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Abstract

The maltose transporter MalFGK2, together with the substrate-binding protein MalE, is one of the best-characterized ABC
transporters. In the conventional model, MalE captures maltose in the periplasm and delivers the sugar to the transporter.
Here, using nanodiscs and proteoliposomes, we instead find that MalE is bound with high-affinity to MalFGK2 to facilitate
the acquisition of the sugar. When the maltose concentration exceeds the transport capacity, MalE captures maltose and
dissociates from the transporter. This mechanism explains why the transport rate is high when MalE has low affinity for
maltose, and low when MalE has high affinity for maltose. Transporter-bound MalE facilitates the acquisition of the sugar at
low concentrations, but also captures and dissociates from the transporter past a threshold maltose concentration. In vivo,
this maltose-forced dissociation limits the rate of transport. Given the conservation of the substrate-binding proteins, this
mode of allosteric regulation may be universal to ABC importers.
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Introduction

ATP binding cassette (ABC) transporters utilize ATP to

transport a wide range of substrates across cellular membranes

[1]. ABC transporters are typically made of two nucleotide-

binding domains and two transmembrane domains that alternate

into two distinct conformations: Inward facing (P-closed) and

outward-facing (P-open). This ATP-driven alternate conforma-

tional change allows the capture of the substrate on one side of the

membrane and its release to the other side; the so-called alternate

access model [2]. For ABC exporters, which include drug, lipid

and (poly) peptide transporters, the substrate itself suffices to

trigger the ATPase [3]. For ABC importers, as found in bacteria to

acquire nutrients, the transport activity depends on a substrate-

binding protein located in the extra-cytosolic side of the

membrane [4]. The protein usually consists of two symmetrical

lobes that rotate toward each other to capture the substrate with

high-affinity; so-called closed-liganded conformation [5]. In the

maltose transport system, certain mutations in MalFGK2 render

transport independent from the maltose-binding protein MalE. In

that case, translocation of maltose is strongly reduced as the K

maximal rate of transport (Kt) increases from 2 mM to 1 mM [6].

The function of MalE is therefore essential to increase the affinity

of the transporter for the substrate, and therefore the efficiency of

transport.

Since MalE is found soluble in the periplasm, it has naturally

been proposed that the protein shuttles back-and-forth to the

membrane to deliver maltose. The reconstitution of the reaction in

proteoliposome and the crystallographic analysis of the transporter

have completed the model [7–10]. Upon binding of closed-

liganded MalE, MalFGK2 switches toward the P-open conforma-

tion. This structural change forces the opening of MalE and the

subsequent release of maltose inside the transporter cavity. After

ATP hydrolysis, MalFGK2 returns to the P-closed state, maltose is

released in the cytosol, and MalE returns to the periplasm to

capture another sugar. Such an ATP-driven alternating access

model has been strongly supported by biochemical and crystal-

lographic analysis, on this and other ABC transporters [11,12]. An

EPR spectroscopy study has also concluded that liganded-MalE is

required for the closure of the nucleotide-binding interface [13].

Yet, despite the long-lasting prevalence of the model, the notion

that MalE shuttles back and forth to the membrane to deliver

maltose has not always been consistent with earlier genetic

analysis. For example, it was expected that the transport constant

Kt would decrease rapidly when MalE concentration increases in

the periplasm [14]. In reality, the Kt decreased only ,2-fold when

the MalE concentration increased more than ,20-fold [15].

Similarly, the activation of the MalK ATPase was expected to be

strong with a MalE variant possessing high affinity for maltose, but

instead the mutant showed impaired ability to stimulate transport

[16]. It was also surprising that a MalFGK2 allele capable to

transport lactose was still dependent on MalE for activity, although

MalE does not binds lactose [17]. It was then unexpected that

excess MalE can inhibit transport when maltose is held at a sub-

stoichiometry level [18]. Finally, maltose-loaded MalE was

reported to have low affinity for the transporter (50–100 mM)

[19]. Since MalE periplasmic concentration depends on maltose,

the transport efficiency may be weak at low maltose [20], whereas

MalE is to facilitate transport especially at limiting substrate

concentration.

In this study, we examined the problem of substrate delivery by

measuring the effect of maltose on the stability of the MalE-

PLoS ONE | www.plosone.org 1 April 2012 | Volume 7 | Issue 4 | e34836



MalFGK2 complex. We employed the nanodisc because the

system is well adapted to membrane proteins and transporters

[21,22]. We report that maltose-free MalE binds the P-open

transporter with high affinity (Kd ,79 nM), whereas at saturating

maltose concentration, MalE captures the sugar (with Kd

,120 mM) and dissociates from the transporter. The surprising

behavior of liganded-MalE was not specific to the disc because the

same observations were made in proteoliposomes. The conse-

quence of this maltose-regulated interaction was evaluated in vitro

and in vivo: maltose transport and maltose-dependent MalK

ATPase were found maximal when MalE had low affinity for

maltose, and minimal when MalE had high affinity for maltose.

We conclude that the transporter activity depends on two opposite

effects: the capture and transport of maltose by the MalE-

MalFGK2 complex, and the capture of maltose by MalE leading

to its dissociation from MalFGK2. Maltose is therefore both

substrate and regulator of its own transporter (i.e. homotropic

regulator). Similar allosteric mechanism may apply to all ABC

importers dependent on a substrate-binding protein similar to

MalE.

Results

Reconstitution of the maltose transporter in nanodiscs
The MalFGK2 complex was reconstituted in nanodiscs using

the membrane scaffold protein MSP1D1 [21]. The discs (hereafter

termed Nd-MalFGK2) were isolated by gel filtration and analyzed

by native-PAGE (Figure 1A). The particles were soluble and

homogeneous, with a mean diameter of ,12 nm (+/2 2nm) and

an apparent molecular mass of ,215 kDa, as expected for a

properly reconstituted disc (Figure S2). The ATPase activity

supported by the assembly was measured at 37uC (Figure 1B

and Figure S3). compared to the proteoliposomes, the basal

ATPase activity in disc was ,10 fold higher (,700 nmol/min/

mg), quite similar to that in detergent (Figure 1B). It is proposed

that the detergent micelles (or the lack of lipid bilayer) decrease the

activation energy barrier of the transporter [23], and this may also

be true in nanodiscs (Bao et al., submitted). However, whether in

disc, in detergent or in the membrane, MalE increased the rate of

ATP hydrolysis (3-fold, 1.3-fold and 4-fold respectively; Figure 1B)

[24,25]. This last result showed that MalE facilitates (or stabilize)

the conversion of MalFGK2 toward the P-open ATPase active

conformation, whether the transporter endogenous ATPase

activity is high or low. Surprisingly, in disc and in detergent, a

significant inhibition of the ATPase activity was observed in the

presence of maltose (Figure 1B). In the absence of a separating

membrane, the concentration of maltose around the transporter is

constant, and this may slow down maltose release and therefore

the ATPase turnover. This scenario is however unlikely because

maltose alone did not effect the basal ATPase activity, nor the

affinity of the transporter for ATP (Figure 1B and Figure S4).

Thus, the sugar negative effect may be on the association of MalE

with the transporter.

Maltose-free MalE binds with a high-affinity to the P-
open transporter

To test the above hypothesis, we determined the affinity of

MalE for MalFGK2 and the effect of maltose on the complex

stability. A complex of MalE and MalFGK2 can be isolated with

non-hydrolysable ATP analogs or in the presence of vanadate.

These conditions stabilize the P-open state transporter [7,26].

Accordingly, MalE and Nd-MalFGK2 migrated to different

positions on native-PAGE but together in the presence of AMP-

PNP or ATP plus vanadate (Figure 2A). However, in the presence

of maltose, the binding of MalE to MalFGK2 was significantly

reduced (Figure 2A, compare lane 7 to lane 8). The negative effect

of maltose was further confirmed by titration analysis (Figure 2B

and 2C) and pull-down experiments (Figure 2D).

To determine the binding affinities, we employed an electron

transfer-based quenching reaction [27,28]. MalE cysteine residue

position 31 was modified with the oxazine-derivative dye

ATTO655, and incubated with Nd-MalFGK2 bearing a trypto-

phan at position MalF-177. These two amino acids are within

,5Å distance in the MalE-MalFGK2 complex structure

(Figure 2E, Figure S5, and [7,29]). In the absence of nucleotide,

very little quenching occurred (Figure 2F, green curve), in

agreement with an earlier EPR spectroscopy analysis showing

that MalE has no measurable affinity to the P-closed transporter

(i.e. .50–100 mM) [19]. In contrast, rapid and strong fluorescence

quenching occurred with AMP-PNP, confirming that maltose-free

MalE binds with high-affinity to the P-open transporter (Figure 2F,

black curve). The data were fitted to the one-site ligand binding

equation, and the equilibrium affinity of maltose-free MalE for P-

open MalFGK2 was determined to be ,79 nM (Table 1,
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Figure 1. ATPase activity of the MalFGK2 complex in nanodiscs.
(A) The MalFGK2 complex in nanodisc (lane 1) and detergent solution
(lane 2) was analyzed by BN-PAGE and CN-PAGE followed by Coomassie
blue staining of the gel. Molecular weight markers: BSA (67/134 kDa);
catalase (232 kDa); ferritin (440 kDa). On CN-PAGE, the MalFGK2

complex precipitates as a protein smear at the top of the gel. (B) The
ATPase activity supported by Nd-MalFGK2 was compared to detergent
solubilized MalFGK2 and MalFGK2 in proteoliposomes (2 mM each) at
37uC in the presence of MalE (2 mM) or maltose (1 mM) in TSGM Buffer
(50 mM Tris-HCl pH 8, 50 mM NaCl, 5% glycerol, 5 mM MgCl2). The
reported values were derived from 3 independent experiments.
doi:10.1371/journal.pone.0034836.g001
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Supporting Information S1 and Figure S1). As above, maltose had

a negative effect on the stability of the complex because the

binding affinity dropped ,5-fold to 390 nM (Figure 2G, red curve

and Table 1). Interestingly, the binding of MalE to the transporter

was still happening at saturating maltose concentration (Figure 2C

and 2G). Since MalE is a highly dynamic protein that constantly

bind, capture and release maltose [30], it is possible that any

maltose-free MalE is immediately captured by the P-open state

transporter. In support to the model, the quenching data were best

fitted to a competitive ligand binding equation in which maltose-

loaded MalE does not bind the transporter at all, whereas
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Figure 2. High-affinity binding of MalE to the MalFGK2 complex. (A) Nd-MalFGK2 (4 mM) was incubated with MalE (1 mM) or [125I]-MalE
(,10,000 c.p.m., 1 mM) in TSGM buffer containing nucleotides (1 mM) and maltose (1 mM) as indicated. After incubation (10 min, 37uC), samples
were analyzed by CN-PAGE followed by Coomassie blue staining (bottom part) and autoradiography (upper part). (B) The indicated amount of Nd-
MalFGK2 was incubated with MalE or [125I]-MalE in the presence or absence of maltose (2 mM) in TSGM buffer containing AMP-PNP (1 mM). After
incubation (10 min, 37uC), samples were analyzed by CN-PAGE followed by Coomassie blue staining (bottom part) then autoradiography (upper
part). (C) Nd-MalFGK2 (4 mM) was incubated with [125I]-MalE (,10,000 c.p.m., 1 mM) in TSGM buffer containing AMP-PNP (1 mM) and the indicated
amount of maltose. After incubation (10 min, 37uC), samples were analyzed by CN-PAGE and autoradiography. (D) Nd-MalFGK2 (4 mM) was
immobilized onto Ni-NTA Sepharose beads and incubated with [125I]-MalE (,10,000 c.p.m., 1 mM) in TSGM buffer containing AMP-PNP (1 mM) in the
absence or presence of maltose (1 mM). After incubation (10 min, room temperature), bound MalE was eluted and revealed by SDS-PAGE and
autoradiography. (E) Structure of the complex MalFGK2-(E159Q) with MalE. The position MalE-31 and MalF-177 are indicated in red. (F) Time course
fluorescence quenching between MalE (20nM) and Nd-MalFGK2 (90 nM) in the presence or absence of maltose (1mM) and AMP-PNP (1mM). (G)
Equilibrium titration of MalE (20 nM) fluorescence quenching with up to 1.5 mM Nd-MalFGK2. When the data were fitted to one-site binding equation,
the dissociation constant in the presence of AMP-PNP was ,79 nM. The dissociation constant in the presence of AMP-PNP and maltose was
,390 nM. When the data were fitted to a competitive one-site binding equation, in which maltose-bound MalE do not bind to the transporter and
maltose acts as a competitor, the dissociation constant of transporter-bound MalE for maltose was 127 mM.
doi:10.1371/journal.pone.0034836.g002
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transporter-bound MalE has an affinity for maltose around

,127 mM (Supporting Information S1 and section below).

MalE captures maltose and looses affinity for MalFGK2

We employed 14C-maltose to localize the sugar when incubated

with MalE and MalFGK2. Free MalE has a relatively high affinity

for maltose (Kd ,2 mM), and native-PAGE can detect this

association (Figure 3A, right panel). In contrast, when MalE was

bound to the P-open transporter (Figure 3B), 14C-maltose was not

detected associated with the complex (Figure 3A). Thus, either the

binding site on MalE is not accessible to the sugar, or MalE binds

the sugar but dissociates from the transporter. To test the two

possibilities, ATTO655-labeled MalE was bound to the trans-

porter in the presence of AMP-PNP (Figure 3C, black curve).

Upon addition of maltose, there was a rapid loss of fluorescence

quenching, indicating the dissociation of MalE from the

transporter (Figure 3C, black curve). Using this assay, the maltose

affinity of transporter-bound MalE was determined to be

,120 mM (Figure 3D); a value very similar to that derived from

the competitive one-site ligand binding equation (,127 mM;

Supporting Information S1). The result was surprising because the

X-ray structure of the MalE-MalFGK2 complex did not reveal any

accessibility pathway for maltose [7]. Here, oligosaccharides from

three (maltotriose) to seven (maltoheptaose) units were able to

promote dissociation of the complex (Figure 3C and 3E). The

interaction MalE-MalFGK2 in the presence of AMP-PNP may be

more dynamic than expected, or a path at the protein interface

may be large enough to let maltose access MalE. Most important

to this analysis, the results showed that in the absence of transport,

MalE captures maltose and dissociates from the transporter.

MalE with low affinity for maltose has a high affinity for
MalFGK2 and vice versa

Since the binding of MalE to the transporter was found

controlled by maltose, the conformational state of MalE perhaps

determine the binding affinity to the transporter. To test this

hypothesis, we employed the mutant MalE-A96W/I329W (here-

after termed MalE-DW), which has ,60 fold stronger affinity for

maltose (Figure 4A) [31]. The two mutations, located at the

‘balancing interface’ opposed to the sugar binding site, favor the

closed state of MalE even in the absence of maltose, as shown by

NMR and SAXS analysis [16,31–33]. We also employed the

mutant MalE-254 (mutation D65N) that displays very low affinity

for maltose (Kd .1 mM; Figure 4A and Table 2) [34,35]. The side

chain D65 normally creates hydrogen bonds with the sugar

hydroxyls [36] and previous fluorescence and UV spectra analysis

suggested that MalE-254 does not acquire the characteristic

closed-liganded conformation until at least 10 mM maltose [35]. It

is thus very likely that MalE-254 would remain in open state at the

maltose concentrations used in our assays (Figure 4A). Native-

PAGE and ATPase assays were employed to determine the

capacity of the two mutants to bind and activate the transporter

(Figure 4B and 4C). MalE-DW was mostly unable to associate with

Nd-MalFGK2 and it supported very little ATPase activity, which

was further reduced by maltose (Figure 4B and 4C). In contrast,

MalE-254 formed a tight complex with Nd-MalFGK2 and the

ATPase activity was maximal and independent from maltose, as

expected since MalE-254 does not capture the sugar. We therefore

concluded that (i) maltose-free MalE facilitates the conversion of

MalFGK2 toward the ATPase active conformation, (ii) maltose-

free MalE binds with high-affinity to the P-open transporter (Kd

,79 nM), (iii) maltose has access to transporter-bound MalE, and

(iv) upon capture of maltose, MalE looses its affinity for the

transporter (.50–100 mM).

The results obtained with the nanodisc are confirmed in
proteoliposomes

ThebindingofMalEtoMalFGK2 inproteoliposomeswasassessed

by co-sedimentation assays (Figure 5A and 5B, Figure S6). In

proteoliposomes, theconformational stateof the transporter is shifted

toward the P-closed state, which has low ATPase activity and low

affinity for MalE [9,26]. As expected, AMP-PNP stabilized the P-

open state and increased the affinity for MalE over 30-fold (Figure 5A

and Figure S6 for quantitation). However, as in nanodiscs, the

addition of maltose reduced the MalE equilibrium binding affinity by

at least ,3-fold (Figure 5A). Furthermore, the co-sedimentation

efficiency of MalE-254 was strong and independent from maltose

(Figure 5C and 5D), whereas the co-sedimentation of MalE-DW was

poor (,5-fold less than MalE-wt), and even weaker with maltose. To

confirm that maltose had access to MalE when bound to the P-open

transporter, the MalE-MalFGK2 complex was formed with AMP-

PNP, then loaded on a sucrose gradient containing maltodextrins

(Figure 5E). In all cases, there was a very obvious dissociation of

fluorescent-labeled MalE from the transporter (Figure 5F). The

control experiments showed that MalE did not co-sediment with

MalFGK2 in the absence of AMP-PNP(Figure 5E, sample 2), but did

co-sediment very well with AMP-PNP alone (Figure 5E, sample 1).

Thus, the binding characteristics of MalE and variants, and the

negative effect of maltose, were the same both in nanodiscs and

proteoliposomes. In either environment, maltooligosaccharides

reduced the equilibrium binding affinity of MalE to the transporter.

Dual effect of the sugar on the transporter activity in
proteoliposomes

In proteoliposomes, the basal MalK ATPase activity is low

(,10 nmol/min/mg), most likely because the lipid bilayer stabilizes

the P-closed state transporter (Figure 1B). The addition of MalE

stimulates ,4-fold the ATPase activity (,40 nmol/min/mg), and

furthermore ,10-fold in the presence of maltose (Figure 6A and see

Discussion on this point). The ATPase measurements were then

performed using the two MalE mutants described above. The

maltose-dependentATPasewasbest servedwithMalE-254(,20fold

stimulation;Figure6A),even thoughthismutantdidnotbindmaltose

at the concentration used in this assay. In contrast, the mutant MalE-

DW, which captured maltose with a high affinity (Kd ,50 nM), was

unable to trigger the transporter ATPase activity (Figure 6A). Thus,

maltose produced two effects in proteoliposomes: it stimulated the

MalK ATPase and it diminished the affinity of MalE for the

transporter. This second effect is opposed to the first because it

reduces the maltose-dependent ATPase activity.

Table 1. Dissociation constants of MalE for Nd-MalFGK2

determined in the presence or absence of AMP-PNP and
maltose.

Conditions Kd (nM)

AMP-PNP 79.4 6 9.3

AMP-PNP+maltose 391.6 6 52.2

No Nu NA

No Nu+maltose NA

The data were collected and analyzed according to Figure 2G.
doi:10.1371/journal.pone.0034836.t001
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Maltose is both substrate and regulator of the
transporter

To show that maltose produces two opposed effects during

transport, the MalK ATPase was determined at various maltose

concentrations. In proteoliposomes, the ATPase is coupled to

maltose transport in an apparent stoichiometric manner [37,38].

With MalE-wt, the transport constant was low (Kt ,2 mM) and the

maximal velocity was reached as soon as the maltose concentration

reached ,25 mM (Figure 6B). With MalE-254, the transport

constant was high (,800 mM) and the transport ATPase was

quasi-linear until ,1 mM maltose (Figure 6B). Most strikingly, the

maximal transport velocity was hardly reached with this mutant. At

5 mM maltose, the transport ATPase supported by MalE-254 was
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and [14C]-maltose (10 mM, 57 mCi/mmol) in TSGM buffer containing AMP-PNP (1 mM). After incubation (10 min, 37uC), samples were analyzed by CN-
PAGE and (A) autoradiography or (B) Coomassie blue staining. (C) The binding of MalE to the transporter was monitored by fluorescence quenching,
using MalE (20 nM) and Nd-MalFGK2 (70 nM). At the indicated time (arrow), 1 mM maltooligosaccharides were added to the reaction mixture. (D)
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almost 3-fold higher than with the wild type (Figure 6B and Table 2).

Since the mutant MalE-254 is unable to capture the sugar, the

transporter ATPase activity was dictated by the maltose concentra-

tion. To the opposite, the mutant MalE-DW could barely sustain

any maltose-dependent ATPase activity, as expected since the

mutant captures maltose and is unable to bind the transporter. We

constructed two additional MalE mutants with intermediate affinity

for maltose (MalE-D65E and MalE-A63E; Figure 6B and ate is

inversely proportional to the affinity of MalE for maltose.

Consequence of an unregulated maltose transport in
intact cells

The work above allowed us to predict that maltose transport will

be highest in bacteria expressing MalE-254. In contrast, maltose

transport will be severely compromised in bacteria expressing

MalE-DW. To confirm the prediction, maltose utilization was

tested on MacConkey media (Figure 7A; Figure S8) and maltose

accumulation was measured using 14C-maltose (Figure 7B). At

saturating maltose concentration (i.e. 1 mM, equivalent to 0.04%),

MalE-254 was the most proficient mutant for the transport and the

fermentation of the sugar. In contrast, MalE-DW was unable to

support cellular growth. Clearly, the high-affinity capture of

maltose by MalE-DW was inhibiting transport and inversely,

maltose transport was most effective with MalE-254 because the

protein is unable to capture the sugar. We also tested the transport

activity at sub-saturating maltose concentration (e.g. 100 mM).

Previous microbiological work indicated that bacterial growth is

slower at maltose concentration below 1 mM [34,39]. At this

limiting sugar concentration, the maltose import was better with

MalE-wt compared to MalE-254 (Figure 7B). The result was

expected because transporter-bound MalE increases the affinity

for maltose, and thus the efficiency of transport when the substrate

is limiting in the environment. Accordingly, the transport constant

Kt obtained with MalE-wt is ,2 mM whereas the Kt for MalE-254

is ,800 mM (Table 2).

Discussion

In the conventional model, closed-liganded MalE binds and

activates the P-closed transporter. The binding triggers a series of

ATP-driven conformational changes that eventually leads to the

opening of MalE, release of maltose and transport across the

membrane (Figure 8). Over the last twenty years, the different

steps of the model have been analyzed in details at the

biochemical, biophysical and structural levels [8]. Yet, the binding

affinity of maltose-free MalE has never been characterized and the

effect of maltose on the stability of the MalE-MalFGK2 complex

has never been reported. Here, we confirm that closed-liganded

MalE has weak affinity for MalFGK2 (Kd .50–100 mM), but we

show that open-unliganded MalE possesses nanomolar affinity for

the P-open transporter (Kd ,79 nM). In addition, we show that

maltose can access transporter-bound MalE (Kd ,120 mM)

whereas, in the absence of maltose uptake, MalE captures the

sugar (Kd ,2 mM) and dissociates from the transporter (Kd

.50 mM). The knowledge of the binding affinities leads us to

propose a different model, in which MalE is permanently bound to

the transporter to create a low-affinity maltose-binding site. If

maltose is not immediately transported, MalE acquires a closed-

liganded conformation and dissociates from the transporter

(Figure 8). We justify below the reasons for this novel model and

the mechanistic and physiological implications.

First, in proteoliposomes. Our results show that the maximal

ATPase activity and transport velocity are inversely proportional

to the affinity of MalE for maltose. If maltose was to cause MalE to

activate the transporter, the MalK ATPase at saturating maltose

concentration (Vmax) should be independent from the affinity of

MalE for maltose. For example, a variant with low affinity would

support as much ATPase provided the sugar concentration is

sufficiently high. Reciprocally a variant with high affinity would

support the same maximal ATPase but at low concentration of

maltose. The results from ATPase assays (Figure 6) and the

maltose transport in vivo (Figure 7) are not consistent with such

model. Furthermore, the binding assays in proteoliposomes show

that maltose decreases the equilibrium affinity of MalE to the

transporter, whether in the P-open or P-closed state (Figure 5 and

Figure S6). The current model is therefore insufficient to explain

the data. Instead, we believe that a model in which MalE is bound

to the transporter to facilitate the capture of maltose, but

dissociates from the transporter when the substrate concentration

increases, can explain why the maximal velocity depends on MalE

affinity for maltose. A variant with low affinity would display lower

transport rate (i.e. higher Kt) but remain bound to the transporter

when the substrate concentration increases, allowing for a higher

maximal rate of transport. In contrast, a variant with high affinity

for maltose would capture the sugar and dissociate from the
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Figure 4. Binding of the MalE mutants to MalFGK2. (A) Wild type
MalE and mutants (1 mM each) were mixed with [14C]-maltose in TSG
buffer. Samples were analyzed by CN-PAGE and autoradiography. (B)
[125I]-labeled MalE and variants were incubated with Nd-MalFGK2 (4 mM)
in TSGM buffer containing AMP-PNP and maltose (2 mM) as indicated.
After incubation (10 min, 37uC), samples were analyzed by CN-PAGE
and autoradiography. (C) The ATPase activity supported by the MalE
mutants (1 mM each) was determined in the presence of Nd-MalFGK2
(2 mM) and maltose (1 mM). The reported values were derived from 3
independent experiments.
doi:10.1371/journal.pone.0034836.g004
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transporter, hence lowering the maximal rate of transport. Our

results (Figure 6 and Figure 7), as well as those in Wandersman et

al. (1979) and Gould et al. (2009) which describe the behavior of

the mutant MalE-254 and MalE-DW respectively, concur with

this analysis. The model is also consistent with the observation that

excess MalE can inhibit transport when maltose is held at a sub-

stoichiometry level [18]. In the later case, all maltose molecules

would be captured by excess MalE and away from the transporter.
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Figure 5. Binding of MalE to the MalFGK2 complex in proteoliposomes. (A) [125I]-MalE was incubated with MalFGK2 proteoliposomes (2 mM)
in TM buffer (20 mM Tris-HCl pH 8.0, 10 mM MgCl2) with or without AMP-PNP (1 mM) and maltose (1 mM) as described in [26]. The fraction of MalE
bound to MalFGK2 was isolated by ultra-centrifugation. The samples were subjected to SDS-PAGE followed by Coomassie blue. (B) Autoradiography
of the same gel. (C) The co-sedimentation assay was performed using MalE and variants in the presence of AMP-PNP. (D) Autoradiography of the
same gel. (E) MalFGK2 in proteoliposomes (10 mM) was incubated with ATTO655-labeled MalE-31C (0.5 mM) in the presence of AMP-PNP. The samples
were applied on a sucrose density gradient containing the indicated maltooligosaccharides (1 mM). Equal fractions were collected and analyzed by
SDS-PAGE and fluorescence assay. The control experiments showed that MalE did not co-sediment with MalFGK2 in the absence of AMP-PNP (sample
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doi:10.1371/journal.pone.0034836.g005
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Second, in nanodiscs. We find that maltose decreases the affinity

of MalE for MalFGK2 and decreases the MalE-dependent MalK

ATPase activity. According to the former model, maltose should

instead stimulate the MalK ATPase, or at least leaves it

unchanged. We believe that the observed decrease of MalK

ATPase activity can be explained by the negative effect of maltose

on the MalE-MalFGK2 interactions. In support to this model,

using a fluorescence-based binding assays (Figure 2), we were able

to show that maltose shifts the binding equilibrium toward the

dissociation of MalE from the transporter (Figure 3), and therefore

toward the diminution of the MalK ATPase. The binding assays

also revealed that transporter-bound MalE is accessible to maltose

and longer maltooligosaccharides (Figure 3 and Figure 5). This last

observation was surprising because the atomic structure of the

MalE-MalFGK2 complex did not reveal a sugar accessibility

pathway at the protein interfaces. It cannot be excluded that

protein crystallography may have suppressed some otherwise

transient interactions, such as those detected by molecular

dynamics simulations [40]. Here, the affinity of the complex

MalE-MalFGK2 for maltose was estimated at ,120 mM. In the

absence of transport, this maltose concentration would lead to

50% dissociation of MalE from the transporter. It is important to

note that our results do not exclude the possibility that transporter-

bound MalE binds maltose just before MalE associates tightly with

the P-open transporter. However, if MalE was to capture maltose

(and thus acquires a closed-state conformation), MalE would

dissociate from the transporter and return to the periplasm

(Figure 8).

The interplay between MalE, maltose and MalFGK2 is

complicated by the dynamic nature of MalE that constantly

binds, captures and releases maltose [30,41]. Based on ATPase

measurements, the affinity of liganded-MalE for the transporter

would be considered significantly high (Km,app ,14 mM; Figure S7

and Gould et al, 2009). When interpreting the value however, one

should remember that liganded-MalE spontaneously releases

maltose [30], whereas maltose-free MalE binds the transporter

with high-affinity. The spontaneous release of the ligand would

explain why saturating maltose does not abolish the binding of

MalE to the P-open transporter (Figure 2 and Figure 5). The same

phenomena may occur during histidine transport because the

binding of HisJ to HisQM is reduced, but only 3-fold in the

presence of saturating amount of histidine [42]. In fact, the modest

affinity of MalE and HisJ for their ligands (mM range) may be

essential to allow sufficiently influx of these nutrients even at

saturating environmental concentration. In contrast, for the

vitamin B12 transporter, the substrate binding protein BtuF binds

its ligand with very high affinity (Kd ,15 nM). In that case, the

interaction between BtuF and BtuCD is dramatically reduced by

saturating amount of vitamin B12 (,105 fold) [43]. Thus, even

though type I and type II ABC importers (i.e. MalEFGK2 and

BtuCDF) have different membrane domain and substrate binding

protein structures, the regulatory effect of the substrate may be

similar. In this context, it is particularly interesting that low-affinity

and high-affinity transporter for a same substrate -molybdate- can

exist in the same cell [44,45]. Perhaps the high-affinity molybdate

transporter would decrease activity as the molybdate concentra-

tion increases. The cell would then use the low-affinity transporter

system in order to maintain constant molybdate uptake.

In conclusion, the activity of a membrane transporter usually

depends on two factors: the affinity of the transporter for the

substrate and the velocity of the transport reaction. For MalE-

FGK2, transporter-bound MalE controls the affinity and ATP the

velocity. We show here that maltose also contributes to the

transport kinetics. This negative regulation may be crucial for the

cell because ABC importers are unidirectional and can achieve (at

least in theory) very high concentration gradients, either toxic or
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Figure 6. Regulation of the MalK transport ATPase by maltose.
(A) ATP hydrolysis was measured with MalFGK2 proteoliposomes (37uC,
10 min) in the absence or presence of maltose (2 mM) using MalE and
variants (2 mM each). (B) Steady-state transport ATPase using MalE
variants (2 mM each) as a function of the maltose concentration. Left
panel and right panel are the same curve but fitted to different x-axis.
The data were fitted to the Michaelis-Menten equation to determine
the maximal velocity Vmax and Kt of the transport ATPase reaction. The
calculated values derived from 3 independent experiments are
presented in Table 2.
doi:10.1371/journal.pone.0034836.g006

Table 2. Kinetic parameters of the transport reaction and
affinity of MalE variants for maltose.

MalE
Vmax (nmol/min/
mg) Kt (mM)

Kd of MalE for
maltose (mM)

MalE-wt 320 6 37 2 6 0.7 2.8 6 0.6

MalE-D65E 403 6 69 78 6 11 69 6 15

MalE-A63E 614 6 34 214 6 40 161 6 36

MalE-254 842 6 47 807 6 136 3700 6 412

The data were collected and analyzed according to Figure 6B.
doi:10.1371/journal.pone.0034836.t002
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consuming unnecessarily the metabolic energy. Homotropic

allosteric regulation represents a simple way to limit transport

when the environmental substrate concentration is high. Why

MalE is twenty-fold more abundant than the transporter in

maltose-induced cells is still not entirely clear [15,46]. It has been

proposed that excess MalE ensures that the periplasmic maltose

concentration varies more slowly than the outside, a mechanism

termed ‘‘retention effect’’, especially important during bacterial

chemotaxis [42,47]. It has also been proposed that the high MalE

concentration may ensure the hoping of maltose from MalE to

MalE to facilitate transport across the gel-like environment of the

periplasm [42,48]. It is also possible that large pool of MalE may

serve to buffer the negative effect of maltose because a fraction of

ligand-free MalE would always be available to bind the transporter

even at saturating maltose concentration. All these possibilities

remain to be tested.

Materials and Methods

Production and purification of MalE and MalFGK2

The genes MalF, MalG and MalK were separately amplified

from the E. coli K12 genome by PCR, and placed in tandem in

pBAD22 plasmid [49]. A His6-tag was inserted at the C-terminus

of MalK (yielding p22-FGKhis). The gene encoding for the

mature part of MalE was cloned into pBAD33, yielding plasmid

p33-MalE. Mutations were introduced by PCR-site directed

mutagenesis and all constructs were verified by DNA sequencing.

Overproduction of MalFGK2 was performed using E. coli strain

BL21. Briefly, 12L of LB medium containing ampicillin (100 mg/

ml) were inoculated with an overnight culture. At OD600 , 0.5,

plasmid expression was induced with 0.2% (w/v) arabinose. After

3 h, cells were collected in TSG buffer (50 mM Tris-HCl, pH 8;

100 mM NaCl; 10% glycerol) containing 0.01% PMSF, and lysed

through a French Press (8,000 psi, twice). After low speed

centrifugation (5,0006g, 10 min), the membrane fraction was
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isolated by ultracentrifugation (100,000, 1 h, 4uC) and resus-

pended in buffer B (50 mM Tris-HCl, pH 8; 5 mM MgCl2, 20%

glycerol). Membranes (5 mg/ml) were incubated with 1% n-

dodecyl-b-D-maltoside (DDM) with gentle shaking (3 h, 4uC). The

solubilized proteins were isolated by ultracentrifugation

(100,0006 g, 1 h, 4uC) and applied onto a Ni-NTA Sepharose

column (10 ml resin) equilibrated in buffer B containing 0.01%

DDM (buffer C). After intensive washes (10 column volume in

buffer C), proteins were eluted with a gradient of imidazole (0–

600 mM) in buffer C. The isolated MalFGK2 complex was further

purified by gel filtration (Superdex 200 HR10/30) in buffer C.

Overproduction of MalE was as described for MalFGK2, excepted

the antibiotic was chloramphenicol (50 mg/ml). Cells were

collected in buffer D (50 mM Tris-HCl pH 8.8; 10% glycerol)

and lysed through a French Press (8,000 psi, twice). After

ultracentrifugation (100,0006g, 1 h, 4uC), the supernatant was

applied onto a Resource Q column (1 ml) equilibrated in buffer D.

Proteins were eluted with a gradient of NaCl (0–1000 mM). The

protein fractions containing MalE were pooled and denatured

with 6M Guanidine-HCl. Protein refolding was performed by

dialysis with 3 changes of TSG buffer (50 mM Tris-HCl, pH 8;

100 mM NaCl; 10% glycerol).

Reconstitution of the MalFGK2 complex in nanodiscs
The membrane scaffold MSP1D1 was obtained from the Sligar

laboratory [21]. E. coli total lipids (Avanti polar lipids) were

dissolved in chloroform and dried under a steam of nitrogen. The

lipids were resuspended in TSG buffer containing 0.5% DDM. A

typical reconstitution experiment involved mixing together the

MalFGK2 complex, the MSPs and the solubilized lipids at a

molecular ratio of 1:3:60 in TSG buffer containing 0.1% DDM.

Detergent was slowly removed with BioBeads (1/3 volume) and

gentle shaking (overnight, 4uC). The reconstituted discs were

centrifuged (20 min; 100,0006 g), then injected onto a high-

pressure packed Superdex 200 HR10/20 column equilibrated in

TSG buffer. The fractions containing the Nd-MalFGK2 particles

were pooled and stored at 280uC.

maltose

open-unliganded 
         MalE

closed-liganded 
         MalE

Figure 8. Models of maltose transport. (A) In the conventional model, MalE captures maltose with high affinity (Kd ,2 mM), then associates with
the P-closed transporter with low affinity (Kd ,50–100 mM). The association triggers the P-open state, the opening of MalE and the release of maltose
in the translocation cavity. The transporter returns to the P-closed state upon ATP hydrolysis. MalE dissociates and return to the periplasm. (B) In the
auto-regulation model, MalE binds with high affinity (Kd ,79 nM) to the P-open ATPase active transporter. Maltose is then captured by the complex
of MalE-MalFGK2 (Kd ,120 mM) and rapidly transported (Kt ,2 mM) upon hydrolysis of ATP. When the concentration of maltose exceeds the import
capacity, MalE acquires its closed-liganded conformation and looses affinity for MalFGK2. This regulation limits the maximal rate of transport
(‘‘transporter set point’’). The function of closed-liganded MalE is to retain maltose in the periplasm (‘‘retention effect’’).
doi:10.1371/journal.pone.0034836.g008

Auto-Regulation of the Maltose Transporter

PLoS ONE | www.plosone.org 10 April 2012 | Volume 7 | Issue 4 | e34836



Reconstitution of the MalFGK2 complex in
proteoliposomes

MalFGK2 (50 mg) and E. coli total lipids (500 mg) were mixed

together in RS buffer (20 mM Tris-HCl, pH 8; 100 mM

NaCl;10% glycerol; 1 mM DTT; 0.15% DDM) at a lipid:protein

ratio (mg/mg) of 10:1. Detergent was slowly removed with

BioBeads (1/5 volume) under gentle shaking (overnight, 4uC). The

reconstituted proteoliposomes were harvested by centrifugation

(100,0006 g, 1 h, 4uC), resuspended in 20 mM Tris-HCl (pH 8)

and frozen in liquid nitrogen. Proteoliposomes were sonicated

(2 sec, 3 pulses) before use.

Sedimentation and pull-down assays
For the sedimentation assays, the MalFGK2 proteoliposomes

(2 mM) were incubated with MalE in 20 mM Tris-HCl (pH 8)

containing 10 mM MgCl2 for 10 min at 37uC. The sample was

diluted 25-fold in 20 mM Tris-HCl (pH 8), collected by

ultracentrifugation (100,0006 g, 1 h) and resuspended in

20 mM Tris-HCl (pH 8). Samples were analyzed by SDS-PAGE

followed by Coomassie blue staining and autoradiography. For the

pull-down assays, His6-tagged Nd-MalFGK2 particles were

immobilized onto Ni-NTA resin (10 mL per sample) in TSGM

buffer. Samples were then incubated with the indicated amount of

[125I]-labeled MalE (10 min at room temperature). Unbound

MalE was removed by washing the resin 3 times in TSGM buffer.

The proteins were eluted in TSGM buffer containing 500 mM

imidazole and analyzed by SDS-PAGE and autoradiography.

Fluorescence labeling
MalE (3 mg/ml) in 500 mL TSG buffer was incubated five-fold

molar excess of ATTO-655 (Atto-Tec, GmbH) for 12 h at room

temperature in the dark. The labeled protein was separated from

excess dye by Superose 6 gel filtration chromatography. The

labeling efficiency was determined at different protein concentra-

tion by absorbance spectroscopy (663 nm) using the extinction

coefficient of 1.256105 M21cm21. The typical ratio of fluoro-

phore to MalE was 0.8, indicating very efficient labeling.

Fluorescence spectroscopy
Fluorescence was recorded on a Cary Eclipse spectrofluorom-

eter at 25uC. The affinity of MalE for maltose was determined by

intrinsic fluorescence quenching [32]. Excitation and emission

wavelength were 280 nm and 350 nm, respectively (10 nm slit

widths). Fluorescence quenching of ATTO655-labeled MalE was

recorded with excitation and collection wavelengths at 640 nm

and 681 nm, respectively (10 nm slit width). The fluorescence

emission was monitored over time and the signal was allowed to

equilibrate after each addition for 180 s. The fluorescence

quenching efficiency (E) was calculated according to the following

equation, E~1{
FE

FEzNd
where FE and FE+Nd are the

fluorescence intensities of ATTO 655-labeled MalE in the

presence and absence of Nd-MalF177wGK2.

In vivo maltose transport assays
Cell cultures were harvested during the late exponential phase

of growth, washed twice with M63 salts, and resuspended in the

same medium containing 100 mg/ml chloramphenicol to an

OD600 , 0.5. Each transport assay contained 200 ml of cells

and 200 ml of M63 medium supplemented with [14C]-maltose at a

final concentration of 100 mM (5.7 mCi/mmol) or 1 mM

(0.57 mCi/mmol). At the indicated time after incubation at room

temperature, 20 ml aliquots of cells were loaded onto a Bio-dot

apparatus (Bio-Rad) and washed with 500 ml of M63 medium.

The membrane filters were dried and analyzed by autoradiogra-

phy. The density of each dot was determined by using

ImageQuant (GE Healthcare).

Other methods
The MalFGK2 ATPase activity was determined by monitoring

the release of inorganic phosphate using photo-colorimetric

method [50]. Linear gradient blue-native (BN) and colorless-

native (CN) gel electrophoresis was performed as described [51].

Sucrose gradient analysis was performed as described [52]. MalE

was iodinated using the Iodogen reagent (Pierce-Thermo Scien-

tific). The specific activity of [125I]-MalE was ,26105 c.p.m./mg.

The detection of [125I]-MalE and 14C-labeled maltose (57 mCi/

mmol, Molecular probes) was performed using a phosphor-imager

scanner.

Supporting Information

Supporting Information S1 Equations used in this study.

(DOC)

Figure S1 Relative binding of MalE to MalFGK2 in the
presence of maltose. The amount of MalE bound to Nd-

MalFGK2 in the absence maltose was set at 100% for each of the

Nd-MalFGK2 concentration employed. The experimental results

obtained in the presence of maltose were plotted next to the

calculated values derived from the one-site competitive binding

equation.

(EPS)

Figure S2 Dynamic light scattering analysis of the Nd-

MalFGK2 particles. The reconstituted MalFGK2 complex in

Nanodiscs was purified by gel filtration (A) and analyzed by

dynamic light scattering using a Dawn-Heleos multi-angle detector

(Wyatt Technology). More than 98% of the NdFGK2 particles

have a diameter of ,12.5 nm (+/22 nm) and an apparent

molecular weight is 215 kDa.

(EPS)

Figure S3 The steady-state ATPase of Nd-MalFGK2 in
the presence of MalE-wt. The basal ATPase activity of the

Nd-MalFGK2 complex was subtracted from all measurements.

Each value is the average of three different measurements, with

standard deviations shown as error bars (some smaller than

symbols).

(EPS)

Figure S4 The affinity of MalFGK2 for the nucleotide.
The rate of ATP hydrolysis was determined as a function of the

ATP concentration using Nd-MalFGK2 (black), Nd-MalFGK2

plus MalE (yellow), and Nd-MalFGK2 plus MalE and maltose

(red). The data were fitted to the Michaelis-Menten equation to

calculate the apparent Km for ATP.

(EPS)

Figure S5 ATPase activity of MalF177WGK2 in the
presence of Atto655-MalE. The ATPase activity of

MalF177WGK2 reconstituted in Nanodiscs and proteolipsomes

(2 mM in each case) was measured in the presence of Atto655-

MalE (1 mM) and maltose (1 mM). The results show that the

modified proteins function like their wild type counterparts.

(EPS)

Figure S6 Measure of the complex formation between
MalE and MalFGK2 reconstituted in proteoliposomes.
The density of the bands detected on Figure 5A was determined
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after scanning by the ImageQuant software. The value obtained in

the presence of 12 mM MalE and AMPPNP was normalized to

100%.

(EPS)

Figure S7 Steady-state transport ATPase supported by
MalE and variants. The ATPase activity of MalFGK2

proteoliposomes was measured using various concentrations of

MalE and variants in the presence of maltose (2 mM). The

calculated apparent Km for MalE-wt, MalE-254 and MalE-DW

were ,14 mM, ,4 mM and ,25 mM, respectively. These Km,app

values do not reflect the real affinity of MalE for the transporter for

two reasons: (i) a fraction of MalE has captured maltose and

therefore unavailable to bind to the transporter and (ii) the

transporters oscillate between two conformations of different

affinity for MalE. The current model of maltose delivery to the

transporter implies that the maltose concentration that produces

half-maximal transport (Kt ,2 mM) depends on the affinity of

MalE for maltose in solution (Kd ,2 mM). In other words, the

binding of MalE to MalFGK2 should not be rate-limiting in

transport process. Instead, the results show that the apparent

affinity of MalE for the transporter in the presence of maltose

(Km,app ,14 mM) is lesser than the affinity of the transporter

complex for maltose.

(EPS)

Figure S8 Maltose utilization measured in MacConkey
liquid media. MacConkey-maltose broth was inoculated with

strain HS3309 (nMalE) transformed with plasmid pLH1 encoding

for the indicated MalE protein. After 10 h at 37uC, cells were

collected and the absorbance of the supernatant was measured.

The quenching of the light absorbance at 590 nm reflects the

degree of maltose transport and utilization.

(EPS)
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27. Marmé N, Knemeyer JP, Sauer M, Wolfrum J (2003) Inter- and intramolecular

fluorescence quenching of organic dyes by tryptophan. Bioconjug Chem 14:

1133–1139.

28. Frank GA, Kipnis Y, Smolensky E, Daube SS, Horovitz A, et al. (2008) Design

of an optical switch for studying conformational dynamics in individual

molecules of GroEL. Bioconjug Chem 19: 1339–1341.

29. Daus ML, Grote M, Schneider E (2009) The MalF P2 loop of the ATP-binding

cassette transporter MalFGK2 from Escherichia coli and Salmonella enterica

serovar typhimurium interacts with maltose binding protein (MalE) throughout

the catalytic cycle. J Bacteriol 191: 754–761.

30. Miller DM 3rd, Olson JS, Pflugrath JW, Quiocho FA (1983) Rates of ligand

binding to periplasmic proteins involved in bacterial transport and chemotaxis.

J Biol Chem 258: 13665–13672.

31. Marvin JS, Hellinga HW (2001) Manipulation of ligand binding affinity by

exploitation of conformational coupling. Nat Struct Biol 8: 795–798.

32. Telmer PG, Shilton BH (2003) Insights into the conformational equilibria of

maltose-binding protein by analysis of high affinity mutants. J Biol Chem 278:

34555–34567.

33. Millet O, Hudson RP, Kay LE (2003) The energetic cost of domain

reorientation in maltose-binding protein as studied by NMR and fluorescence

spectroscopy. Proc Natl Acad Sci U S A 100: 12700–12705.

34. Wandersman C, Schwartz M, Ferenci T (1979) Escherichia coli mutants

impaired in maltodextrin transport. J Bacteriol 140: 1–13.

Auto-Regulation of the Maltose Transporter

PLoS ONE | www.plosone.org 12 April 2012 | Volume 7 | Issue 4 | e34836



35. Hall JA, Gehring K, Nikaido H (1997) Two modes of ligand binding in maltose-

binding protein of Escherichia coli. Correlation with the structure of ligands and

the structure of binding protein. J Biol Chem 272: 17605–17609.

36. Duan X, Quiocho FA (2002) Structural evidence for a dominant role of

nonpolar interactions in the binding of a transport/chemosensory receptor to its

highly polar ligands. Biochemistry 41: 706–712.

37. Dean DA, Davidson AL, Nikaido H (1989) Maltose transport in membrane

vesicles of Escherichia coli is linked to ATP hydrolysis. Proc Natl Acad Sci U S A

86: 9134–9138.

38. Davdison AL, Nikaido H (1990) Overproduction, solubilization and reconsti-

tution of the maltose transport system from Escherichia coli. J Biol Chem 265:

4254–4260.

39. Rizk SS, Paduch M, Heithaus JH, Duguid EM, Sandstrom A, et al. (2011)

Allosteric control of ligand-binding affinity using engineered conformation-

specific effector proteins. Nat Struct Mol Biol 18: 437–442.

40. Oliveira AS, Baptista AM, Soares CM (2011) Inter-domain communication

mechanisms in an ABC importer: a molecular dynamics study of the

MalFGK2E complex. Plos Comput Biol 7: e1002128.

41. Ledvina PS, Tsai AL, Wang Z, Koehl E, Quiocho FA (1998) Dominant role of

local dipolar interactions in phosphate binding to a receptor cleft with an

electronegative charge surface: equilibrium, kinetic and crystallographic studies.

Protein Sci 7: 2550–2559.

42. Ames GF, Liu CE, Joshi AK, Nikaido K (1996) Liganded and unliganded

receptors interact with equal affinity with the membrane complex of periplasmic

permeases, a subfamily of traffic ATPase. J Biol Chem 271: 14264–14270.

43. Lewinson O, Lee AT, Locher KP, Rees DC (2010) A distinct mechanism for the

ABC transporter BtuCD-BtuF revealed by the dynamics of complex formation.
Nat Struct Mol Biol 17: 332–338.

44. George AM, Jones PM (2011) Type II ABC permeases: are they really so

different? Structure 19: 1540–1542.
45. Tirado-Lee L, Lee A, Rees DC, Pinkett HW (2011) Classification of a

Haemophilus influenzae ABC transporter HI1470/71 through its cognate
molybdate periplasmic binding protein, MolA. Structure 19: 1701–1710.

46. Dietzel I, Kolb V, Boos W (1978) Pole cap formation in Escherichia coli

following induction of the maltose-binding protein. Arch Microbiol 118:
207–218.

47. Silhavy TJ, Szmelcman S, Boos W, Schwartz M (1975) On the significance of
the retention of ligand by protein. Proc Natl Acad Sci U S A 72: 2120–2124.

48. Brass JM, Higgins CF, Foley M, Rugman PA, Birmingham J, et al. (1986)
Lateral diffusion of proteins in the periplasm of Escherichia coli. J Bacteriol 165:

787–795.

49. Douville K, Price A, Eichler J, Economou A, Wickner W (1995) SecYEG and
SecA are the stoichiometric components of preprotein translocase. J Biol Chem

270: 20106–20111.
50. Lanzetta, PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay

for nanomole amounts of inorganic phosphate. Anal Biochem 100: 95–97.

51. Dalal K, Duong F (2010) Reconstitution of the SecY translocon in nanodiscs.
Methods Mol Biol 619: 145–156.

52. Dalal K, Nguyen N, Alami M, Tan J, Moraes TF, et al. (2009) Structure,
binding, and activity of Syd, a SecY-interacting protein. J Biol Chem 284:

7897–7902.

Auto-Regulation of the Maltose Transporter

PLoS ONE | www.plosone.org 13 April 2012 | Volume 7 | Issue 4 | e34836


