progressive increase in competition with Betula [9]. However, our

study is the first to show that after more than two decades of

treatment, aboveground growth of evergreen dwarf-shrubs is not

suppressed and ancillary positive growth impacts are still recorded

(e.g. increase in Empetrum coverage, Fig. 4). This is likely due to the

shade tolerance of Cassiope and Empetrum and to morphological

plasticity (see below). Betula showed a different dynamics as the

effect of fertilisation changed from non-significant to strongly

negative (i.e. halving of the growth rate). Despite an important

plastic response (see below), Betula was suppressed over the longer

term because the competition with graminoids was particularly

severe for this species characterized by low shade tolerance.

However, Betula might suffer competition (or other growth

limitations) even in control conditions at our site and fertilisation

likely exacerbates a natural constrained growth. This is supported

by comparing the growth of Betula at the experimental site with the

growth of Betula at other heath sites [27] and by the fact that the

growth of fertilised Betula was stimulated after 8 years of treatment

in a more open tundra heath despite an even larger increase in

graminoids abundance [28].

Table 1. Results of ANOVAs on the growth rates (primary, secondary and total), shrub height, apical (current year’s stem)
increment and shrub length of the shrubs Cassiope tetragona, Empetrum hermaphroditum and Betula nana at a subarctic heath in
Abisko (Northern Sweden) after 22 years of environmental manipulation.

effect primary growth secondary growth total growth shrub height apical increment shrub length

F P F P F P F P F P F P

Cassiope

shading 0.14a 0.71 2.15a 0.16 0.01a 0.91 ,0.01b 0.96 4.58a 0.045 5.89a 0.025

warming 1.96c 0.17 0.30c 0.58 0.94c 0.17 7.05a 0.016 6.63c 0.014 5.55c 0.024

fertilisation 0.46c 0.50 4.32c 0.044 0.10c 0.75 2.77a 0.11 0.77c 0.39 ,0.01c 0.95

warm6fert 0.81c 0.37 0.54c 0.47 0.72c 0.40 ,0.01a 0.99 1.94c 0.17 0.35c 0.56

Empetrum

shading 0.35a 0.56 0.45a 0.51 0.57a 0.46 2.08b 0.15 0.34a 0.57 0.19a 0.66

warming 0.04c 0.84 2.74c 0.11 0.52c 0.48 17.75a ,0.001 2.73c 0.11 5.46c 0.025

fertilisation 0.93c 0.34 4.70c 0.036 1.45c 0.24 48.23a ,0.001 4.38c 0.043 4.10c 0.050

warm6fert 0.06c 0.81 0.04c 0.85 0.26c 0.61 4.53a 0.046 1.27c 0.27 1.46c 0.23

Betula

shading 6.00d 0.014 1.42d 0.27 12.73d ,0.01 0.30b 0.58 ,0.01d 1.00 0.57d 0.48

warming 0.41e 0.53 2.84e 0.11 0.74e 0.40 11.27a ,0.01 1.96e 0.18 1.15e 0.30

fertilisation 18.52e ,0.001 9.15e ,0.01 14.51e ,0.01 5.39a 0.031 3.30e 0.088 3.56e 0.078

warm6fert 0.09e 0.76 0.56e 0.46 0.16e 0.69 0.15a 0.70 0.59e 0.45 0.59e 0.45

a: degrees of freedom of between group variation or effect (df effect) of 1 and degrees of freedom of within group variation or residuals (df residuals) of 20;
b: df effect = 1, df residuals = 10;
c: df effect = 1, df residuals = 40;
d: df effect = 1, df residuals = 8;
e: df effect = 1, df residuals = 16.
doi:10.1371/journal.pone.0034842.t001

Figure 1. Growth rate of subarctic shrubs in manipulated environment. Growth rate (bars: total aboveground vegetative growth, indicated
as ‘total’; white stacks: primary growth i.e. leaves plus apical stem, indicated as ‘prim.’; grey stacks: secondary growth i.e. stem diameter increment,
indicated as ‘sec.’; mean+1SE; n = 5–6) of the shrubs Cassiope tetragona, Empetrum hermaphroditum and Betula nana in a subarctic heath in Abisko
(Northern Sweden) subjected to 22 years of environmental manipulation: shading (S), warming (W), fertilisation (F), combined warming plus
fertilisation (WF). The control is indicated by C. The environmental factors significantly affecting growth are reported on the top left corner of each
panel (shad: shading; fert: fertilisation) with the symbols + and 2 indicating the direction of the response, positive and negative, respectively. Note
the different scale between y-axes of panel A and panel B,C.
doi:10.1371/journal.pone.0034842.g001
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Shading. Despite some acclimation to shade (e.g. increased

leaf nitrogen and chlorophyll [21]), the growth of Cassiope and

Empetrum showed some negative responses in the first 10 years of

shading treatment (Table 3). Over the longer term, contrary to our

expectations, negative effects disappeared as the response of the

growth rate of Cassiope and Empetrum to shade was non-significant.

Cassiope was expected to have a limited shade tolerance as it does

not grow in shaded habitats [19]. However, Cassiope likely

compensated the negative effect of shading by substantial

changes in allocation pattern. While maintaining the same

growth rate (and thus biomass production), shaded Cassiope

ramets increased greatly in branch numbers and branch length

(Fig. 3a,d), hence increasing photosynthesising surface and light

interception. Empetrum is likely to be shade tolerant (it grows in the

understory of taller tundra shrubs and boreal forests [21]) and only

very minor changes in morphology were observed over the longer

term. On the other hand, the response of Betula to shading

confirmed our expectations for this species. The reduction of

aboveground growth of shaded Betula was one of the most

significant responses recorded in our study and it was related to a

strong reduction in leaf production. This confirms that the

negative response of Betula leaves observed earlier at the same plots

was not transient (Table 3). On the other hand, the observed

continuous growth decline was not associated with alteration in

Betula cover (Fig. 4). Despite the well known low tolerance of Betula

to shade [30,31], some compensatory processes might have played

a role over the longer term and avoided complete suppression. For

instance, shaded Betula might have partially benefitted from a

reduction in total vascular cover (Fig. 4) or from a reduction in the

stem turnover, which is stimulated in shaded Betula [9] and is

perhaps responsible for the transient reduction in stem biomass

recorded earlier in our plots (Table 3).

Warming. Contrary to our expectations, the effect of

warming on aboveground growth was non-significant after 22

years of treatment. Despite the consensus on the positive direct

effect of warming on the growth of arctic plants, our findings

suggest that physiological processes limiting net biomass

production (e.g. respiration, stem turnover; [9,11]) do not

Figure 2. Shrub height, shrub length and apical (current year’s stem) increment of subarctic shrubs in manipulated environment.
Values (mean+1SE; n = 5–6) of shrub height (left panels), apical increment (central panels) and shrub length (right panel) of three subarctic heath
shrubs (Cassiope tetragona, Empetrum hermaphroditum and Betula nana) in Abisko (Northern Sweden) subjected to 22 years of environmental
manipulation (shading S, warming W, fertilisation F, combined warming plus fertilisation WF) against the control (C). The environmental factors
significantly affecting growth are reported on the upper part of each panel (shad: shading; warm: warming; fert: fertilisation, and warm6fert:
warming6fertilisation) with the symbols + and 2 indicating the direction of the response (positive and negative, respectively).
doi:10.1371/journal.pone.0034842.g002
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acclimate over the longer term. Alternatively, other factors might

limit growth under long-term warming [11]. For instance, nutrient

limitation might be important in our warmed plots due to

increased vascular cover and competition (Fig. 4). On the other

hand, heat stress might occur on warmed plants during warm

summer days [11], as observed for Ledum palustre in the Low Arctic

[9] and in Salix arctica in the Mid Arctic [32]. Empetrum is likely to

be particularly sensitive to heat stress as it was favoured by

warming level of 2.5uC and not by warming level of 4uC at our site

after 6 years of treatment [20]. Our results indicate thus that the

positive effect of warming on Cassiope recorded after 5 years of

treatment was transient (Table 3). Transient positive responses to

warming have been observed in other short-term tundra warming

experiments and associated with temporary increases in

mineralization or use of stored resources [11].

Hypothesis 2: responses of primary and secondary
growth differ according to morphology

Fertilisation. Fertilised ramets of the three species showed a

similar pattern with non-significant variation or decrease in

primary growth and increase in secondary growth (Fig. 1). For

Empetrum and Betula, this pattern was accompanied by a significant

increase in shrub height, total shrub length and length of the

youngest branches. For these two species our expectations were

therefore confirmed. In presence of a lush graminoid canopy,

Empetrum and Betula (procumbent at the site) grew more vertically

and explored more lateral space. A more erected and large posture

requires more resources to reinforce the stem mechanical strength,

implying enhanced secondary growth. This typical morphological

plastic reaction prevented these shrubs from being completely

confined in the shaded understory. For Empetrum, such response

likely avoided reduction in the aboveground growth. For Betula,

such plastic reaction was likely not enough to maintain the same C

assimilation as in the control, resulting in fewer resources available

for primary growth and in an overall growth reduction. Cassiope is

likely to have a similar pattern as for Empetrum but less marked. In

fact, for Cassiope, the significant increase in secondary growth was

coupled to a non-significant increase in shrub height (p = 0.11)

(Table 1).

Shading. Our expectations were confirmed for Empetrum,

whose growth pattern and morphology were both unaffected by

shading. For Betula, we did not expect uncoupling in the response

of primary and secondary growth as the morphology of Betula did

not change in shaded plots. However, the prolonged light

attenuation significantly decreased Betula leaf production,

impairing the relationship between primary and secondary

Figure 3. Branch number and length (according to age) of subarctic shrubs in manipulated environment. Number and length of the
branches vs. branch age (means+1SE; n = 5–6) of the shrubs Cassiope tetragona, Empetrum hermaphroditum and Betula nana at a subarctic heath in
Abisko (Northern Sweden) after 22 years of environmental manipulation. Text on the top left indicates the environmental factors with a significant
impact (shad: shading; warm: warming; fert: fertilisation, and warm6fert: warming6fertilisation), their direction (+: positive, 2: negative) and the age
of the branches affected. Note the different scale between y-axes of panel A,B,D,E and panel C,F.
doi:10.1371/journal.pone.0034842.g003
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growth. Cassiope showed a less clear pattern with no increase in

secondary growth and substantial increase in total length and

branching. However, the fact that the shaded Cassiope ramets had

low stature (Fig. 2b) probably resulted in procumbent Cassiope

branches laid on the moss mat, thus requiring less mechanical

support from the stem.

Warming. Warmed ramets showed unaffected primary and

secondary growth but increased shrub height and (for Cassiope and

Empetrum) increased shrub length and branch length of the

youngest branches. This was unexpected. It is possible that the

morphological changes under warming were the result of an

overall improved (micro)environment rather than the result of the

competition for light as in the fertilised plots. Such supposition is

coherent with the species coverage results, which showed no

negative impact of warming, increase in total vascular cover and

no impact on graminoids (Fig. 4).

Overall. Previous short term (,10 years) studies on tundra

concluded that evergreen dwarf-shrubs have low developmental

plasticity, conservative secondary growth and tend to become

subcanopy species [9,26,33]. Our study reveals that evergreen

dwarf-shrubs can show opposite dynamics over the longer term and

posses an overall important plasticity. As acclimation normally

occurs through formation of new tissue, it is indeed plausible that

slow growing species need long time to acclimate [9,34].

Furthermore, our study showed that apical increment presented a

different response than primary growth for each treatment and

species. This because length increment does not necessarily correlate

to biomass increment in arctic shrubs [25,27]. Such uncoupling calls

Figure 4. Species coverage in subarctic heath under environmental perturbations. Coverage (mean+1SE; n = 6) of the shrubs Cassiope
tetragona, Empetrum hermaphroditum and Betula nana, the graminoids (gram.) and of the total vascular species (total vasc.) at a subarctic heath in
Abisko (Northern Sweden) after 22 years of environmental manipulation: shading (S), warming (W), fertilisation (F), combined warming plus
fertilisation (WF). Text on the top left indicates the environmental factors with a significant impact on coverage (shad: shading; warm: warming; fert:
fertilisation, and warm6fert: warming6fertilisation) and their direction (+: positive, 2: negative).
doi:10.1371/journal.pone.0034842.g004

Table 2. Results of ANOVAs on the coverage of the dwarf-shrubs Cassiope tetragona and Empetrum hermaphroditum, the low
shrub Betula nana, the graminoids and the total vascular species at a subarctic heath in Abisko (Northern Sweden) after 22 years of
environmental manipulation.

plant type shadinga warmingb fertilisationb warm6fertb

F P F P F P F P

Cassiope 0.71 0.42 0.02 0.89 8.88 ,0.01 1.35 0.26

Empetrum 0.93 0.34 0.35 0.56 5.35 0.03 0.52 0.48

Betula 2.51 0.14 13.02 ,0.01 1.00 0.33 1.00 0.33

graminoids ,0.01 0.97 2.39 0.14 25.36 ,0.001 1.99 0.17

total vascular 3.92 0.076 15.95 ,0.001 17.14 ,0.001 0.19 0.67

a: degrees of freedom of between group variation or effect (df effect) of 1 and degrees of freedom of within group variation or residuals (df residuals) of 10;
b: df effect = 1 and df residuals = 20.
doi:10.1371/journal.pone.0034842.t002
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for caution when inferring growth responses of tundra shrub to

environmental manipulations from apical increment only.

Materials and Methods

Experimental set up
Study site. The study took place at a tree-line heath on

sloping terrain (20–30%) at 450 m a.s.l. at Abisko (68u219N,

18u499E), in Northern Sweden. The region has a subarctic

montane climate, with mean annual temperature and

precipitation of 21.0uC and 304 mm, respectively, and the

growing season lasting from early-mid June until late August-

early September [25,35]. The site is an evergreen dwarf-shrub

community dominated by Cassiope tetragona and by the co-dominant

Empetrum hermaphroditum. Betula nana is one of the most common

deciduous shrubs. Graminoids and forbs are also present, as well

as nonvascular plants which form a continuous mat [20]. Bedrock

consists of base-rich mica schists [19]. The soil has pH of 7.1

(typical for ecosystems with similar bedrock and topography in the

region [36]), an organic layer of about 15 cm and is well drained

[25,37,38]. No specific permits were required for the described

field studies, as the location is not privately-owned and not

protected and the field studies did not involve endangered or

protected species.

Environmental manipulations. The experiment started in

1989 in an area of about 400 m2. It consisted of eight treatments

replicated in six blocks: control, low warming, high warming,

shading, fertilisation, fertilisation plus low warming, fertilisation

plus high warming and fertilisation plus shading [13]. In this study,

we investigated five key treatments: shading (S), high warming (W),

fertilisation (F), fertilisation plus high warming (WF) and control

(C). Temperature was enhanced by small (1.261.2 m, 50 cm high)

dome-shaped open top greenhouses of polyethylene film

(0.05 mm) supported by PVC tubes. Greenhouses were in place

every year from early June (just after snowmelt) until end of

August-early September (leaf fall) enhancing the summer air and

soil temperature by 3.9uC and 1.2u–1.8uC, respectively. The

greenhouses did not provoke critical side effects on plant growth

because: (1) they caused only minor and non-significant reduction

in relative soil water content (,6%) as the sloping terrain

permitted lateral water movement [19,21]; (2) they did not

change significantly the air humidity (,3%); (3) they only led to a

9% reduction in photosynthetically active radiation [19,21]; (4)

they did not affect the snow cover as they were not in place in

winter and (5) their sheltering effect had a minor impact on shrub

morphology as in tundra heath the effect of wind exposure on the

shrub structure is much more relevant in winter [7,39].

Furthermore, the greenhouses (resting on the shrub canopy and

opened at the top) do not impact the presence of small herbivores

(e.g. insects, rodents). Reindeer grazing and moose browsing is

generally limited to periods out of the growing season (e.g.

reindeers normally do not stay at the tree-line during summer) and

are not affected by our manipulative experiment, which is in place

only between June and August. The shading was obtained with

hessian (jute) fabric, arranged in the same way and in the same

period as the polyethylene film of the greenhouses. Hessian fabric

reduced the light by 64% without significant effect on air humidity

and temperature [19,21]. Fertilisation (10.0 g m22 N, 2.6 g m22

P and 9.0 g m22 K, in the form of NH4NO3, KH2PO4 and KCl)

occurred once per year after snow melt in June (except in 1998,

half amount, and in 1993 and 2001, not applied). The dose of N

applied was considered similar in magnitude to potential N release

from the soil of tundra ecosystems under global change scenario

[15].

Sampling and processing of shrub ramets. Sampling took

place in mid-late August 2010, after 22 years of experimental

manipulation. Individual ramets (i.e. aboveground stem with all

lateral branches) of Cassiope and Empetrum (two ramets) and Betula

(one ramet) were collected for each block and treatment (n = 6).

However, for Betula, only five replicates were considered in the

Table 3. Synthesis of the significant impact of shading (S), warming (W), fertilisation (F) and their interactions on the growth of the
tundra shrubs Cassiope tetragona, Empetrum hermaphroditum and Betula nana.

yeara aboveground growth response shrubs speciesb
referencec

variable meristem (organ) Cassiope Empetrum Betula

3 mass per shoot primary (leaf) F+ n.a. n.a. [19]

5 biomass ratiod primary (leaf, stem) F+ n.a. n.a. [21]

5 biomass unit ground primary plus secondary (leaf, stem) W+, F+ W6F+ n.a. [5,21]

6 mass per shoot primary (leaf) n.a. S- S- [20]

6 shoot density primary (stem) n.a. F+, W6F+ no effect [20]

10 biomass unit ground primary (leaf) S- F+ S2 [5]

10 biomass unit ground primary plus secondary (stem) no effect no effect S2 [5]

10 biomass unit ground primary plus secondary (leaf, stem) no effect F+ S2 [5]

22 growth rate primary (leaf, stem) no effect no effect S2, F2 this study

22 growth rate secondary (stem) F+ F+ F+ this study

22 growth rate primary plus secondary (leaf, stem) no effect no effect S2, F2 this study

+: positive impact; 2: negative impact; no effect: manipulations had no significant impact on the growth variable; W6F2 and W6F+: lower and higher effects in the
combined treatment, respectively, than expected from the single treatments alone; n.a.: no data available;
a: years of treatment at the time of measurement;
b: non-significant effects are not listed;
c: data refer only to the experimental site investigated in this study (the tree-line heath of Paddustieva, Abisko, Northern Sweden) and are derived from earlier published
papers and the current work, and
d: green biomass as ratio of grey stem biomass.
doi:10.1371/journal.pone.0034842.t003
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analysis as most of the ramets of one block were too young or too

damaged (i.e. broken stem or branches) to be analyzed. The

ramets were sampled in the central part of the experimental plots.

This assured that biases due to sampling of ramets supporting

biomass outside of the plot or ramets grown into the plots after the

treatment began were minor because (i) the colonization rate of

these slow growth ericaceous plants is inherently low [19], (ii) the

shrub frequency in the area surrounding the plots has been

reduced by trampling [40] and (iii) woody functional type as

evergreen and multiple-flush deciduous have a high degree of

‘shoot autonomy’ [41], meaning that relocation of assimilates

among ramets is limited.

Stem and branches were divided into segment cohorts of the

same age. This was done by counting the apical bud scars for

Empetrum [24], the stem sections with smaller leaves for Cassiope

[42] and the annual growth rings in thin stem/branch cross-

sections after staining with 0.5% phloroglucinol in 10% HCl for

Betula [26]. Each stem/branch segment cohort was dried at 70uC
for 48 hours and leaves were detached. The number of stem/

branch segments of each cohort, their aggregated length and dry

weight were recorded [24] as well as the weight of the current-year

leaves. Ramets of Empetrum and Betula were 5–7 year-old. Ramets

of Cassiope were 10–12 year-old.

Measurement of growth variables
Growth of shrubs was assessed with comparable but refined

methods to the ones used to characterize growth responses in the

first decade of manipulation, as the latter were too invasive to be

repeated (e.g. standing biomass harvest) or had limitations (e.g.

lack of assessment of secondary growth and branching pattern). In

the current study, shrub growth was determined as primary

growth (leaf and apical stem production) and secondary growth,

both expressed as percentage of old stem biomass

[24,26,27,43,44]. Data on growth rate were complemented by

several measurements of shrub morphology (e.g. shrub height,

number and length of branches, total length of stem and branches)

and of species coverage. Growth rates were used to evaluate the

long-term impact of the environmental manipulations on shrub

growth because they provide a direct estimation of plant biomass

production. Morphological characteristics were compared to the

growth rate estimates to better understand the response pattern of

the primary- and secondary growth. The species coverage was

used to indirectly infer species abundance. A summary of the

growth variables measured, the plant organ and organ age

considered and the way the results are expressed (e.g. relative or

absolute values, values per plot or per ramet) is reported in Table 4.

Growth rates. We assessed the annual rate of the

aboveground vegetative growth as primary-, secondary- and

total growth. We determined primary growth rate (% year21)

for each ramet as the production of current year’s apical biomass

(leaves and stem) as a percentage of old standing stem biomass

[27]. The data needed to calculate the primary growth were

directly available from the harvested material (see above). The

stem secondary growth was expressed in the same way but the

current-year secondary growth was not directly available from the

harvested material. Instead, we derived that following the model of

Bret-Harte et al. [26] (see key equations below) who assumed that

(i) a stem/branch segment is cylindrical, (ii) the annual increment

in stem/branch radius does not vary with the age of the stem/

branch segments in the aboveground portion of the ramet, and (iii)

the annual increment in stem/branch radius changes under

manipulated environmental conditions. For the study species, the

performance of the model of Bret-Harte et al. [26] was very good,

with average slopes of the regression modelled vs. measured

standing stem biomass M of 0.90–1.1 and r2.0.94 [45]. The total

Table 4. Summary of the shrub growth variables measured in this study, the plant organ and organ age they refer to and the way
the results are expressed.

Growth variables species organa age organ (year) result type

Primary growth Cassiope leaves plus stem/branches 0b relative to old stem biomass

Empetrum, Betula leaves plus stem/branches 0 relative to old stem biomass

Secondary growth Cassiope stem/branches 1 to 12 relative to old stem biomass

Empetrum, Betula stem/branches 1 to 7 relative to old stem biomass

Total growth Cassiope leaves plus stem/branches 0 to 12 relative to old stem biomass

Empetrum, Betula leaves plus stem/branches 0 to 7 relative to old stem biomass

Shrub height Cassiope stem/branches no distinction absolute per plot

Empetrum, Betula stem/branches no distinction absolute per plot

Shrub length Cassiope stem/branches 1 to 12 absolute for each ramet

Empetrum, Betula stem/branches 1 to 7 absolute for each ramet

Branch numbers Cassiope stem/branches 1 to 12 absolute for each cohort

Empetrum, Betula stem/branches 1 to 7 absolute for each cohort

Branch length Cassiope stem/branches 1 to12 absolute for each cohort

Empetrum, Betula stem/branches 1 to 7 absolute for each cohort

Apical increment Cassiope stem/branches 0 absolute for each ramet

Empetrum, Betula stem/branches 0 absolute for each ramet

Plant coverage Cassiope leaves plus stem/branches no distinction absolute per plot

Empetrum, Betula leaves plus stem/branches no distinction absolute per plot

a: no distinction was made for stem and branches as they are difficult to differentiate for the clonal species investigated;
b: 0 indicates ‘current year’.
doi:10.1371/journal.pone.0034842.t004

Growth of Arctic Shrubs in Manipulated Environment

PLoS ONE | www.plosone.org 9 April 2012 | Volume 7 | Issue 4 | e34842



growth rate was calculated as the sum of the primary and

secondary growth rate.

The calculation of the secondary growth of individual ramets at

yearly basis is summarized in four steps (for details see [26]). (i)

The mass (m) of a stem/branch segment cohort of a given age n (in

years) of an individual ramet is estimated as:

m~l a2 n{1ð Þ2z2a n{1ð Þczc2
� �

ð1Þ

where l is the length of the stem/branch segment cohort, c equals

(m/l)1/2 of the current-year stem and a the slope of a linear

relationship (m/l)1/2 vs. n. (ii) The annual mass increment due to

secondary growth (Dm) of a stem/branch segment cohort equals:

Dm~l 2a2 n{1ð Þza2z2ac
� �

ð2Þ

(iii) The mass (M) of an individual ramet is calculated as the sum of

m for all the segment cohort age classes and the annual mass

increment due to secondary growth (DM) as the sum of Dm for all

the segment cohort age classes. (iv) The annual stem secondary

growth rate equals DM/M.

Shrub height and length. The height of nine randomly

selected shoots of Cassiope, Empetrum and Betula was measured in

two 25650 cm rectangulars within the central area of each plot in

mid-late August 2010 and averaged for each plot (n = 6). The

height was measured with a ruler as the perpendicular height from

shoot apex to ground. Shrub length refers to the total length of

stem and branches of each ramet of Cassiope, Empetrum and Betula

sampled for the determination of the growth rate (see above).

Branch number, branch length and apical incre-

ment. Branch number and branch length of each ramet of

Cassiope, Empetrum and Betula were derived separately for each age

class composing the ramet (in years) from the ramets sampled for

the determination of the growth rate (see above). Branch length

refers to the total aggregated length for a given branch age class.

The length of the current year’s branches is defined as apical

increment. As young stem and young branches are difficult to

differentiate for the clonal species investigated, all woody segments

of a given age class were considered as branches in these

assessments.

Species coverage. Species coverage was measured in mid-

late August 2010 with the pin-point method in the same two

rectangulars (25650 cm) per plot investigated for shrub height. A

pin was passed vertically at 100 points (5 cm spaced) and all

matter touched by the pin was recorded as a hit [46]. Vascular

vegetation was recorded at species level, nonvascular vegetation

was lumped in bryophytes and lichens, whereas attached or

unattached dead tissue was recorded as litter. In this study, we

present coverage data for the model shrub species Cassiope,

Empetrum and Betula, for the lumped graminoids group and for the

total vascular plant cover.

Statistics
The impact of manipulated environmental factors (warming,

fertilisation, shading) was assessed with analysis of variance. Due to

the incomplete factorial design, the analysis was conducted

separately for (i) shading and (ii) warming and fertilisation [13].

The response to shading was tested with a one-way ANOVA,

whereas the response to warming and fertilisation with a two-way

ANOVA with interaction between warming and fertilisation. The

block factor was not considered because preliminary analyses

showed that it had no effect on the dependent variables. If

prerequisites for analysis of variances (normality, checked with

Shapiro test, and homoscedasticity, checked with Bartlett test)

were not met, we performed a Kruskal-Wallis test instead of one-

way ANOVA or repeated the same analysis after transformation

(logx and in few cases x1/2 or x21) for two-way ANOVA, as no

standard non-parametric test fitted our design and transformed

data fulfilled the ANOVA prerequisites. Transformation was

needed for: (i) growth rates of Cassiope and Empetrum, (ii) total height

of each species, (iii) total length and apical increment of Cassiope

and Empetrum, (iv) coverage of Cassiope, Betula and graminoids, and

(v) datasets on branch number and branch length (see details in

Table S1).

Dependent variables tested with the ANOVA analysis were

growth rates (primary, secondary and total), shrub height, shrub

length, species coverage, apical increment, branch number and

length. Primary and secondary growth were tested separately as

they proved to be uncorrelated (tested with Pearson’s correlation)

for any treatment and species. If more within-plot measures of the

dependent variable were available per plot (e.g. for growth rates of

Cassiope and Empetrum), a nested level was added to the ANOVAs.

Treatment effects on branch number and length were tested

separately for each species and age class, except for 7 year-old

branches of Empetrum and Betula which were not analyzed because

of the few replicates available. All analyses were performed in R

version 2.12.2 (R Development Core Team 2011).

Supporting Information

Table S1 Results of ANOVAs (F and P values) on the number

and length of branches of cohort of the same age (up to 12 year-

old) of the shrubs Cassiope tetragona, Empetrum hermaphroditum and

Betula nana at a subarctic heath in Abisko (Northern Sweden) after

22 years of environmental manipulation.
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