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Abstract

16p13.11 genomic copy number variants are implicated in several neuropsychiatric disorders, such as schizophrenia, autism,
mental retardation, ADHD and epilepsy. The mechanisms leading to the diverse clinical manifestations of deletions and
duplications at this locus are unknown. Most studies favour NDE1 as the leading disease-causing candidate gene at
16p13.11. In epilepsy at least, the deletion does not appear to unmask recessive-acting mutations in NDE1, with
haploinsufficiency and genetic modifiers being prime candidate disease mechanisms. NDE1 encodes a protein critical to cell
positioning during cortical development. As a first step, it is important to determine whether 16p13.11 copy number
change translates to detectable brain structural alteration. We undertook detailed neuropathology on surgically resected
brain tissue of two patients with intractable mesial temporal lobe epilepsy (MTLE), who had the same heterozygous NDE1-
containing 800 kb 16p13.11 deletion, using routine histological stains and immunohistochemical markers against a range of
layer-specific, white matter, neural precursor and migratory cell proteins, and NDE1 itself. Surgical temporal lobectomy
samples from a MTLE case known not to have a deletion in NDE1 and three non-epilepsy cases were included as disease
controls. We found that apart from a 3 mm hamartia in the temporal cortex of one MTLE case with NDE1 deletion and
known hippocampal sclerosis in the other case, cortical lamination and cytoarchitecture were normal, with no differences
between cases with deletion and disease controls. How 16p13.11 copy changes lead to a variety of brain diseases remains
unclear, but at least in epilepsy, it would not seem to be through structural abnormality or dyslamination as judged by
microscopy or immunohistochemistry. The need to integrate additional data with genetic findings to determine their
significance will become more pressing as genetic technologies generate increasingly rich datasets. Detailed examination of
brain tissue, where available, will be an important part of this process in neurogenetic disease specifically.
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Introduction

Copy number variants are insertions, deletions or duplications

of segments of DNA. They can be found in healthy individuals, or

be associated with disease. They have been the focus of

considerable recent interest in neurological disorders [1,2]. In

particular, 16p13.11 copy number changes are associated with

schizophrenia [3], mental retardation [4,5], attention-deficit

hyperactivity disorder [6] and both idiopathic generalised [7–9]

and focal epilepsies [10]. In our previous study, we found 23/3812

patients had .100 kb deletions at 16p13.11, with Nuclear

Distribution gene E homolog 1 (NDE1) involved in 22/23 [10].

NDE1 encodes a protein that belongs to the highly-conserved

nuclear distribution protein family. The Nde1 protein predomi-

nantly interacts both with Lissencephaly-1 (Lis-1), a protein

essential for lamination of the cerebral cortex [11–13], and with

dynein, a cytoplasmic motor protein that directs cellular cargos

towards the ‘minus end’ of microtubules [11,14–16]. Together, the

Nde1-Lis-1-dynein complex mediates a range of intracellular

motility activities, including the transport of organelles to the

centrosomes, the orientation of mitotic spindles, the separation of

chromosomes during mitosis and the assembly of centrosomes and

spindles [13,16–22], all of which are important for cortical

development.

NDE1 loss has been suggested a prime candidate for disease

mechanisms associated with 16p13.11 deletion [4,23]. Deficiency

of Lis-1 and Nde1 expression in Lis-1 and Nde1 mutant mice and

Nde1 knockout mice results in a marked loss of cortical lamination,

reduced brain size and a reduction in precursor cell division and

segregation [11–13,22]. In humans, LIS1 haploinsufficiency (from

a deletion at 17p13.3) results in Type 1 Lissencephaly or Miller

Dieker syndrome, where patients have gross cortical dyslamina-

tion, a resulting smooth or under-folded cortex, and may

experience epileptic seizures [24,25]. Similarly, patients with

homozygous frameshift mutation in NDE1 show microlissence-

phaly (reduced brain size and simplified cortex) and experience

seizures starting early in life [26,27]. Heterozygous deletion of

NDE1 specifically may be a prime cause of epilepsy, both focal and

idiopathic generalised, associated with 16p13.11 deletion

[7,10,28]. Testing of this hypothesis directly in humans is difficult

as the deletion is rare, and brain tissue is almost never available

from patients with idiopathic generalised epilepsies. In our cohort

of patients with focal epilepsy however, there were two patients
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with mesial temporal lobe epilepsy (MTLE) with NDE1-containing

16p13.11 deletion, who had previously undergone temporal

lobectomy as treatment for their drug-resistant seizures. This

surgically-resected material allows direct examination in the target

tissue of the consequences of heterozygous NDE1 deletion. We

tested the hypothesis that NDE1 loss would cause cortical

dyslamination, using immunohistochemistry for a range of layer-

specific, neural precursor and migratory cell markers.

Results

The disease cases 1 and 2 both had the same 800 kb 16p13.11

deletion including NDE1.

Histological staining
The temporal cortex of Case 1, Case 2 and disease controls

appeared normal with no cell loss or dyslamination evident in

H+E, LFB or anti- Neuronal Nuclei (NeuN) labelled sections

(Figure 1). LFB and Alcian Blue stains revealed a well-defined

nodule of 3 mm in diameter, with an accumulation of

metachromatic material, in the subcortical white matter of the

middle temporal gyrus of Case 1 (Figure 2A–B). This nodule was

composed of small, round cells that were immunopositive for

microtubule-associated protein 2 (MAP2; Figure 2C–D) but not

immunopositive for glial fibrillary acidic protein (GFAP), NeuN,

synaptophysin or neurofilaments. These MAP2-immunopositive

cells intermingled with larger, NeuN-immunopositive neurons

and GFAP-immunopositive reactive astrocytes inside the nodule.

Together, these neuropathological findings define the nodule as a

hamartia (a small hamartoma [29,30]). The overlying cortex

appeared normal and serial sections taken from either side

showed that the hamartia was neither part of a glio-neuronal

tumour nor part of a larger malformation. Case 2 and other

disease controls did not show pathological features indicative of a

hamartia.

The hippocampus of Case 1 was normal, with no loss of cells in

H+E, LFB and anti-NeuN labelled sections. Pre-operative

magnetic resonance imaging (MRI) showed that Case 2 had a

smaller left hippocampus compared to the right (Figure 3A).

Microscopic examination of Case 2’s surgically-resected left

hippocampus revealed a marked loss of NeuN-immunopositive

neurons in the cornu Ammonis (CA) 4, 3 and 1 (Figure 3B). The

loss of NeuN-immunopositive cells in CA regions was also noted

in the MTLE control without NDE1 deletion (Figure 3C).

Granule cell dispersion was present in Case 2. A dense matrix of

GFAP-immunopositive cells and processes was observed through-

out the hippocampus of Case 2, particularly in CA regions

(Figure 3D). Dynorphin (Figure 3E) and neuropeptide Y

immunoreactivities were evident in the inner, middle and outer

molecular layers of the dentate gyrus of Case 2, confirming mossy

fibre spouting. Together, these features were consistent with

hippocampal sclerosis, a common pathology observed in MTLE

[31].

Figure 1. The temporal cortex of Case 2. The cortical lamination of
the temporal cortex of Case 2 was normal, as compared to the MTLE
case without NDE1 deletion and non-epilepsy surgical controls.
Scale = 200 mm.
doi:10.1371/journal.pone.0034813.g001

Figure 2. Hamartia in the temporal cortex of Case 1. LFB (A) and
Alcian Blue (B) stains showed the location of the hamartia within the
middle temporal gyrus (*). Small, round cells inside the hamartia were
immunopositive for MAP2 as viewed at a low (C) and high (D)
magnification. Scale = 100 mm (A–C), 20 mm (D).
doi:10.1371/journal.pone.0034813.g002
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Layer-specific markers
We examined the lamination of the temporal cortex and

anatomy of the hippocampus of Case 1, Case 2 (Figure 4A, Figure

S1A) and disease controls (Figure 4B, Figure S1B) using layer-

specific immunohistochemical markers: anti-microtubule-associat-

ed protein 1B (MAP1B), N200, SMI32, anti-calretinin, anti-

calbindin and anti-parvalbumin. These layer-specific markers

label cell types specifically distributed within certain human

cortical layers [32–35]. The white matter of Case 1, Case 2 and

disease controls was investigated using SMI94 and anti-nogo-A

antibodies. Nogo-A is a reticulin family protein expressed mostly

by oligodendrocytes in the brain [36].

The pattern of immunolabelling with layer-specific and white

matter markers was similar for Case 1, Case 2 and disease

controls. In the temporal cortex, many MAP1B-, N200-, SMI32-,

calretinin-, calbindin-, parvalbumin-immunopositive cells were

observed in the upper cortical layers (II and III) of Case 1, Case 2

(Figure 4A, Figure S1A) and disease controls (Figure 4B, Figure

S1B). A few MAP1B-, N200-, SMI32-, calbindin- and parvalbu-

min- immunopositive cells were also observed in the lower cortical

layers (IV, V and/or VI) of all cases. All immunopositive cells in

Case 1 and 2 appeared normal with no atypical or dysplastic

features. Thick, SMI94-immunopositive radial fibres were pre-

dominantly observed from cortical layer IV to the white matter of

all cases, with fewer horizontal fibres highlighted in layer I of Case

1, Case 2 (Figure 4A) and disease controls (Figure 4B). In the white

matter of all cases, nogo-A-immunopositive cells were small and

round, with labelling restricted to the scant cell body of

oligodendrocytes. Nogo-A-immunopositive cells were found pre-

dominantly in the white matter rather than the gray matter.

In the hippocampus of all cases, MAP1B-, N200-, SMI32-

calretinin-, calbindin- and parvalbumin-immunopositive cells were

observed in the CA regions and subiculum. There were visibly

fewer N200-, SMI32-, calretinin-, calbindin- and parvalbumin-

immunopositive cells in the CA regions of Case 2 and the MTLE

control without NDE1 deletion, than in Case 1 and non-epilepsy

controls, in keeping with the presence of hippocampal sclerosis in

the MTLE disease control and Case 2. MAP1B- and calbindin-

immunopositive granule cells were evident in the granule cell layer

of all cases. Parvalbumin-immunopositive processes or synapses

were often observed between granule cells in the GCL and the

Figure 3. Hippocampal sclerosis in Case 2. (A) A coronal MRI image of Case 2 showing left hippocampal atrophy (*; inset). No cerebral
malformations were evident. The histology showed hippocampal sclerosis: (B) NeuN-immunopositive cells were lost in the cornu Ammonis (CA)
regions of the left hippocampus of Case 2, as seen in the MTLE control case without NDE1 deletion (C). (D) Strong GFAP-immunoreactivity was
observed in all regions of the hippocampus of Case 2. (E) Dynorphin-immunoreactivity was observed throughout the molecular layer of Case 2,
demonstrating the presence of mossy fibre spouting. GCL = granule cell layer, MOL = molecular cell layer. Scale = 100 mm (B–E).
doi:10.1371/journal.pone.0034813.g003

Figure 4. MAP1B, SMI32, Calbindin and SMI94-immunopositive
labelling in the temporal cortex of Case 2 and the MTLE
control. MAP1B and calbindin-immunopositive cells were predomi-
nantly observed in the upper cortical layers, while SMI32-immunopo-
sitive cells and processes were mainly found in the lower cortical layers
of MTLE cases with (A) or without NDE1 deletion (B). Immunoreactivity
of SMI94 was observed in the lower cortical layers and white matter of
both cases. Scale = 200 mm (A, B).
doi:10.1371/journal.pone.0034813.g004
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CA2 region of all cases (Figure 5). Nogo-A-immunopositive

oligodendrocytes were evident in the white matter of all cases.

Precursor and migratory cell markers
Antibodies against nestin, GFAPdand PAX6 label neural

precursor cells [37–40], while antibodies against DCX and reelin

label migratory cells in the developing and adult mammalian brain

[41–43]. The immunolabelling of these markers was not markedly

different between Case 1, Case 2 and disease controls.

Nestin-, GFAPd-, PAX6-, DCX- and reelin-immunopositive

cells were predominantly observed in cortical layer I and white

matter of Case 1, Case 2 (Figure 6A–C, 7A–B) and disease

controls. GFAPd- and DCX-immunopositive cells were binucle-

ated or multinucleated with glial-like processes. Nestin-immuno-

positive blood vessels were observed throughout the cortex. A few

GFAPd-immunopositive cells were observed in the deeper cortex

and in the white matter of all cases; they were often situated

around blood vessels. PAX6- and small, reelin-immunopositive

cells could also be seen in the other cortical layers of all cases.

In the hippocampus, GFAPd-immunopositive cells were

observed in all CA regions, particularly in the sclerotic

hippocampus of Case 2 and the MTLE control case without

NDE1 deletion. PAX6- and DCX-immunopositive cells were

observed throughout the hippocampus, particularly in the CA4

and granule cell layer of all cases. Large, reelin-immunopositive

cells were observed in the CA4 region and in the molecular layer

of the dentate gyrus, while small reelin-immunopositive cells were

observed throughout the hippocampus.

NDE1
The immunoreactivity of NDE1 was observed in the cytoplasm

of neurons throughout the temporal cortex and hippocampus of

Case1 and 2 and disease controls (Figure 8). No marked difference

in immunolabelling was observed between Case 1, Case 2 and

disease controls.

Multidrug resistance-related protein 1
The chromosomal region 16p13.11 also contains ABCC1, which

encodes the multidrug resistance-related protein 1 (MRP1). We

investigated MRP1 expression using MRPr1, an antibody which

has been used in previous human studies [44,45]. MRPr1-

immunopositive blood vessels were observed throughout temporal

cortex and hippocampus of Case 1, Case 2 (Figure 9A–B) and

disease controls. Many MRPr1- immunopositive glial cells and

fibres were also observed in the cortical layer I and white matter of

the temporal cortex and the hippocampal CA regions. Most

MRPr1-immunopositive glial cells were found around blood

vessels (Figure 9B). The glial expression of anti-MRP1 has been

previously described in studies using surgical MTLE tissue without

Figure 5. Parvalbumin-immunopositive labelling in the hippo-
campus of Case 2. A few numbers of parvalbumin-immunopositive
cells were still observed in CA4 (A) and CA2 (B) of the sclerotic
hippocampus of Case 2. Some parvalbumin-immunopositive processes
and plexuses were observed around granule cells (A) and surviving
pyramidal neurons in CA2 (B). CA = cornu Ammonis, GCL = granule cell
layer. Scale = 20 mm (A, B).
doi:10.1371/journal.pone.0034813.g005

Figure 6. Nestin, GFAPd and PAX6 immunopositive labelling in
the temporal cortex and hippocampus of Case 2. Nestin- (A) and
GFAPd (B) strongly immunopositive glial-like cells were observed in
cortical layer I and white matter of the temporal cortex and the
hippocampus of Case 2. Nestin-immunopositive cells with short,
unipolar processes were occasionally found in the white matter of
Case 2 (A, middle inset). Small, round PAX6-immunopositive cells were
found throughout the temporal cortex and hippocampus. BV = blood
vessels, CA = cornu Ammonis, GCL = granule cell layer. Scale = 20 mm
(A–C), 10 mm (A, middle inset).
doi:10.1371/journal.pone.0034813.g006

Figure 7. DCX and reelin-immunopositive labelling in the
temporal cortex of Case 2. In cortical layer I, DCX-immunopositive
cells with a glial-like morphology clustered in groups of two or three
(arrows, A). DCX-immunopositive cells with short, bipolar processes
were occasionally observed in the upper cortical layers (A inset). Reelin-
immunopositive cells were also observed in cortical layer I (B) and in
deeper cortical layers of Case 2 (B, inset). Scale = 10 mm (A, B, insets).
doi:10.1371/journal.pone.0034813.g007
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known NDE1 deletion [44]. Disease controls showed a similar

pattern of MRP1 immunoreactivity to that seen in Case 1 and

Case 2.

Discussion

Two key challenges in disease genetics are to identify

pathogenic genetic changes and to understand how these changes

lead to disease phenotypes. For neuropsychiatric diseases, the

latter challenge is often especially daunting, as direct study of the

organ involved, the brain, is usually impossible. But such studies,

using brain material from patients with the neurological disease in

question, especially those with known genetic abnormalities, are

important as they may provide valuable insights and bounds about

the effects of genetic variants on brain structure and disease

mechanisms. We examined the surgically-resected temporal cortex

and hippocampus of two people with MTLE with identical 800 kb

deletion at 16p13.11, encompassing seven genes, including NDE1

and ABCC1. In Case 1, the white matter of the temporal cortex

contained a hamartia, which was not associated with any overlying

cortical dyslamination or any dysmorphic neurons, balloon cells or

more extensive changes seen in glio-neuronal tumours. In Case 2,

we found neuronal cell loss, gliosis and re-organisation, changes

typical of hippocampal sclerosis. The genetic basis, if any, of

hippocampal sclerosis is unknown: in our previous study [10], only

2/23 patients with 16p13.11 deletions had hippocampal sclerosis,

whilst other microdeletions are also associated with hippocampal

sclerosis [46]. Both hamartia and hippocampal sclerosis occur in

patients with drug-resistant epilepsy [30,47], and are unlikely to be

due to the 16p13.11 deletion.

Case 1 and Case 2 both had a normal, hexalaminar temporal

cortex, housing appropriate layer-specific cell types. No marked

difference was observed for NDE1 immunoreactivity or expression

of proteins associated with cell division and migration in the

temporal cortex or hippocampus of either case in comparison to

disease controls. NDE1 immunoreactivity in both Case 1 and 2

and disease controls was localised to the cytoplasm of neurons,

which is consistent with its role in intracellular transport [22,48].

In animal studies, Nde2/2 mutants have no Nde1 expression

and possess a brain that is a third smaller than controls, while

heterozygous Nde1+/2 mutant mice express a considerable

amount of NDE1 protein, that is only slightly lower than controls

in immunoblotting experiments, and these heterozygous Nde1 +/2

mutant mice have brain size and weight comparable to controls

[12]. Humans with 1 to 3.4 Mb homozygous deletions at

16p13.11 have small stature, dysmorphic features, seizures,

microcephaly or microlissencephaly [4,26]. In humans, the

contrasting phenotypes of duplication and deletion suggest

16p13.11 is a dosage-sensitive region [28]. However, the resected

brain tissue of our two patients with heterozygous 16p13.11

deletion was normal for the parameters we examined. Moreover,

these patients did not have intellectual disability, or any

remarkable abnormalities of appearance or stature. Therefore,

no clear dose-dependency phenomenon is apparent in our two

patients with, at least, loss of one copy of the whole NDE1 gene. If

16p13.11 deletion contributes to brain disease in our two patients

through loss of at least one copy of NDE1, as is the current

favoured hypothesis, then this contribution to disease would not

seem to be through pathology obvious at the light microscopic

level or immunophenotypically-determined dyslamination. The

deletion of NDE1 could act at another, for example submicro-

scopic, level; it is also possible that the deletion unmasks a recessive

mutation on the remaining allele, but this is unlikely given the

normal appearance and cognitive abilities of our two patients and

previous examination of this possibility [10]. Alternatively, loss of

NDE1 in patients with heterozygous NDE1 deletion may possibly

be compensated by other proteins with similar functions such as

LIS1 or NDE1-related protein 1 (NDEL1), a homolog of NDE1

[14,15,49].

Finally, it is possible that at least in our two patients, loss of

NDE1 is not the key contributor to disease (here, epilepsy)

associated with 16p13.11 deletion, suggesting that other candi-

dates and mechanisms need to be sought. Overall, however, the

link between heterozygous deletion of 16p13.11 and epilepsy, and

other neuropsychiatric diseases, is clear [9,10]: this deletion is not

a polymorphism, and is at the very least a disease risk factor. In

Case 1, seizures continued despite surgery, implying that

epileptogenic tissue remained unresected. The 16p13.11 deletion

in this case may therefore have conceivably acted as a risk factor

for epilepsy by subtly altering brain structure beyond the resected

tissue, a possibility we could not test as only resected tissue was

available for analysis. We note, however, that NDE1 is expressed in

the human temporal lobe (e.g. [27], such that if NDE1 deletion

were acting by altering microscopic brain structure, examination

for such changes in the temporal lobe would be a reasonable

strategy: we did not find any alteration with the methods

employed.

Our study illustrates the central role for detailed phenotyping in

interpretation of genetic findings: for neurogenetics, human

neuropathological studies are key, setting boundaries for putative

Figure 9. MRP1-immunopositive labelling in the temporal
cortex and hippocampus of Case 2. (A) Many MRP1-immunopo-
sitive cells and processes were observed in the hippocampus. (B) MRP1-
immunopositive cells were also evident in the temporal cortex (usually
around blood vessels). CA = cornu Ammonis, GCL = granule cell layer,
BV = blood vessel. Scale = 50 mm (A), 20 mm (B).
doi:10.1371/journal.pone.0034813.g009

Figure 8. NDE1-immunopositive labelling in the temporal
cortex of Case 2 and MTLE case without NDE1 deletion. The
immunoreactivity of NDE1 (arrows) was predominantly observed in the
cytoplasm of neurons in Case 2 and the epilepsy control.
doi:10.1371/journal.pone.0034813.g008
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mechanisms of action of identified genetic mutations. We

anticipate an increasing role for such studies in human genetic

diseases in general.

Materials and Methods

The study was approved by the Joint Research Ethics

Committee of the Institute of Neurology and the National

Hospital for Neurology and Neurosurgery. The work described

has been carried out in accordance with The Code of Ethics of the

World Medical Association (Declaration of Helsinki). Written

informed consent was obtained for research. We examined

surgically-resected temporal cortical and hippocampal tissue from

two MTLE patients with confirmed 16p13.11 deletion. Their

clinical details and results from genetic analysis are described in

Table 1 and Figure 10. Neither of the patients has learning

disability. No structural abnormalities were observed in MRI,

apart from Case 2 who had a smaller left hippocampus compared

to the right. Surgically-resected temporal cortex and hippocampus

of a patient with MTLE known not to have the deletion of the

entire NDE1 gene, and resected neocortical tissue from three

trauma patients were used as disease controls in immunohisto-

chemical studies (Table 1). The three trauma patients were not

tested for the 16p13.11 deletion, but the frequency of this deletion

in patients with focal epilepsy was 0.6%, and the deletion was not

observed in unselected controls [10], so it is very unlikely that all

these three (or indeed any one) of the disease control patients had

the deletion.

All surgical tissue was fixed, processed and paraffin-embedded

within one week following surgery. Routine histology staining,

including haematoxylin and eosin (H+E) and luxol fast blue (LFB),

was performed. Alcian Blue, an acid-mucosubstance stain, was

used in Case 1 to investigate the observed hamartia. Automated

immunohistochemistry was performed using Bond Max Automat-

ed Immunostainer and reagents (Leica, UK). 5 mm sections on

adhesive microscopic slides (Raymond A Lamb, UK) were first

processed in dewaxing solution and 100% alcohol. Antigen

retrieval protocols were applied as detailed in Table 2 before

sections were immersed in 3% hydrogen peroxide solution for

5 minutes. Sections were incubated with primary antibodies for

Figure 10. An illustration showing deleted genes in 16p13.11 in Case 1 and Case 2.
doi:10.1371/journal.pone.0034813.g010

Table 1. Clinical details of cases.

MTLE cases with 16p13.11 deletion

Identifier
Gender/
Age

Deletion region
(size)

Chromosome
band Genes Surgery Pathology

Surgery
outcome

Case 1 M/36 chr16:15387380-
16225138 (837,758)

16p13.11 MPV17L, C16orf45, NDE1,
MYH11, C16orf63,
KIAA0430,
ABCC1, ABCC6

Hippocampal and
temporal cortical
resection

Hamartia in the subcortical
white matter of the middle
temporal gyrus. Not all
hippocampal subfields
were available for assessment.

Still
experienced
frequent
seizures

Case 2 F/37 chr16:15387380-
16225138 (837,758)

16p13.11 MPV17L, C16orf45, NDE1,
MYH11, C16orf63, KIAA0430,
ABCC1, ABCC6

Hippocampal and
temporal cortical
resection

Hippocampal sclerosis
(cell loss and gliosis
in CA1, 3 and 4)

Seizure free
after surgery

Control cases

MTLE case without 16p13.11 deletion

Identifier Gender Age Reason for surgery

N1 F 45 Epilepsy

Non-epilepsy cases

N2 F 57 Head injury, brain swelling

N3 M 41 Head injury

doi:10.1371/journal.pone.0034813.t001

16p13.11 Deletion in Epilepsy
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15 minutes. Post-primary polymer solutions were applied for

8 minutes. Chromogen activation was achieved using diamino-

benzidine. Sections were dewaxed and rehydrated through xylene

and graded alcohols and taken to water. Antigen retrieval

procedures were applied as described in Table 2. All sections

were outlined using a wax pen before placing flat in an

immunohistochemical humidity chamber. Primary antibodies

were diluted with Dako diluent and then incubated on sections

as detailed in Table 2. NDE1 primary antibody was used at 1:500.

The following day, sections were incubated in Dako Envision

horseradish peroxide solution for 30 minutes. Chromogen activa-

tion was performed using Dako Envision diaminobenzidine and

substrate buffer for 5 minutes. Sections were washed in phosphate

buffer solution between each step. Sections with omission of

primary antibodies or their replacement non-specific IgG were

included in experiments as negative control. Sections were then

processed through graded alcohols and xylene and coverslipped

(TissueTek). A light microscope and camera (Nikon Eclipse 80i

and Sight DS Fi1) were used to visualize sections and to capture

images. Montages were acquired using the JVC camera attached

to an ImagePro Plus system (Media Cybernetics, USA). The

specificity of the antibody against NDE1 was tested (see Figure S2).

Supporting Information

Figure S1 Immunoreactivities of layer-specific markers
in the temporal cortex of Case 2 and the MTLE control.
MAP1B, calretinin, calbindin and parvalbumin-immunopositive

cells were predominantly observed in the upper cortical layers,

while N200- and SMI32-immunopositive cells and processes were

mainly found in the lower cortical layers of MTLE cases with (A)

or without NDE1 deletion (B). Immunoreactivity of SMI94 was

observed in the lower cortical layers and white matter of both

cases. Scale = 200 mm (A, B).

(PDF)

Figure S2 The specificity of the antibody against NDE1.
Immunoblotting experiment detected NDE1 at ,38 kDa, the

expected molecular weight of the protein, in the lysate from the

resected temporal cortex of patient with mesial temporal lobe

epilepsy.

(TIF)
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