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Abstract

N-acetyl-L-glutamate kinase (NAGK) catalyzes the second, generally controlling, step of arginine biosynthesis. In yeasts,
NAGK exists either alone or forming a metabolon with N-acetyl-L-glutamate synthase (NAGS), which catalyzes the first step
and exists only within the metabolon. Yeast NAGK (yNAGK) has, in addition to the amino acid kinase (AAK) domain found in
other NAGKs, a ,150-residue C-terminal domain of unclear significance belonging to the DUF619 domain family. We
deleted this domain, proving that it stabilizes yNAGK, slows catalysis and modulates feed-back inhibition by arginine. We
determined the crystal structures of both the DUF619 domain-lacking yNAGK, ligand-free as well as complexed with
acetylglutamate or acetylglutamate and arginine, and of complete mature yNAGK. While all other known arginine-
inhibitable NAGKs are doughnut-like hexameric trimers of dimers of AAK domains, yNAGK has as central structure a flat
tetramer formed by two dimers of AAK domains. These dimers differ from canonical AAK dimers in the 2110u rotation of
one subunit with respect to the other. In the hexameric enzymes, an N-terminal extension, found in all arginine-inhibitable
NAGKs, forms a protruding helix that interlaces the dimers. In yNAGK, however, it conforms a two-helix platform that
mediates interdimeric interactions. Arginine appears to freeze an open inactive AAK domain conformation. In the complete
yNAGK structure, two pairs of DUF619 domains flank the AAK domain tetramer, providing a mechanism for the DUF619
domain modulatory functions. The DUF619 domain exhibits the histone acetyltransferase fold, resembling the catalytic
domain of bacterial NAGS. However, the putative acetyl CoA site is blocked, explaining the lack of NAGS activity of yNAGK.
We conclude that the tetrameric architecture is an adaptation to metabolon formation and propose an organization for this
metabolon, suggesting that yNAGK may be a good model also for yeast and human NAGSs.
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Introduction

Microorganisms and plants make arginine from glutamate using

a route in which intermediates are N-acetylated (Figure 1). The

first step of the route is the production of N-acetyl-L-glutamate

(NAG), while the second is the phosphorylation of NAG by NAG

kinase (NAGK) [1,2]. In some organisms like Escherichia coli this

route is linear and NAG is made from acetyl CoA (AcCoA) and

glutamate by NAG synthase (NAGS). However, many other

organisms recycle the acetyl group by transacetylation from N-

acetylornithine to glutamate (Figure 1), while the feedback control

of the route by arginine is exerted at the NAGK level [1–3]. The

regulatory importance of NAGK is highlighted by the fact that, in

photosynthetic organisms, this enzyme is the target of PII, a

signaling protein that orchestrates metabolic adaptations to

nitrogen/carbon abundance [4,5]. By binding to NAGK when

ammonia is abundant, PII relieves NAGK from arginine inhibition

and allows nitrogen to stockpile as arginine [4,5].

Because of the paramount regulatory role of NAGK, this

enzyme has been the focal point of studies which have revealed the

structures of the arginine-insensitive NAGK of E. coli [6] and of

arginine-sensitive NAGKs from bacteria and from the plant

Arabidopsis thaliana [7–9] either alone or complexed with PII.

NAGK presents a typical subunit fold which is considered the

paradigm of the amino acid kinase (AAK) family [6]. This fold

consists of a characteristic a3b8a4 sandwich with a mostly parallel

central b8-sheet, which is split into N- and C-lobes. All the

NAGKs characterized structurally so far [6–9] are composed of

identically shaped homodimers, in which the central b-sheet

becomes continuous across the intersubunit junction due to

contacts between the antiparallel b5 strands of the two subunits.

Nevertheless, the structurally characterized NAGKs that are the

subject of feedback inhibition by arginine have an extra N-

terminal kinked a-helix, which links the NAGK dimers into

doughnut-like hexamers with D3 symmetry [7–9]. Arginine binds

at the interdimeric junctions next to these N-terminal helices and

is believed to inhibit NAGK by expanding the hexameric ring,

separating the two lobes of each subunit, thus preventing catalysis

[7–9].
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We report here structural and functional studies on the

arginine-sensitive NAGK from Saccharomyces cerevisiae (yNAGK).

This enzyme, which is produced in yeast mitochondria by

proteolytic processing of the polyprotein precursor (Uniprot

database code Q01217) encoded by the ARG5,6 gene, has the

unexplained peculiarity, which is shared by the NAGKs of other

ascomycetes, of having, in addition to the AAK domain, a C-

terminal domain of ,150 residues of unknown structure and

function (Figure 2A) [10–12]. The same type of domain is found at

the C-terminus in the NAGSs of ascomycetes and animals,

including humans [13,14]. This domain belongs to the DUF619

domain family (where DUF stands for domain of unknown

function) of the Pfam (http://pfam.sanger.ac.uk) and InterPro

(http://www.ebi.ac.uk/interpro) databases. Another very interest-

ing characteristic of yNAGK is that it forms with yeast NAGS

(yNAGS) a complex with the features of a true metabolon [12,15],

with its NAGS and NAGK components mutually influencing their

regulatory properties by arginine [15] (Figure 1). Furthermore,

whereas yNAGK can exist independently of yNAGS, the latter

enzyme can exist only as a part of the NAGK/NAGS metabolon

[12,15]. Thus, yNAGK may also act as a chaperone and/or an

essential stabilizing agent for yNAGS. Since ascomycetal NAGK

and NAGS are homologous enzymes, which apparently exhibit

the same domain organization [14], the ascomycetal NAGK/

NAGS metabolon may have evolved from an ancestral oligomer

formed by a single bifunctional enzyme molecule displaying both

NAGK and NAGS activities. Such a bifunctional enzyme has

been recently identified in Xanthomonas campestris [14].

Figure 1. Arginine biosynthesis pathway of Saccharomyces cerevisiae. The kinase activity of the metabolon is inhibited by lower
concentrations of arginine than N-acetyl-L-glutamate kinase alone. Red broken arrows indicate inhibition by arginine.
doi:10.1371/journal.pone.0034734.g001
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To gain insight into the structural and regulatory complexities

of ascomycetal NAGKs, we carried out in vitro expression and

crystallographic studies of yNAGK. We demonstrated a modula-

tory and stabilizing role of the DUF619 domain on yNAGK. The

structure of the mature yNAGK, lacking the N-terminal

mitochondrial targeting sequence (residues 1–57 [12]), reveals an

unexpected novel tetrameric architecture, which can be described

as a dimer of dimers with D2 symmetry. The AAK domains

occupy the center of the molecule flanked by two pairs of

interacting DUF619 domains. A crystal, in which an arginine

molecule is bound to one subunit, gives a snapshot of arginine-

complexed and arginine-free subunits, which supports the

previously proposed mechanism of arginine inhibition [7,9]. The

structure of the DUF619 domain reveals a histone acetyltransfer-

ase fold (GNAT domain fold) [16] in which the site for AcCoA is

blocked. The yNAGK structure might help model that of human

NAGS, an enzyme deficiencies in which cause inherited clinical

hyperammonemia [13]. The structure also allows to propose a

model for the NAGK/NAGS complex forming the yeast

metabolon.

Results and Discussion

Roles of the DUF619 domain in yNAGK
A truncated form of yNAGK spanning from residue 58 to 356,

corresponding to the AAK domain and lacking the C-terminal

Figure 2. Yeast NAGK domain composition and effects of DUF619 domain deletion. (A) yNAGK domain composition and purification of
the recombinant complete enzyme and its two isolated domains. Left, Coomassie-stained SDS-PAGE of the purified proteins. St; molecular markers,
with masses given at the side. Right, bar representation of the domain composition of the whole enzyme and of the isolated domain constructs, with
residue numbers. The mitochondrial signal peptide (faint tracing) was not included in the constructs. Both expressed domains are shown in different
gray shades. For the isolated GNAT domain, the sequence was extended C-terminally to its potential maximum, corresponding to the beginning of
the next enzyme encoded by the polyprotein precursor. The masses in kDa of the recombinant polypeptide chains, including their tags, are the
following: yNAGK, 51; truncated AAK, 34; GNAT domain, without or after His-tag cleavage, 21.6 and 19.7 respectively. (B) and (C) Substrate kinetics for
NAG and ATP. The results from the enzyme activity assays (see Materials and Methods; points are means 6 standard errors (SE) for at least three
determinations) were fitted in the case of the data for ATP and NAG to hyperbolae, except for the NAG kinetics for truncated yNAGK (AAK), which was
fitted to hyperbolic kinetics with substrate inhibition according to the equation [52]: v~V|½S�7(½S�zKmz½S�27Ki))))) . The inset tables provide
means 6 SE for the indicated parameters. kcat values are given per polypeptide chain. (D) Arginine inhibition kinetics. The results were fitted to

sigmoidal inhibition according to equation [3]:v Argj j~v½Arg�{0|(1{ ½Arg�N7(IN
0:5z½Arg�N )

� �
), where N is the Hill coefficient and I0.5 is the

arginine concentration which gives 50% inhibition. The inset table gives the I0.5 and N values (means 6 SE). (E) and (F) Thermofluor assays with NAGK

and its isolated domains. When used, L-arginine was at a concentration of 50 mM. For further details, see Materials and Methods.
doi:10.1371/journal.pone.0034734.g002
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DUF619 domain, was produced as a soluble protein in milligram

amounts in E. coli (see Materials and Methods and Figure 2A).

Deletion of the DUF619 domain did not impair activity or

arginine inhibition, as expected from the absence of a similar

domain in bacterial and plant NAGKs [6–9]. In fact, the

truncated yNAGK was even more active than the complete

enzyme, as the deletion almost doubled the apparent kcat, whereas

the Km values for the two substrates, NAG and ATP, were little

affected (Figures 2B and 2C). Thus, the binding sites for both

substrates and the active center itself sit entirely within the AAK

domain of yNAGK, while the presence of the DUF619 domain

somewhat inhibits catalysis. In the truncated protein, the

sensitivity to arginine is increased (Figure 2D), since the arginine

concentration causing 50% inhibition (I0.5) was lowered, while the

dependency of activity on arginine concentration was no longer

sigmoidal. The sigmoidal nature of the arginine inhibition of the

complete enzyme is an important attribute, making the enzyme

little sensitive to low arginine concentrations but allowing the

inhibition to escalate rapidly when the arginine concentration

exceeds a given threshold. Therefore, the DUF619 domain exerts

a modulatory effect on arginine inhibition which may prove

important in vivo. Interestingly, the effects of DUF619 deletion on

arginine inhibition kinetics replicate those observed when NAGK

associates with NAGS in the NAGK/NAGS metabolon [15]

(Figure 1), suggesting that the DUF619 domain is prevented from

modulating NAGK inhibition in the metabolon.

An important stabilizing role of the DUF619 domain has been

demonstrated in thermofluor unfolding studies [17] (Figures 2E

and 2F). In these assays, the isolated DUF619 domain, produced

recombinantly (Figure 2A), was approximately as stable as the

complete enzyme (T0.5 values of 52uC and 49uC, respectively),

whereas the truncation of the enzyme decreased its thermal

stability by ,10uC. The results also revealed a stabilizing effect, by

approximately 4uC, of arginine on the complete enzyme, but

particularly on the isolated AAK domain (T0.5 values of 39uC and

51uC in the absence and the presence of arginine, respectively), to

the extent that the unfolding of this domain became virtually

indistinguishable from that of the complete enzyme when arginine

was present (Figure 2E). In contrast, arginine had no stabilizing

effect (Figure 2F) on the DUF619 domain, thus confirming that

the binding site for arginine is located in the AAK domain.

yNAGK and its isolated DUF619 domain lack NAGS
activity

The bifunctional NAGS-NAGK of X. campestris has been

reported [14] to have the same domain organization as yNAGK,

with both enzymes exhibiting comparable NAGK activities (1.95

and 3.31 U/mg, respectively). However, while the X. campestris

enzyme is a very active NAGS having a specific activity of 76 U/

mg, we did not detect (detection limit, ,0.2 U/mg) any NAGS

activity [18] with yNAGK in either pH 7 or 9, which is considered

optimal for NAGSs, or in the presence or absence of MgATP,

addressing the possibility of strict coupling between the potential

NAGS activity and the NAGK activity. In contrast, the yeast

NAGS/NAGK complex (data not shown) or the NAGS from

Pseudomonas aeruginosa were very active NAGSs, having activities of

250 U/mg (pH 9, 37uC) or 79 U/mg (pH 9, 37uC [18]),

respectively.

Recently, NAGS activity has been demonstrated with an NAGS

of Mycobacterium tuberculosis [19] consisting exclusively of an isolated

acetyltransferase domain that resembles the C-terminal domain of

classical bacterial NAGSs [20], which is also similar to the

DUF619 domain of yNAGK (see below). Thus, it is conceivable

that the potential NAGS activity of the DUF619 domain of

yNAGK might be repressed by the presence of the AAK domain,

and that this domain in the NAGK/NAGS metabolon might be

released from inhibition. However, constructs of the isolated

DUF619 domain, with or without a His-tag (Figure 2A), did not

exhibit even traces of NAGS activity at either pH 7 or pH 9

(detection limit, 0.1 U/mg). In contrast, and as a control of the

assay, activity was observed with the NAGS from M. tuberculosis

(1.5 U/mg at 0.1 M L-glutamate, pH 9; unpublished data from

ML. Fernández-Murga in our laboratory). In summary, and in

agreement with prior genetic evidence (reviewed in [12]) and with

the results of assays in crude mixtures [15], yNAGK does not

appear to be a bifunctional NAGK/NAGS.

Structure of truncated yNAGK
Four crystal structures of truncated yNAGK, ligand-free or

complexed with either NAG or NAG and arginine, were

determined using for the initial phasing single anomalous

diffraction (SAD) from a Se-Met derivative (Table 1). Four

subunits, organized as a dimer of dimers with D2 local symmetry,

were found in the asymmetric unit of these crystals (Tables 1, 2

and Figure 3A). Given the fact that prior structures of arginine-

sensitive NAGKs correspond to D3 hexamers (Figure 3B) [7–9], a

tetrameric architecture was unexpected, but it was supported by

size exclusion chromatography of both the truncated and the

complete mature yNAGK proteins. The elution profiles of these

proteins were more consistent with tetramers than hexamers

(Figure 4). The small peaks observed to elute earlier with both the

truncated and the complete yNAGK were consistent with

octamers (possibly aggregates of two tetramers) rather than with

dodecamers (aggregates of two hexamers) (Figure 4).

Despite the different oligomerization of yNAGK in relation to

other NAGKs, the AAK domain structure closely conforms to the

canonic a3b8a4 sandwich NAGK subunit fold [6–9] (Figure 5A),

with the N-lobe spanning residues 96–272 and the C-lobe residues

273–350. Even the lengths of the loops and of the secondary

structure elements are similar to those of E. coli NAGK (EcNAGK)

(root mean square deviation, r.m.s.d., 1.8 Å for superimposition of

246 Ca atoms). In the crystals containing NAG, one NAG

molecule was found in each subunit (Figure 5B). As reported in

other NAGKs (best studied in EcNAGK [6]), NAG is bound in a

pocket in the N-lobe under the closed lid formed by the b3–b4

hairpin (Figures 5B and 5C). In the structure of the truncated

yNAGK without NAG (resolution 2.95 Å, Tables 1, 2), the lid is

observed in two different open conformations, which are, however,

less open than in the structure of the NAG-free EcNAGK [21]

(Figure 5C). Although no ATP-containing crystals were obtained,

the ATP site is patent in the C-lobe at its expected location

(Figure 5A) [6]. In fact, all the residues considered important for

ATP binding and for catalysis are conserved as, for example,

glycines 106, 137, 274 and 305, catalytic lysines 103 and 309, and

the intervening aspartate 251, which correspond to EcNAGK

glycines 11, 45, 184 and 213, lysines 8 and 217, and aspartate 162,

respectively [6]. In summary, the subunit core fold, the substrate

binding sites, the active center and the catalytic mechanism appear

essentially identical in the AAK domain of yNAGK and in

EcNAGK. In contrast with this high similarity of the AAK

domains, the three possible dimers which could be defined in

yNAGK by the three molecular axes PQR (Figure 3A) differ from

those in other NAGKs. Nevertheless, the R dimer of yNAGK uses

for dimer formation the same subunit surface, which is used by

other NAGKs, although with a 2110u relative rotation between

the subunits around an axis perpendicular to the interacting

surfaces (Figures 3A and 3B, top insets; and Figure S1). As already

indicated, in canonic NAGKs the central b-sheet extends across

Structure of Yeast Acetylglutamate Kinase
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the dimer due to the antiparallel pairing of the b5 strands of the

two subunits (Figure 3B top inset). In yNAGK, the b5 strands of

the two subunits still interact with each other, although they are

parallel due to the large rotation of one subunit relative to the

other (Figures 3A top inset, and 3C). Helices C and D, which

sandwich b5, run parallel to the corresponding helices from the

adjacent subunit, instead of forming the cross-grid observed with

other NAGKs (Figures 3A and 3B top insets). Overall, the total

occluded surface at the R interface, of 1044 Å2 per subunit as

determined with the PISA server (see Methods), is divided into two

approximately equal patches - one towards each end of helix C -

leaving a non-interacting central region between these patches. As

illustrated by the top dimer in the tetramer shown in Figure 3A,

this R dimer of the yNAGK AAK domains has a butterfly-like

shape and is flatter and more continuous around the molecular

two-fold R axis than in canonic NAGKs.

Arginine-sensitive NAGKs, including yNAGK, have a 19–38

residue-long N-terminal extension which is responsible for joining

the dimers into the corresponding oligomers [7]. In the hexameric

NAGKs, this N-terminal extension (residues 1 to 25 in P. aeruginosa

NAGK) consists of a protruding, slightly kinked helix that

interlaces with the same helix of another subunit from a different

dimer (Figure 3B and its bottom inset) [7–9]. However, in yNAGK

the N-terminal extension comprises two helices forming an angle

of approximately 45u, and a 5-residue N-terminal extended coil.

These three elements form a platform or ‘‘stand’’ which mediates

and determines the interactions between the dimers across the Q

axis of the tetramer (Figure 3A, labeled ‘‘interdimeric junction’’).

At each interdimeric junction, a four-helix bundle is formed by

both interacting ‘‘stands’’, burying an approximate area of 910 Å2

per subunit. The bundle is stabilized mainly by hydrophobic

interactions involving V71, I72, L75, V84, L88, and F91, but also

by hydrogen bonds linking R68 and F91, and linking K81 with

N76 and I78 (see Figure S2). Each ‘‘stand’’ is connected to the

body of its cognate subunit by a large array of interactions, in

particular with the C-ends of helices A and H and the adjacent

loops, which are mainly hydrophobic and include several aromatic

residues (Figures 3A and S2). This extensive network of

interactions still allows conformational changes of one of the

‘‘stands’’ without junction dissociation, as when arginine was

bound to one subunit (see below), and as reflected in the slightly

different positions of the ‘‘stands’’ in different subunits. In any

Table 1. Crystallographic data collection.*

Parameter yNAGK lacking its C-terminal domain Complete yNAGK

Se-Met-substituted NAG-containing
Arginine-
soaked No ligands Crystal 1a Crystal 2a Crystal 3

Beamline ESRF ID14-4 ID14-4 BM16 ID14-4 ID14-4 ID14-4 ID23-2

Wavelength (Å) 0.9790 0.9393 0.9786 0.9393 0.9393 0.9393 0.8726

Space group P212121 P212121 P212121 P212121 C2 P1 P1

Unit cell parameters

a (Å) 69.8 69.7 69.5 68.1 112.0 95.2 92.3

b (Å) 99.2 99.3 99.6 100.5 146.7 111.3 103.3

c (Å) 189.8 190.6 189.2 188.7 70.7 113.1 111.3

a (deg) 90.0 90.0 90.0 90.0 90.0 75.8 77.3

b (deg) 90.0 90.0 90.0 90.0 101.4 89.3 89.3

c (deg) 90.0 90.0 90.0 90.0 90.0 69.1 70.4

Solvent (%) 49 49 49 48 56 53 49

Resolution range (Å) 87.7–3.4 20–2.2 20–2.1 20–2.95 87.9–3.1 109–3.8 108–3.25

(3.6–3.4) (2.3–2.2) (2.2–2.1) (3.1–2.95) (3.3–3.1) (4.0–3.8) (3.43–3.25)

Total reflections 216123 1015192 372634 178140 46836 94503 109862

Unique reflections 18793 67865 77012 28023 19757 39773 57473

I/sI 4.9 (2.7) 5.0 (1.9) 3.8 (1.9) 8.3 (2.1) 9.3 (2.0) 10.5 (1.5) 9.6 (1.7)

Rsym
b (%) 13.2 (24.8) 12.0 (40.5) 13.1 (36.7) 6.8 (37.3) 6.3 (34.7) 5.7 (45.5) 7.0 (45.6)

Completeness (%) 100 (100) 100 (100) 99.6 (99.6) 99.8 (99.8) 97.6 (97.6) 96.3 (96.3) 96.2 (96.2)

Wilson B factor (Å2) 41.5 26.7 19.8 79.7 86.8 97.4 72.2

Multiplicity 11.5 (11.9) 15.0 (15.3) 4.8 (4.7) 6.4 (6.5) 2.4 (2.4) 2.4 (2.4) 1.9 (1.9)

Phasing statistics for Se-Met
substit.

Se atoms 20 - - - - - -

FOMc 0.762 - - - - - -

CC all/weakd (%) 43.1/21.2 - - - - - -

*Values in parentheses are the data for the highest resolution shell.
aData ellipsoidal truncation and anisotropic scaling were applied using the UCLA MBI Diffraction Anisotropy Server [54] to correct for strong anisotropy.
bRsym~

P
I{vIwj j7

P
I , where I is the observed intensity, and ,I. is the average intensity of the multiple observations of symmetry-related reflections.

cFigure of merit after density modification.
dCorrelation coefficient all/weak as defined by program SHELX.
doi:10.1371/journal.pone.0034734.t001
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case, the interactions mediated by these stands result in the

association of two yNAGK dimers into a relatively flat rectangular

tetramer with approximate dimensions of 35 Å6109 Å683 Å.

This tetramer is perforated by a central hole of 18 Å diameter,

which is formed between the two domain bodies and the two

interdimeric junctions. Two active centers, separated by a distance

of 80 Å, are exposed in one diagonal on each face of the tetramer

(Fig. 3A).

Structural changes triggered by arginine and the arginine
inhibition mechanism

Whereas one normally bound NAG molecule was found sitting

in each subunit of the yNAGK tetramer of the arginine-soaked

crystal (resolution, 2.1 Å; Tables 1 and 2), only one subunit

contained bound arginine. The arginine molecule sits where

expected [7,9], at the free end of the C-lobe, between the second

N-helix, the central b sheet, helix H and the loop connecting this

helix to b16 (Figures 3A, 6A and 6B). There are important

conformational differences between the arginine-containing and

the arginine-free subunits (Figure 6C). In the arginine-containing

subunit the C-lobe of the AAK domain has moved away from the

N-lobe, around a hinge located at the interlobar boundary

(residues V267-Y268). This movement can be described as a 16u
rigid-body rotation of the C-lobe about an axis that crosses

obliquely the central b sheet at the level of b11 (Figure 6C). A

similar open conformation has been reported in arginine-bound

hexameric NAGKs [7,9] and, with somewhat different character-

istics, in substrate-free EcNAGK [21]. In the open conformation,

the active center is distorted, with the sites for the two substrates

being separated, thus likely corresponding to an inactive enzyme

form [21]. Therefore, these results support the view that arginine,

by binding to both the second N-helix and the C-lobe, pulls the C-

lobe away from the N-lobe, which is firmly anchored to the other

subunit of the R dimer, stabilizing the open inactive conformation

of the AAK domain, thus causing the inhibition.

Arginine binding is also associated with structural changes in the

second N-helix, which, in the arginine-free subunits, is dislodged

from the arginine binding site by a displacement of 4.5 Å

(maximum displacement of a Ca atom, 8 Å) and a rotation of

25u about its central axis (Figure 6B). These changes in the

arginine binding site are not propagated across the interdimeric

junction, which thus becomes nonsymmetric (Figure 3A), explain-

ing the lack of cooperativity for arginine inhibition of truncated

yNAGK (Figure 2D). Changes at the arginine binding site

diminish the buried surface at the interdimeric junction of

yNAGK from 910 Å2 per subunit in the arginine-lacking

tetramers to 840 and 800 Å2 in the arginine-containing and

arginine-free subunits, respectively. However, as the stability of the

truncated enzyme is remarkably increased by arginine (Figure 2E),

Table 2. Refinement statistics.

yNAGK lacking its C-terminal domain Complete mature yNAGK

NAG-containing Arginine-soaked No ligands Crystal 2 Crystal 3

PDB code 3ZZF 3ZZH 3ZZG 3ZZI 4AB7

Resolution range (Å) 20–2.20 20–2.10 20–2.95 65.95–3.80 108.3–3.25

Reflections, work/test 64245/3432 72907/3860 26458/1398 37381/1985 54576/2896

Rfactor,
a work/test (%) 17.87/21.81 18.04/21.54 21.19/24.52 19.72/23.59 19.27/23.76

Average B-factors (Å2)

Protein atoms 26.5 22.3 81.4 127.6 93.3

NAG 23.1 14.4 - - 72.7

Arginine - 29.3 - - -

Hg 43.6 - - - -

Water 14.5 13.7 - - -

Number of:

Polypeptide chains 4 4 4 8 8

Protein atoms 9107 9059 8978 27248 26294

NAG molecules 4 4 - - 2

Arginine molecules - 1 - - -

Hg atoms 8 - - - -

Water molecules 430 497 - - -

RMSD bond (Å) 0.008 0.007 0.009 0.016 0.014

RMSD angle (u) 1.04 1.02 1.08 1.79 1.76

Ramachandran plotb (%)

Most favored 94.1 94.0 91.3 87.8 85.7

Additionally allowed 5.2 5.3 7.8 11.9 13.3

Generously allowed 0.7 0.5 0.6 0.3 1.0

Disallowed 0.0 0.2 0.4 0.0 0.0

aRfactor~
P

hkl Fobsj{ Fcalcjk k7
P

hkl Fobsj j where Fobs and Fcalc are the observed and calculated structure factors, respectively.
bCalculated using PROCHECK.
doi:10.1371/journal.pone.0034734.t002
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Figure 3. Structure of yNAGK lacking its DUF619 domain. Cartoon representation of (A) the tetramer of truncated yNAGK, as observed in the
crystal soaked with arginine (2.1 Å resolution); and (B), of the hexamer of P. aeruginosa NAGK (PDB file 2BUF [7]). Two different hues of blue, green or
red were used to identify the two subunits forming each R dimer. NAG and arginine in (A), and NAG and ADP-Mg in (B) are shown in space-filling
representation. In (A) the N- and C-lobes and the secondary structure elements are labeled (helices with letters, strands with numbers) in the arginine-
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this diminished buried surface could somehow be artefactual due

to having only one subunit with arginine and a broken symmetry.

Structure of the complete mature yNAGK
Two closely related, yet non-isomorphous crystals of full-length

mature yNAGK, each containing two enzyme tetramers in the

asymmetric unit, have allowed determination of the structure of

complete yNAGK using X-ray diffraction (Tables 1 and 2; Protein

Data Bank, PDB, (www.pdb.org) accession codes 3ZZI and 4AB7).

Although the resolution attained was 3.25 Å at the most, the high

quality of the averaged electron density map (illustrated in the

Figure S3) allowed to unambiguously trace the entire polypeptide

and to identify the majority of amino acid side chains, particularly

for the DUF619 domain. The full-length enzyme tetramers consist

of the AAK domains occupying the central part of the molecule, as

in the truncated enzyme structure, flanked at both ends along the

Q axis by a pair of interacting DUF619 domains (Figures 7A and

7B). Projected along the P axis, the enzyme presents an elliptic

profile with minor (R) and major (Q) axes of 109 Å and 140 Å,

respectively. The central hole described for the truncated enzyme

is also present, together with two narrow openings between the

DUF619 and the AAK domains (Figure 7A). The lines joining the

centers of mass of mutually interacting DUF619 domains are

oblique in relation to the flat AAK tetramer; thus DUF619

domain pairs protrude from the plane defined by the four AAK

domains (Figure 7B). The structures of the four tetramers found in

the two crystals deviate from perfect D2 molecular symmetry, with

three subunits in each tetramer exhibiting the open AAK domain

conformation. The degree of AAK domain opening is even higher

than in the arginine-containing subunit of the truncated enzyme,

corresponding to a 20u rotation of the C-lobe (Figure 8A). The

pulling of the C-lobes by the paired DUF619 domains possibly

contributes to this opening of the AAK domain, which is

associated with rotations of up to 55u of the DUF619 domain

around a hinge located at the AAK domain-DUF619 domain

linker (351GYK) (Figure 8B). It is interesting that arginine

inhibition of Neisseria gonorrhoeae NAGS (NgNAGS) is associated

with a rotation of approximately 109u of the C-terminal domain of

this enzyme around the linker connecting it to the AAK domain

[22]. As shown below, this domain of NgNAGS corresponds to the

DUF619 domain of yNAGS.

Comparison of the complete and truncated NAGK structures

explains why the presence of the DUF619 domains does not

influence the Km values for the substrates. This lack of effect on

the apparent affinity for both substrates reflects the lack of physical

interactions of the DUF619 domains with the substrate sites,

which remain equally exposed in the structures of the truncated

(Figure 3A) and the complete enzymes (Figure 7A). In contrast, the

increase in kcat associated with the truncation parallels the

increased tendency of the AAK domains of the complete enzyme,

relative to the AAK domains of the truncated enzyme, to adopt

the open inactive conformation. The decrease in the I0.5 for

arginine upon truncation may result from the loss of the contacts

existing in the complete enzyme between the DUF619 domain

containing subunit, except helix B, which is labeled in the left-hand adjacent subunit. The 2-fold axes (labeled in (A) as P, Q and R) are shown as
broken blue lines ending in blue ellipses, and the 3-fold axis of hexameric NAGK (B) is shown as a blue triangle. Interdimeric junctions are labeled and
enclosed in broken-line rectangles in both (A) and (B). One such junction for the hexameric enzyme is enlarged in the lower inset of (B). In turn, the
intersubunit junctions in the R dimer are enclosed in dotted-line rectangles, and they are illustrated in the top insets for (A) and (B), after 90u rotation
around the R axes, relative to the main figures 3A and 3B. In the insets, elements from the two subunits are differentiated by the color code and also
by placing asterisks on the labeled elements of one subunit. (C) Stereo view of the intersubunit bonds in the R dimer involving the b5 strands and the
C-terminal moiety of helix C. This figure illustrates the b-sheet continuity across the intersubunit interface through side-chain bonds. Elements from
one subunit are yellow and those from the other are green.
doi:10.1371/journal.pone.0034734.g003

Figure 4. Size-exclusion chromatography of the complete
enzyme and its isolated domains. The bottom panel illustrates the
optical absorption (280 nm) of the effluent after injection to the
Superdex 200 column of either complete NAGK (continuous line), AAK
domain (broken line) and DUF619 domain (dotted line). The top panel
illustrates a semi-logarithmic plot of molecular mass versus elution
volume. Filled black circles correspond to the following protein standards
(mass is given in kDa between parentheses): thyroglobulin (669), ferritin
(440), NAGS from P. aeruginosa (294), b-amylase (224), NAGK from P.
aeruginosa (191), alcohol dehydrogenase tetramer (147 kDa), bovine
serum albumin (66), alcohol dehydrogenase monomer (37) and
ribonuclease (14). Open-rimmed symbols plot the volumes of elution
of the main peak for NAGK (inverted triangle) and for its AAK domain
(square) versus their sequence-deduced masses if they were homo-
tetramers, and for the DUF619 domain (circle) if it were monomeric
(sequence-deduced masses 204, 132 and 21 kDa, respectively). Non-
rimmed gray-filled symbols plot these positions for the sequence-
deduced masses if NAGK and AAK were hexamers and if DUF619 were a
dimer. Rimmed gray symbols correspond to the minor early peaks
observed in the elution of NAGK and the AAK domain, by considering
that both are octamers (black-rimmed) or dodecamers (gray-rimmed).
doi:10.1371/journal.pone.0034734.g004
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and the arginine binding site of the same subunit. These contacts,

which include interactions with the second N-helix and, in some

subunits, with the mobile loop at the end of helix H (Figure 7A),

may hamper the arginine binding site adopting a conformation

that is competent for binding the feed-back inhibitor. The

sigmoidal arginine inhibition kinetics of the complete enzyme

suggests the propagation, mediated by de paired DUF619

domains, of the changes in one arginine binding site to the

arginine binding site across the same interdimeric junction. In

agreement with this view, the Hill coefficient for arginine

inhibition kinetics for the complete enzyme is 2, whereas inhibition

of the truncated enzyme is non-sigmoidal (Figure 2D). It is

noteworthy that, in the NAGK/NAGS metabolon, these effects of

the DUF619 domain on arginine regulation are lost [15].

Therefore, binding of yNAGS to yNAGK possibly abolishes the

interactions between the NAGK DUF619 domains and the

arginine binding sites, most likely because of structural rearrange-

ments in the NAGK tetramer.

The much higher temperatures needed for unfolding the

complete yNAGK than for unfolding the truncated yNAGK

(Figure 2E) indicate structural stabilization by the presence of the

DUF619 domains, perhaps due to the pairing of these domains

and to their interactions with the AAK domains of their cognate

subunits.

The DUF619 domain presents the histone
acetyltransferase fold

The DUF619 domain is a bilobar (N-moiety, residues 354–447;

C-moiety, residues 448–502) open aba sandwich nucleated by a 7-

stranded antiparallel b-sheet, which has the characteristic

architecture of the histone acetyltransferase fold (GNAT fold)

(Figure 8C) [16]. This architecture is shared also by the

acetyltransferase domain of NgNAGS (Figure 8D), the domain

that in this enzyme binds glutamate and AcCoA and catalyzes

acetyl transfer. It includes a typical V-shaped central sheet, in

which strands 49 and 59 diverge, with strand topologies for the N-

and C-moieties of the sheet, 19293949 and 597969, respectively. The

comparison of the GNAT domains from NgNAGS and yNAGK

(with an r.m.s.d. of 2.52 Å for 111 residues) explains why yNAGK

lacks NAGS activity. The AcCoA binding site in NgNAGS, found

on the boundary of the N- and C-moieties, is blocked in yNAGK

(compare Figures 8E and 8F). The CoA recognition motif R/Q-x-

x-G-x-G/A [23], which is present in NgNAGS (364QDGGYG369)

at the entrance of helix D9, is replaced in yNAGK by
431WLNNVT436 (the motif-characteristic residues are underlined)

(Figure 8C). T436 replaces one glycine of the CoA binding motif.

W431, sandwiched between N460 and T436, blocks the part of

the site where the pyrophosphate moiety of the CoA molecule

would be expected to bind, thus rendering impossible AcCoA

binding (Figures 8C and 8F). In contrast, in the X. campestris

bifunctional NAGS/NAGK enzyme, the CoA recognition signa-

ture, 350QGEGLG, is preserved, therefore supporting the view

that changes in the AcCoA site correlate with the lack of NAGS

activity in yNAGK.

The pairing of the DUF619 domains on each side of the

yNAGK tetramer involves hydrophobic interactions between the

E9 and F9 helices as well as the continuity of the central b sheets by

way of antiparallel bonding of strands 69 from both domains

(Figure 8C). These interactions are maintained in the four pairs of

DUF619 domains observed in the present crystal structure (with

r.m.s.d.s from 0.85 to 1.45 Å), despite the important departures

from the D2 symmetry observed in the yNAGK tetramers. The

contacts among the DUF619 domains, although not strong

enough for dimer formation when the DUF619 domains are

isolated, judging from the size exclusion chromatography results

(Figure 4), could contribute ,2800 Å2 of extra buried surface in

the whole enzyme tetramer, and should, thus, substantially

contribute to tetramer stability. The plasticity of the ‘‘stands’’ at

the dimeric junctions, together with the rigidity of the pairing of

the DUF619 domains, should restrain the mobility required by the

opening/closing of the active centers in the AAK domains.

Final remarks
The present work raises questions as to why yNAGK has an

inactive GNAT domain and a distinctive tetrameric architecture.

Identification of a bifunctional NAGS/NAGK enzyme in X.

campestris, with apparently the same domain organization as

yNAGK and a high NAGS activity [14], suggests that the yeast

NAGK/NAGS metabolon could have evolved from an ancestral

bifunctional NAGS/NAGK enzyme. Loss of NAGS activity in

one component and of NAGK activity in the other may have

arisen when a cyclic arginine biosynthetic route was introduced,

downgrading the role of the NAGS activity to a merely

replenishing (anaplerotic) one (Figure 1). In this context, it appears

advantageous to separately regulate NAGS and NAGK levels by

having independent genes for these two enzymes rather than

having a single bifunctional NAGK/NAGS. To prevent deacyla-

tion of NAG by deacylases, which are abundant in animals [24]

and perhaps also in ascomycetes, the yNAGK/yNAGS metabolon

could serve to channel NAG from its production site in the GNAT

domains of yNAGS to the phosphorylation sites in the AAK

domains of yNAGK. The flat tetrameric nature of yNAGK, with

the exposure of two active centers on each face of the tetramer,

appears well suited for the association with yNAGS dimers,

assuming that the structure of yNAGS is similar to the one

determined here for yNAGK (Figure 9).

The present results may also be relevant for human NAGS,

whose inborn errors cause clinical hyperammonemia [25]. The

closeness of human and yeast NAGSs [26,27] suggests that both

share the domain composition of yNAGK [14], including the

presence of the C-terminal DUF619 domain. Therefore, the view

[25] that the hexameric structure of NgNAGS [20] may be a

model for human NAGS should be re-evaluated. In fact, the few

data available on mammalian NAGS suggest that this enzyme is a

lower oligomer than hexamers [28,29]. Nonetheless, the fact that

yNAGS, with no independent existence of yNAGK, is the closest

non animal homolog of human NAGS [14,25,26] renders it

conceivable that human NAGS might be associated with other

proteins. This may fit the low stability of the mammalian enzyme

[29]. In this context, and given the difficulties to obtain crystalline

mammalian NAGS, determination of the structure of the yeast

NAGK/NAGS complex might provide insights into the structure

of human NAGS. Therefore, efforts are being invested in our

laboratory to ascertain the structure of the yeast NAGK/NAGS

complex.

Materials and Methods

Production of yeast NAGK and its isolated AAK and
DUF619 domains

To produce yNAGK which lacks the mitochondrial targeting

sequence and is preceded by a MGH6 His-tag, the DNA sequence

encoding enzyme residues 58–513 (see Table S1) was PCR-

amplified from pYB3 [15] and inserted into the NcoI-HindIII sites

of pTrc99a (from Pharmacia; now discontinued). yNAGK was

truncated after residue 356 by replacing in the yNAGK-encoding

plasmid codon 357 by the TGA stop codon, using the site-directed

mutagenesis QuickChange kit (Stratagene), and primers 3 and 4
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(Table S1). The DUF619 domain-encoding sequence was PCR-

amplified (Table S1) from Saccharomyces cerevisiae (strain FY250)

genomic DNA (a gift of P. Sanz, IBV-Valencia) and inserted at the

NheI/BamHI sites of pET28a. This construct fuses the His-tag

including a thrombin cleavage site,

MGSSH6SSGLVPRGSHMAS, to residue 353 of yNAGK, which

is the first of the DUF619 domain. All the constructs were verified

by automated DNA sequencing.

The complete enzyme and its AAK domain were expressed in

E. coli BL21 (DE3) grown to OD600 = 0.5–0.6 (37uC, aeration) in

0.5–1 L LB medium, supplemented with 0.1 mg/ml ampicillin

and then induced for 20 hours at 30uC with 1 mM isopropyl-b-D-

1-thiogalactopyranoside (IPTG). The Se-Met-substituted AAK

domain was produced in the same way by replacing LB with

SelenoMet Medium (Molecular Dimensions, Newmarket, UK),

adding to this medium 15 min before IPTG induction an amino

acid mixture containing 60 mg/L L-Se-methionine, 100 mg/L of

each, L-lysine-HCl, L-phenylalanine and L-threonine, and

50 mg/L of each, L-isoleucine, L-valine and L-leucine [30]. The

antibiotic used for the DUF619 domain expression was kanamycin

(0.06 mg/ml), and the culture was placed for 30 min on ice before

induction with 0.02 mM IPTG, continuing the culture for

20 hours at 15uC.

Subsequent steps were performed at 4uC. After centrifugation,

cell pellets were sonicated in 1/25 of the original volume of a

solution containing 20 mM Tris-HCl pH 7.5, 10 mM MgCl2,

1 mM dithiothreitol and either 0.25 M (complete yNAGK) or

0.5 M (AAK or DUF619 domains) NaCl, and the supernatant of

the centrifuged sonicate was applied to a 1-ml HisTrap column

fitted in an ÄKTA FPLC (from GE Healthcare). This column had

been equilibrated with the sonication buffer enriched with 20 mM

imidazole, and was washed successively with 5 ml of the same

solution and then with 15 ml of 70 mM imidazole-containing

solution. The pure proteins, eluted by increasing the imidazole

Figure 5. The yNAGK subunit and NAG binding. (A) Stereo view of the superimposition of backbone representation of EcNAGK (in green) with
bound AMPPNP and NAG (ligands shown in green sticks), and of one truncated yNAGK subunit (2.2 Å resolution, black, with spheres marking every
twentieth residue) bound to NAG (in yellow). (B) The NAG site. Detailed view of the substrate site of the NAG-containing truncated yNAGK crystal
(2.2 Å resolution). The protein and ligands are shown in sticks representation, with the C atoms colored green in the protein and yellow in the
ligands. The Fo-Fc electron density map calculated omitting NAG from the model (omit map) is superimposed as a red grid and contoured at 3.0 s.
Cyan spheres are water molecules. Residues involved in NAG binding and the b3–b4 hairpin are labeled. (C) Backbone representation of the
superimposition of the NAG site in two NAG-free (blue and violet) and one NAG-bound (black) subunits of truncated yNAGK, and in EcNAGK, either
NAG-free (red) or bound to NAG and AMPPNP-bound (green) (E. coli structures taken from PDB codes 2WXB [21] and 1OHA [53], respectively), to
illustrate NAG site lid mobility. Ligands (in sticks) have green-colored C atoms and yellow-colored ones for EcNAGK and yNAGK, respectively.
Secondary structure elements are labeled.
doi:10.1371/journal.pone.0034734.g005
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concentration to 0.5 M, were concentrated to ,10 mg/ml and

freed from imidazole by centrifugal ultrafiltration.

The His-tag was removed from the DUF619 domain by

overnight digestion at 4uC with agarose-inmobilized thrombin

(Thrombin Clean Cleave Kit, Sigma, USA) in 50 mM Tris-HCl

pH 8.0, 10 mM MgCl2, 10 mM CaCl2 and 0.25 M NaCl,

collecting the tag-free protein by passing through a His-trap Ni-

affinity column according to the kit instructions. Following

confirmation of tag removal by SDS-PAGE (15% gels,

Figure 2A), the protein was concentrated to ,10 mg/ml and

placed in sonication buffer for storage, as above.

For crystallization purposes, the surface-exposed lysine residues

of the complete enzyme were reductively dimethylated [31] using

a commercial kit (JBS Methylation Kit, from Jena Bioscience

GmbH, Germany), following the manufacturer’s instructions.

Then the enzyme was concentrated to ,10 mg/ml and was

placed in 20 mM Hepes, pH 7.5, 1 mM b-mercaptoethanol and

0.5 M NaCl.

Enzyme activity assays
NAGK activity was determined colorimetrically in the presence

of 0.4 M hydroxylamine [32] at 37uC. When NAG was varied,

ATP and MgCl2 were fixed at 20 mM and 30 mM, respectively.

When ATP was varied, the NAG concentration was fixed at

80 mM and that of MgCl2 was kept in 10 mM excess over that of

ATP.

NAGS activity was determined at 37uC as glutamate-triggered

CoA release from AcCoA by monitoring colorimetrically SH

group production with Ellman’s reagent [18,19]. The assay

mixture contained 0.1 M Na L-glutamate, 4 mM AcCoA and

either 0.2 M triethanolamine-HCl, pH 7.0 or 0.2 M Tris-HCl,

pH 9.0. Whenever indicated, the assay mixture was supplemented

Figure 6. Arginine binding and associated conformational changes in the yNAGK subunit. (A) Arginine binding to truncated yNAGK
(2.1 Å resolution). The protein and ligands are shown in sticks representation, with the C atoms in yellow in the protein, and in green in the ligand.
The Fo-Fc omit electron density map for arginine is superimposed as a red grid, contoured at 3.0 s. This map was prepared by omitting arginine from
the model in the refinement and calculation of the map. Cyan spheres are water molecules. Residues involved in arginine binding and the second N
helix (aN2) are labeled. (B) Superimposition of the arginine-containing site (purple) with the arginine-free site (cyan) of another subunit to show
second N-helix mobility. The C-lobe central b sheet, helix H, both N-terminal helices and the side chain of Y87 are labeled. The change in the position
of the Y87 side-chain reflects the rotation of the second N-helix around its central axis (see the text). (C) Stereo view of the superimposition of the
arginine-containing subunit (blue) and of an arginine-free subunit (red) of the same tetramer (subunits C and A, respectively), revealing the 16u-
rotation of the C-lobe around the drawn axis (green broken line) and the indicated hinge residues. Bound NAG and arginine are shown in sticks.
Domain orientation is the same as in Figure 3 of [21].
doi:10.1371/journal.pone.0034734.g006
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with 20 mM ATP and 30 mM MgCl2. The reaction was initiated

with the enzyme and was stopped after 30 min by a 40-fold

dilution with 0.2 mM Ellman’s reagent in 0.1 M Na phosphate,

pH 7.0, determining absorbance at 412 nm.

Crystallization and data collection
Table 1 summarizes the data on the different crystals. The

sparse matrix vapor diffusion sampling approach [33] was

followed in crystallization screens at both 21uC and 4uC, in

0.8 ml sitting drops (1/1 protein solution/reservoir fluid), either

with or without additions of 24 mM NAG, 20 mM MgCl2, 6 mM

of the inert ATP analog adenosine 59-(b,c-imido) triphosphate

(AMPPNP) or 2 mM L-arginine-hydrochloride, added individu-

ally or as mixtures. The DUF619 domain, either with or without

His-tag, yielded no crystals. The best crystals of the truncated

enzyme (native or Se-Met substituted) had approximately 0.4 mm

largest dimension and grew in 24-well plates at 4uC in 2-m1

hanging drops composed of 1/1 24 mM NAG-containing protein

solution/crystallization solution (50 mM Na acetate, pH 4.6,

0.2 M Na-malonate and 2% w/v PEG-8K from Hampton

Research, USA). The crystals, harvested in crystallization solution

supplemented with 25% glycerol, and, in the case of the native

NAG-containing crystals, with 2 mM HgCl2, (added aiming

initially at phasing by anomalous diffraction) were frozen in liquid

nitrogen and used for diffraction data collection at 100 K (Oxford

Cryosystems) at the ESRF synchrotron (Grenoble). One crystal

was soaked with arginine by adding 0.5 ml of 0.2 M L-arginine-

hydrochloride to the drop 24 hours before harvesting. Another

crystal was freed from NAG by successive three 2-hour passages

through 5 ml drops of NAG-free crystallization solution prior to

harvesting in the cryobuffer and freezing.

Three crystals of the complete enzyme were used for data

collection. Crystal NAGK1 belonged to one type and diffracted X-

rays at 3.1 Å-resolution. It grew at 4uC in sitting drops composed

of 0.4 ml of reductively methylated protein solution without ligands

and 0.4 ml crystallization solution containing 0.2 M NH4I and

20% PEG3350 (Hampton Research, USA). Crystals NAGK2 and

NAGK3 (3.8 and 3.25 Å- resolution, respectively) were of the same

Figure 7. Structure of complete mature yNAGK. Cartoon representation of (A) front and (B) side views of the complete enzyme. The side view
corresponds, in relation to the front view, to a 90u-rotation along the Q axis. In both views, one dimer is red and magenta and the other blue and
cyan, and the AAK and DUF619 domains of each subunit are in different hues of the same color. In the front view, the two exposed active centers on
one side of the molecule are labeled and marked with arrows, and curved broken lines separate the DUF619 domain dimers from the AAK domain
tetramer. The 2-fold axes (labeled as P, Q and R) are shown in both figures.
doi:10.1371/journal.pone.0034734.g007
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Figure 8. The DUF619 domain. (A) and (B) Stereo views to show movements of the AAK domain C-lobe and GNAT domain. In (A), the N-lobes of
an open (red) and a closed (blue) subunit of the complete enzyme are superimposed, whereas in (B), the AAK-domain N-lobe is not shown and the C-
lobes of this domain of both subunits are superimposed, illustrating the 55u-rotation associated with subunit opening (red), with the axis of the
rotation shown as a green broken line. (C) The DUF619 domain dimer. Each subunit is in a different color (a helices red or magenta, b sheets yellow or
green, with loops in blue in both subunits). Secondary structure elements are labeled in the subunit on the right. The side-chains of W431, T436 and
N460 (in cyan or blue), which block the AcCoA channel, are shown in this subunit and are labeled. (D) Superimposition of the backbone of the GNAT
domains of yNAGK (black, with every twentieth residue marked with a sphere and labeled) and of NgNAGS (green) (PDB code 3D2M [22]). The CoA
and glutamate, found in the latter structure, are illustrated in sticks representation with C atoms in yellow. (E) and (F) Comparison of the AcCoA site of
NgNAGS (E) in surface representation, with bound CoA in spheres, and the corresponding region of yNAGK (F), in the same orientation, showing the
side chains of W431, T436 and N460 in spheres representation to illustrate the blocking of the AcCoA channel by these side chains.
doi:10.1371/journal.pone.0034734.g008
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type, and grew in sitting drops at 4uC in the presence of 40 mM

NAG using a crystallization solution containing 0.2 M ammonium

citrate pH 7.0 and 12% PEG3350 (and 1.5% PEG6000 as an

additive for crystal 3). Crystallization solutions with PEG3350

concentration raised to 40% were used as a cryobuffer for liquid

nitrogen freezing.

The data for the crystals of the truncated enzyme were

processed with MOSFLM [34] or XDS [35], SCALA [36], and

TRUNCATE [37] (Table 1). The orthorhombic cell (space group

P212121) contained four subunits in the asymmetric unit and 49%

solvent content (Table 1). Crystal NAGK1 of the complete enzyme

had a monoclinic cell (space group C2) with two subunits in the

asymmetric unit, whereas crystals 2 and 3 had triclinic cells (space

group P1), with eight subunits in the asymmetric unit.

Structure determination and refinement
Table 2 summarizes refinement and model data statistics. The

initial single-wavelength (0.979 Å) anomalous diffraction (SAD)

phases for the Se atoms of the Se-Met AAK crystal diffracting to

3.4 Å resolution, obtained with ShelxC/D/E [38], were improved

by refining the Se atom positions with the SAD phasing mode of

PHASER [39], implementing density modification, histogram

matching, solvent flattening and density averaging with the

program DM [40]. A partial model without side chains was built

and used successfully as a search model to obtain initial phases by

molecular replacement with MOLREP [41] in a 2.2 Å dataset

from the NAG-containing crystal. Rigid body refinement was

performed stepwise with increasing resolution, followed by

restrained refinement using REFMAC [42], alternating with

interactive graphic modeling using COOT [43]. The model

encompassed all the residues of each subunit, except for the His-

tag and four-five N-terminal and C-terminal residues, and it also

included one NAG molecule and two Hg atoms per chain sitting

next to the S atoms of two Cys residues. B-factors and positional

non crystallographic symmetry restraints were used and gradually

released as refinement progressed. All the diffraction data were

used throughout the refinement process, except for the 5%

randomly selected data used for calculating Rfree. TLS (transla-

tion/libration/screw) [44] was applied in the final refinement steps

with the TLSMD server for the definition of the TLS groups [45].

The structure obtained in this way to 2.2 Å resolution was used as

a search model for molecular replacement with MOLREP to

obtain phases for the crystals of the truncated enzyme without

ligands or soaked with arginine. Refinement for these crystals was

carried out as described for the NAG-containing structure

(Table 2).

For the complete enzyme, initial phases were obtained for the

3.1 Å dataset collected from the NAGK1 crystal by molecular

replacement with PHASER using one subunit of the truncated

enzyme as search model to yield a dimer in the asymmetric unit.

As refinement progressed, electron density became clearer for the

DUF619 domain of the two subunits, and a partial model (about

75% of the domain main-chain) was built. This incomplete

NAGK1 model was then used to obtain an initial solution for the

NAGK2 crystal by molecular replacement with MOLREP,

consisting of 4 dimers forming two tetramers in the asymmetric

unit. Further phase improvement was achieved by density

averaging between the NAGK crystals 1 and 2, using DMMULTI

of the CCP4 suite [46] in conjunction with non crystallographic

symmetry averaging, solvent flattening and histogram matching

for each crystal. The complete NAGK model was then built for

each subunit (except for the 9 initial and the 11 terminal residues)

in the two crystals. Refinement could then be carried out until the

appropriate quality indicators were obtained for the NAGK2

structure (Table 2). However, refinement was not completed for

NAGK1, which is likely to be due to the presence of some unsolved

twinning which was apparent during data collection. Refinement

for NAGK2 was done by always maintaining tight non

crystallographic symmetry restraints and 6 TLS groups per

subunit in the final steps. Despite the low resolution (3.8 Å), the

quality of the maps allowed the recognition of most of the side

chains in the DUF619 domain. The third dataset, collected to

3.25 Å resolution (Table 2) solved by molecular replacement

(using the complete subunit of the NAGK2 crystal as the model),

yielded eight subunits in the asymmetric unit forming two

tetramers. The model, including two NAG molecules, was built

and refined to 3.25 Å resolution, as for the NAGK2 crystal, except

for the N-terminal helix of four subunits (two per tetramer at the

interdimeric junction), which presented poor density.

The final models for the crystals of the truncated enzyme

without NAG, with NAG, and with arginine, and of the complete

NAGK2 and NAGK3 crystals, yielded good Rfactor/Rfree values

and showed good stereochemistry (monitored with PROCHECK)

[47]. Superposition of the structures and the r.m.s.d. calculations

were carried out with LSQKAB program [48] using default

parameters. The buried surface areas and contacts between the

subunits were calculated with a probe of 1.4 Å radius using PISA

[49]. Subdomain movements were analyzed with DynDom [50].

Figures of protein structures were drawn using PyMOL (http://

www.pymol.org).

Other methods
Thermal stability was assessed with the thermofluor approach

[17] in 96-well sealed plates using a real-time PCR system

Figure 9. Model of the yeast NAGK/NAGS complex. Crude model
of the proposed architecture of the complex of yNAGK and yNAGS.
Given the similarity of yNAGK and yNAGS, the latter has been
represented as one of the yNAGK dimers observed in the present
structures, superimposing the CoA and glutamate observed in the
structure of the corresponding domain of NgNAGS in the GNAT domain
to illustrate the nearness of the NAG site to the active centers that are
exposed on one side of the yNAGK tetramer (labeled). Since another
dimer of the yNAGS dimer would sit on the other flat face of the yNAGK
tetramer, the complex stoichiometry for complete occupation of yNAGK
by yNAGS would be 4:4 in terms of number of subunits of both
proteins. No attempt has been made to model the interactions
between the GNAT domains of both proteins.
doi:10.1371/journal.pone.0034734.g009
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(Applied Biosystems model 7500 Fast), monitoring Sypro Orange

(Invitrogen, USA) fluorescence with gradual temperature increase

(1uC/min). The 20-ml samples contained 0.2 mg/ml protein in

0.1 M Hepes pH 7.5, 0.15 M NaCl, Sypro Orange (1:1000

dilution), and 50 mM L-arginine whenever indicated. The

unfolded protein fraction was estimated as the ratio between

fluorescence increase at a given temperature and the maximal

increase observed (complete unfolding). T0.5 is the temperature

giving a fluorescence increase corresponding to 50% of the

maximum increase.

Analytical size exclusion chromatography through Superdex

200 (10/300 column from GE Healthcare) was carried out at

24uC, as reported elsewhere [3], in 50 mM Hepes pH 7.5/0.25 M

NaCl. Protein concentration was determined according to

Bradford [51] using bovine serum albumin as a standard.

Accession numbers
The atomic coordinates and structure factors of yNAGK

lacking the DUF619 domain, complexed with NAG (PDB ID:

3ZZF), NAG and arginine (PDB ID: 3ZZH), or ligand-free (PDB

ID: 3ZZG), as well as those of the complete enzyme (PDB ID:

3ZZI and 4AB7), have been deposited in the Protein Data Bank

(www.pdb.org).

Supporting Information

Figure S1 Comparison of the dimers of the AAK domain
of yNAGK (A) and EcNAGK (B). In both dimers, the subunit

on the left (lighter) is fixed in the same orientation, to highlight the

different relative orientation of the other subunit in both NAGKs,

in relation to the fixed subunit. The N-terminal ‘‘stand’’ of

yNAGK has been omitted for clarity.

(TIF)

Figure S2 Stereo view of the interactions of one ‘‘stand’’
with its subunit body (both brown) and with the other
‘‘stand’’ (pink) across the interdimeric junction.
(TIF)

Figure S3 Experimental information for the DUF619
domain. (A) Stereo views of the 2Fo-Fc (blue grid) and Fo-Fc (red

grid) electron density maps of the complete DUF619 domain

(shown as Ca), contoured at 1.0 and 2.5 s, respectively. (B)

Detailed view of a region of the domain, with the model in sticks

representation (yellow, blue and red, carbon, nitrogen and oxygen

atoms, respectively), to illustrate that the map quality allows

identifying most amino acid side chains (labelled for some

residues).

(TIF)

Table S1 Oligonucleotides used in cloning and site-
directed mutagenesis.
(DOC)
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