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Abstract

Background: Dendritic spines are small membranous protrusions on the neuronal dendrites that receive synaptic input
from axon terminals. Despite their importance for integrating the enormous information flow in the brain, the molecular
mechanisms regulating spine morphogenesis are not well understood. NESH/Abi-3 is a member of the Abl interactor (Abi)
protein family, and its overexpression is known to reduce cell motility and tumor metastasis. NESH is prominently expressed
in the brain, but its function there remains unknown.

Methodology/Principal Findings: NESH was strongly expressed in the hippocampus and moderately expressed in the
cerebral cortex, cerebellum and striatum, where it co-localized with the postsynaptic proteins PSD95, SPIN90 and F-actin in
dendritic spines. Overexpression of NESH reduced numbers of mushroom-type spines and synapse density but increased
thin, filopodia-like spines and had no effect on spine density. siRNA knockdown of NESH also reduced mushroom spine
numbers and inhibited synapse formation but it increased spine density. The N-terminal region of NESH co-sedimented with
filamentous actin (F-actin), which is an essential component of dendritic spines, suggesting this interaction is important for
the maturation of dendritic spines.

Conclusions/Significance: NESH is a novel F-actin binding protein that likely plays important roles in the regulation of
dendritic spine morphogenesis and synapse formation.
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Introduction

Most excitatory synapses in brain are formed at tiny dendritic

protrusions called dendritic spines. Dendritic spines receive input

from presynaptic terminals and regulate synapse strength. They

are usually classified into four categories based on their

morphology: thin, filopodia-like protrusions (thin spines), short

spines without a spine neck (stubby spines), spines with a

mushroom-like head (mushroom spines) and spines with dual

heads (branched spines) [1]. The characteristic mature spine has a

mushroom-like shape with a thin neck and a bulbous head, and

makes contact with a presynaptic terminal. Interestingly, the

structures of spines are not static; they change continuously,

reflecting the plasticity of synapses. Much evidence indicates that

changes in spine morphology couple with synaptic function [2,3].

It is believed that the brain stores information in part by

modulating the strength of existing synapses, but also by enlarging

or shrinking dendritic spines, which leads to the formation or

elimination of synapses. These functional and structural changes in

dendritic spines are thought to be the basis of learning and

memory in the brain [4,5]. Consistent with that idea, changes in

spine morphology and density are seen in several mental disorders

where the patients show deficits in social interaction, cognition and

memory function [6,7,8]. This suggests that dendritic spines may

serve as a common target for many neurological disorders,

especially those involving defects in information processing.

The main functions of dendritic spines are to receive and

compartmentalize local synaptic signaling, and to restrict the

diffusion of postsynaptic molecules [9,10]. The actin cytoskeleton

is essential to numerous cellular processes such as membrane

dynamics and cell motility. It is therefore not surprising that the

formation and dynamics of dendritic spines are mediated by the

actin cytoskeleton. Over the past decade, numerous studies have

shown that the actin cytoskeleton plays a key role in regulating the

formation, elimination, dynamics, stability, size and shape of

dendritic spines [11,12,13]. Consequently, alterations in actin

dynamics lead to changes in dendritic spine morphology that are

associated with changes in synaptic strength [14]. Moreover, the

actin cytoskeleton not only affects the overall structure of spines, it

also plays a pivotal role in regulating synaptic activity by

organizing the postsynaptic density (PSD) and anchoring postsyn-

aptic receptors for transmission of synaptic input [15,16]. It is thus

not entirely surprising that various memory disorders are caused

by defects in the regulation of the actin cytoskeleton [17].
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NESH (Abi-3) is the third member of the Abi (Abl-interactor)

family of proteins. Abi-1 and Abi-2 (Abi family members 1 and 2)

were initially identified as binding partners of c-Abl tyrosine kinase

whose activation results in cell growth, cell transformation and

cytoskeletal reorganization [18,19]. NESH was originally identified

as a new human gene product that possessed a Src homology 3

(SH3) domain, and was later included in the Abi family because of

its sequence similarity to Abi-1 and Abi-2 [20]. In fact, the domain

structure of NESH is nearly the same as those of Abi-1 and Abi-2. It

has been suggested that in addition to acting as tumor suppressors,

Abi-1 and Abi-2 also act as regulators of the actin cytoskeleton

[21,22]. Similarly, overexpression of NESH in a metastatic cell line

suppressed cell motility and metastatic potential in vivo [23]. NESH

was also found to be a component of the WAVE complex, an actin

regulator involved in membrane ruffling and lamellipodia formation

[24], and its overexpression efficiently blocked PDGF-stimulated

membrane ruffling in mammalian cells [25]. Interestingly, Abi-1 is

involved in early neurogenesis and is essential for dendritic

morphogenesis and synapse formation [26,27]. In addition, Abi-2-

deficient mice exhibit aberrant dendritic spine morphogenesis and

deficits in learning and memory [28]. This implies that NESH may

also contribute to the regulation of actin cytoskeletal remodeling

and, in turn, regulate neuronal functionality through effects on

dendritic spine morphogenesis and synapse formation.

In the present study, we show that NESH is dominantly expressed

in the hippocampal region of the brain where it co-localizes with

postsynaptic proteins. Gain-of-function and loss-of-function studies

show that NESH is essential for maturation of dendritic spines and

synapse formation. NESH is able to interact with filamentous actin

(F-actin) through its N-terminal region and to modulate actin

cytoskeleton rearrangement, thereby participating in spine matura-

tion.

Results

Expression profile of NESH in brain and co-localization
with postsynaptic proteins

Expression of synaptic proteins is up-regulated during synapse

maturation and maintenance. Therefore, to assess the significance

of NESH during those processes, we performed immunoblot

analyses during the period of neuron development using whole

postnatal brains (from P7 to adult). We found that NESH

expression gradually increased during development and exhibited

a pattern similar to those seen with three other postsynaptic

proteins, SPIN90, Homer1c and PSD95 (Fig. 1A). The immuno-

blot analysis also showed that NESH was most abundant in the

hippocampus but was also moderately expressed in the cerebral

cortex, cerebellum and striatum; it was rarely seen in the other

brain regions (Fig. 1B). NESH was particularly enriched in crude

synaptosomal fraction (P2), as compared to the cytosolic fraction

(S2) (Fig. 1C). Immunofluorescent staining revealed NESH to be

widely distributed in a punctate pattern along dendrites, including

Figure 1. Expression profile of NESH in brain and cellular localization in hippocampal neurons. (A) During development, the expression
of NESH was examined by immunoblot analysis in postnatal whole brains (from P7 to adult). (B) Adult rat brains were dissected into subregions, and
the lysates were subjected to immunoblot analysis using anti-NESH antibody. SPIN90 and Homer1c were used as controls for PSD proteins; b-actin
served as a loading control. (C) Hippocampal neuron lysates were fractionated to crude synaptosomal (P2) and cytosolic fractions (S2), and the equal
amount of NESH in each fraction was examined by immunoblotting. (D) Cellular localization of NESH was examined in primary cultured hippocampal
neuron at 19 DIV. Mature hippocampal neurons were double-stained with antibodies against NESH, SPIN90 or PSD95 and with Alexa Fluor 594-
conjugated phalloidin. Boxed regions were magnified for better imaging of co-localization. Arrows indicate co-localized regions of the images. The
scale bar represents 20 mm.
doi:10.1371/journal.pone.0034677.g001
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both the shafts and spines, where the NESH puncta co-localized

with SPIN90. NESH also co-localized with PSD95, a PSD marker,

and with F-actin in dendritic spines (Fig. 1D). Taken together,

these data suggest that NESH associates with PSD proteins in the

dendritic spines of hippocampal neurons.

Overexpression of NESH inhibits maturation of dendritic
spines

To test whether NESH plays a role in spine morphogenesis,

cultured hippocampal neurons were transfected with myc-NESH

at 10–12 DIV and then fixed at 16–18 DIV, after which spine

morphology was analyzed quantitatively. Co-transfection with

GFP enabled visualization of the neuronal morphology (Fig. 2A)

and classification of the dendritic spines into the four established

types (i.e., thin, stubby spines, branched and mushroom). In

neurons overexpressing NESH, the total spine density did not

differ from control (Fig. 2B); however, maturation of the spines

appeared to be impaired; that is, numbers of mushroom spines

were markedly reduced in NESH-overexpressing neurons, while

numbers of thin spines were clearly increased (Fig. 2C). Consistent

with these morphological changes, the head widths of spines were

significantly reduced and spine lengths were increased in neurons

overexpressing NESH (Fig. 2D, E). These observations suggest

NESH contributes to the regulation of dendritic spine maturation.

NESH knockdown causes abnormal morphological
changes in dendritic spines

To further investigate the role of NESH in dendritic spine

maturation, siRNAs targeting NESH were designed and con-

structed. Among the designed siRNAs, the si591 sequence

successfully knocked down NESH expression in HEK 293T cells

(Fig. 3A). To verify this result in neuronal cells, hippocampal

neurons were transfected with siRNAs at 10–12 DIV, and NESH

expression was examined at 16–18 DIV. Consistent with the

observations in HEK 293T cells, NESH expression in hippocam-

pal neurons was efficiently down-regulated by transfection of si591

(Fig. 3B). The knockdown of NESH by si591 was also confirmed

with immunofluorescence assay (Fig. 3C). GFP was co-transfected

with siRNAs to visualize the outline of dendritic spines, and

scrambled siRNA served as a control (Fig. 3C, D). Morphological

changes in the spines on the knockdown cells were generally

similar to those seen in cells overexpressing NESH. Knockdown of

NESH reduced numbers of mushroom spines while increasing

numbers of thin spines, thereby reducing overall spine head width

and increasing spine length (Fig. 3F–H). In contrast to NESH-

overexpressing cells, however, total spine density was increased in

NESH knockdown cells (Fig. 3E).

Overexpression of NESH prevents synapse formation in
hippocampal neurons

The morphology of dendritic spines strongly correlates with

postsynaptic organization and synapse formation. Because imma-

ture thin, filopodia-like spines are dramatically increased in cells

overexpressing NESH, we tested whether the NESH-induced

morphological changes in dendritic spines affected the localization

of postsynaptic proteins or synaptic contacts with presynapses. In

hippocampal neurons transfected with myc-NESH, immunofluo-

rescence analysis using antibodies against VAMP2, a presynaptic

marker, and GluR1, a subunit of the postsynaptic AMPA receptor,

revealed that NESH overexpression led to a considerable

reduction in synaptic contacts with the presynapse, indicating

down-regulation of synapse formation. In addition, numbers of

GluR1 clusters were reduced on the postsynaptic side (Fig. 4A–C).

Interestingly, phalloidin staining showed that the F-actin contents

of spines are significantly reduced in NESH-overexpressing

neurons, as compared to control (Fig. 4D). Considering that the

actin cytoskeleton is a crucial component of the postsynapse and

essential for the formation and maintenance of dendritic spines,

the change in the F-actin content of spines likely reflects an

important function of NESH in the postsynaptic structure.

NESH knockdown reduces synapse formation and alters
the postsynaptic apparatus

We also investigated the effect of NESH knockdown on synapse

formation, as reflected by the localization of GluR1 and F-actin

within spines vs. shafts (Fig. 5A). Similar to NESH overexpression,

NESH knockdown led to reduced contacts between dendritic

spines and the presynapse, as revealed by VAMP2 staining

(Fig. 5B). Moreover, GluR1 puncta on dendritic spines and the F-

actin content of spines were markedly reduced in NESH

knockdown neurons (Fig. 5C–D). Thus both gain-of-function

and loss-of-function of NESH had nearly the same negative effects

on dendritic spine maturation and synapse formation. In contrast

to overexpression, NESH knockdown increased synaptic density.

Figure 2. Overexpression of NESH alters dendritic spine
morphology. Hippocampal neurons transfected with myc-NESH at
10–12 DIV were fixed at 16–18 DIV, and spine morphology was
examined. GFP was co-transfected to visualize dendritic spines. (A) The
images represent the control (empty vector) and NESH-transfected
neurons. (B) Spine numbers per mm (spine density) were determined in
neurons overexpressing NESH and control neurons (n = 20). (C)
Dendritic spines were classified to four groups (mushroom, thin, stubby
and branched) based on shape, and spine density (per mm) was
determined (n = 20). (D) Analysis of spine head width in NESH-
overexpressing and control neurons (n = 20). (E) Analysis of spine
length (n = 42 for control, n = 27 for NESH). The data were obtained
from three independent experiments. Data are presented as means 6
SEM. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0034677.g002
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Figure 3. NESH knockdown causes abnormal morphological changes in dendritic spines. (A) HEK 293T cells were co-transfected with
GFP-NESH and siRNAs and then immunoblotted with anti-GFP antibody after incubation for 48–72 h. (B) Cultured hippocampal neurons were
transfected with NESH siRNAs at 10–12 DIV, and NESH knockdown was evaluated by immunoblotting at 16–18 DIV. (C) Knockdown of NESH by si591
was confirmed with immunofluorescence assay in hippocampal neurons. GFP was co-transfected with siRNAs to visualize transfected neurons. White
arrows indicate untransfected neurons and arrow heads indicate transfected neurons. (D–H) Morphometric analyses were performed to examine the
effects of NESH knockdown in hippocampal neurons (n = 18 neurons for control; n = 19 neurons for NESH siRNA). Hippocampal neurons were
transfected with control (scrambled siRNA) or NESH siRNA (si591) at 10–12 DIV and fixed at 16–18 DIV. GFP was co-transfected to visualize dendritic
spines. The images were acquired using an Olympus IX81 fluorescence microscope. (D) Fluorescence images of neurons transfected with NESH siRNA
or scrambled siRNA (control). (E) Spine density in NESH knockdown and control neurons. (F) Densities of the four types of dendritic spines
(mushroom, thin, stubby or branched). (G) Spine head width. (H) Spine length. Data are presented as means 6 SEM. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0034677.g003
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This suggests that appropriately balanced NESH expression is

critical for the formation of competent dendritic spines as part of

synapses.

NESH directly interacts with filamentous actin via its N-
terminal region, but not with monomeric actin

Actin cytoskeleton is a major constituent of the PSD, and

various F-actin binding proteins, including actin-binding protein 1

(Abp1) and Drebrin A, participate in dendritic spine morphogen-

esis and synaptic function [29,30]. The above results indicating

that both overexpression and knockdown of NESH alter the F-

actin content of dendritic spines prompted us to investigate the

interaction between NESH and actin. GST pull-down assays with

GST-fused NESH and purified monomeric G-actin revealed no

interaction between NESH and monomeric G-actin (Fig. 6B). As a

positive control, GST-fused SPIN90-C-term showed strong

interaction with monomeric G-actin [31]. On the other hand,

when NESH was incubated with F-actin in co-sedimentation

assays, NESH was found in the pellet, indicating an interaction

between it and F-actin (Fig. 6C). Neither GST proteins nor NESH

alone was found in pellet. Because there is no conventional F-actin

binding domain in NESH, for further analysis, NESH was divided

into two halves: N-term (N-terminal half, amino acids 1–229) and

C-term (C-terminal half, amino acids 221–367) (Fig. 6A). Co-

sedimentation using these NESH fragments revealed that F-actin

strongly co-sediments with NESH N-term, but not with NESH C-

term (Fig. 6D), which means that it is the N-terminal region of

NESH that mediates the interaction with F-actin.

Overexpression of the NESH N-terminal region inhibits
spine maturation and synapse formation

To test whether NESH binding to F-actin affects spine

morphology and synaptic contacts, hippocampal neurons were

transfected with NESH N-term or C-term (Fig. 7A). The resultant

overexpression of NESH N-term or C-term had no effect on total

spine density (Fig. 7B); however, the overexpression of NESH N-

term severely altered spine morphology (Fig. 7C). The numbers of

mushroom spines were significantly reduced in neurons overex-

pressing NESH N-term, and there was a concomitant increase in

the numbers of thin spines. Moreover, spine head width was

Figure 4. Overexpression of NESH prevents synapse formation in hippocampal neurons. (A) Cultured hippocampal neurons were co-
transfected with GFP and myc-NESH at 10–12 DIV and fixed at 16–18 DIV. Empty vector was used as a control, and GFP was used to visualize dendritic
spines. The fixed neurons were stained with anti-VAMP2 (presynaptic marker) antibody, anti-GluR1 (subunit of AMPA receptor) antibody or Alexa
Fluor 594-conjugated phalloidin. (B) Synaptic densities were analyzed by counting the dendritic spines contacting presynapses marked by VAMP2
staining. (C) GluR1 clusters on dendritic spines were measured in neurons overexpressing NESH and compared with control. (D) F-actin fluorescence
intensity ratios (spine vs. shaft). Data were obtained from three independent experiments; n = 20 each for control and NESH-overexpressing neurons.
Data are presented as means 6 SEM. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0034677.g004
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reduced, while spine length was increased in the NESH N-term-

overexpressing neurons (Fig. 7D, E). By contrast, overexpression of

NESH C-term had no effect on spine morphology.

Immunofluorescence analysis demonstrated that the altered

spine morphology seen after overexpression of NESH N-term

corresponds to synapse formation, localization of GluR1 and

accumulation of F-actin (Fig. 7F–I). Synaptic density, as measured

by counting VAMP2 puncta in pre- and postsynaptic contacts, was

significantly reduced in neurons overexpressing NESH N-term

(Fig. 7F, G). Likewise, the number of postsynaptic GluR1 clusters

and the accumulation of F-actin in dendritic spines vs. the shaft

were substantially reduced in neurons overexpressing NESH N-

term (Fig. 7F, H–I). Again, overexpression of NESH C-term,

which does not interact with F-actin, had no effect on any of the

synaptic structures involving synaptic density, GluR1 clustering or

the F-actin content of dendritic spines (Fig. 7F–I). These data

therefore suggest that the F-actin binding capacity of NESH is

essential for regulation of spine morphogenesis and synapse

formation.

NESH is involved in rearrangement of the actin
cytoskeleton

In non-neuronal cells, lamellipodia are F-actin-rich structures

that are important for cellular processes such as cell motility. The

lamellipodium is a very dynamic structure that shows a high

degree of actin turnover due to continuous actin treadmilling. This

led us examine lamellipodium formation as a means of

investigating whether NESH regulates actin rearrangement. Cos-

7 cells were transfected with GFP (control) or GFP-NESH and

then stained with phalloidin to observe the F-actin-rich lamelli-

podia (Fig. 8A). The NESH transfectants showed a 60–70%

reduction in lamellipodia formation, as compared with GFP-

transfected or untransfected cells (Fig. 8A, B). We then eliminated

F-actin by treating the cells with latrunculin A, after which we

monitored the time course of the recovery of F-actin in

lamellipodia after washout of the latrunculin A. As expected, in

GFP-transfected or untransfected cells, F-actin nearly completely

disappeared from lamellipodia with latrunculin A treatment and

then gradually recovered over a period of 20 min after removing

Figure 5. NESH knockdown reduces synapse formation and affects the postsynaptic apparatus. (A) Hippocampal neurons were
transfected with the control (scrambled siRNA) or NESH siRNA at 10–12 DIV and stained with anti-VAMP2 antibody, anti-GluR1 antibody or Alexa
Fluor 594-conjugated phalloidin at 16–18 DIV. GFP was co-transfected with siRNAs to visualize dendritic spines. (B) Synapse formation per mm was
analyzed in NESH knockdown neurons and compared with control (n = 15 for control; n = 19 for NESH siRNA). (C) Numbers of GluR1 cluster per mm on
spines (n = 17 for control; n = 15 for NESH siRNA). (D) F-actin fluorescence intensity ratios (spine vs. shaft; n = 15 for control and NESH siRNA). Data are
presented as means 6 SEM. *p,0.05, **p,0.01.
doi:10.1371/journal.pone.0034677.g005
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the latrunculin A. In NESH-overexpressing cells, however,

recovery was incomplete, even after 60 min. These data suggest

that NESH participates in actin cytoskeleton rearrangement and

possibly the regulation of actin turnover.

Discussion

During neuronal development, thin, motile dendritic filopodia

can transform into more stable mushroom spines through synaptic

contact with a presynapse. Once a dendritic filopodium is formed

and synaptic contact with an axon is made, the spine structure is

stabilized, and it matures through recruitment of pre- and

postsynaptic components [32,33]. Actin dynamics modulate the

formation and maturation of dendritic spines during development.

The fundamental role of actin in maturating spines is to stabilize

postsynaptic proteins and regulate the spine head structure in

response to postsynaptic signals [34,35,36]. Proteome analysis of

the PSD fraction has revealed a large number of actin-binding

proteins, including cortactin, Drebrin A and neurabin I [37].

Down-regulation of these proteins reduces the formation and

maturation of dendritic spines, highlighting their importance for

synaptic plasticity and memory formation [30,38,39]. Two other

actin-binding proteins reportedly involved in regulating dendritic

spine morphogenesis are Cofilin and Abp1 [29,40].

We have now identified NESH as a novel F-actin-binding

protein that appears to play a key role in dendritic spine

morphogenesis. The fact that NESH overexpression slowed

lamellipodia formation in Cos-7 cells by inhibiting the F-actin

formation, or possibly reducing actin turnover, suggests NESH is a

potential regulator of actin rearrangement, though further study

will be required to resolve the mechanism. These findings are

compatible with earlier results showing that ectopic expression of

NESH in tumor cells inhibited cell motility and metastasis, two

processes requiring a high rate of actin turnover [23]. Regulated

actin turnover is critical for most actin-based processes, including

cell migration, endocytosis and dendritic spine morphogenesis. We

therefore suggest that NESH may contribute to the regulation of

dendritic spine morphology by modulating actin dynamics.

In addition, both overexpression and knockdown of NESH

impaired the maturation of dendritic spines, as evidenced by a

reduction in mushroom-type spines and a concomitant increase in

thin, filopodia-like spines. The overexpression of the NESH N-

terminal half, which contains the F-actin binding region, had

similar effects, whereas the NESH C-terminal half had no effects.

This confirms that the ability of NESH to bind F-actin is critical

for spine morphology.

The F-actin binding proteins Abp1, Drebrin A and Cofilin are

all involved in dendritic spine morphogenesis, though the

mechanisms by which they affect the actin cytoskeleton differ

[29,30,40,41,42]. Abp1 links actin cytoskeleton with Shank and

also activates N-WASP, thereby promoting actin polymerization

[41,42]. Overexpression of Abp1 increases mushroom spine and

synapse density, and its knockdown has the opposite effect [29].

Drebrin A is known to stabilize F-actin filaments such that they

show resistance to latrunculin B, and overexpression of Drebrin A

increases spine head width, length and density [30]. Cofilin binds

Figure 6. NESH interacts directly with filamentous actin via its N-terminal region, but not with monomeric actin. (A) Schematic
diagram showing representations of full-length NESH (amino acids 1–367), N-term (N-terminal half, amino acids 1–229) and C-term (C-terminal half,
amino acid 221–367). (B) GST pull-down assays were performed to verify the interaction between NESH and monomer G-actin. GST-fused NESH
proteins were incubated with purified monomeric G-actin and then pulled down with glutathione Sepharose beads, after which the bound proteins
were detected with anti-actin antibody. GST-SPIN90-C-term served as a positive control. (C) F-actin co-sedimentation assays. Purified NESH proteins
were incubated with polymerized F-actin. After separating the supernatant (S) and pellet (P) by ultracentrifugation, co-sedimented proteins were
detected by Coomassie Brilliant Blue staining. (D) NESH N-term and C-term in F-actin co-sedimentation assays. Note that NESH N-term only interacts
with F-actin.
doi:10.1371/journal.pone.0034677.g006
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Figure 7. Overexpression of NESH N-term inhibits spine maturation and synapse formation. (A–I) Analysis of spine morphology and
synaptic structures in neurons overexpressing NESH N-term or C-term. Cultured hippocampal neurons were co-transfected with myc-NESH truncation
mutants (N-term or C-term) and GFP at 10–12 DIV and fixed at 16–18 DIV. GFP was used to visualize dendritic spines. (A) Images showing dendrites
from neurons overexpressing NESH N-term and C-term. (B–E) Spine morphology (n = 20 neurons for control; n = 18 for N-term; n = 14 for C-term). (B)
Spine density per mm. (C) Density per mm of the four established spine shapes (mushroom, thin, stubby and branched) (D–E) Measurement of spine

Regulation of Dendritic Spine Morphology by NESH
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to both monomeric G-actin and F-actin, causing depolymerization

at the minus end of filaments. Cofilin is also known to sever actin

filaments. In neurons, elevated Cofilin activity leads to reduced

spine size and immature spine morphology [40]. Cofilin

knockdown decreases actin filament turnover and leads to the

formation of abnormal filopodia-like protrusions and aberrantly

long spine necks [43]. The inhibition of F-actin recovery by NESH

in Cos-7 cells suggests NESH is involved in negatively regulating

actin polymerization. In addition, our finding that both overex-

pression and knockdown of NESH elicited the same phenotype, a

reduction in mature spines with an increase in immature spines,

suggests that appropriate balance of NESH expression is crucial

for normal spine maturation and synapse formation. Still, there

was a difference between neurons overexpressing NESH and those

head width (D) and spine length (E). (F) Transfected neurons labeled at 16–18 DIV with anti-VAMP2 antibody, anti-GluR1 antibody or Alexa Fluor 594-
conjuagted phalloidin. (G) Synaptic density measured by counting synaptic contacts with presynapses marked by anti-VAMP2 (n = 16 for control,
n = 14 for N-term, n = 15 for C-term). (H) GluR1 clusters per mm on spines (n = 20 for control; n = 18 for N-term; n = 14 for C-term). (I) F-actin
fluorescence intensity ratios (spines vs. shafts; n = 16 for control; n = 19 for N-term; n = 17 for C-term). Data are presented as means 6 SEM. *p,0.05,
**p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0034677.g007

Figure 8. NESH is involved in actin cytoskeleton rearrangement. (A) Cos-7 cells were transfected with GFP (control) or GFP-NESH, after which
the F-actin was stained with Alexa Fluor 594-conjugated phalloidin to observe F-actin-rich lamellipodia. Mock, untreated condition; Latrunculin A,
treated with latrunculin A for 10 min to depolymerize F-actin; Recovery, cells maintained for the indicated times after removing latrunculin A. Note
that lamellipodia formation was inhibited in the NESH transfectants, as compared to control. (B) Quantification of F-actin fluorescence intensity in
NESH-overexpressing cells, as compared with untransfected or GFP-transfected cells (control) (n.25 for untransfected, control and NESH in each
condition). Data are presented as means 6 SEM. *p,0.05, **p,0.01. !p,0.05, !!p,0.01, !!!p,0.001. *: NESH vs. control, !: NESH vs. untransfected.
doi:10.1371/journal.pone.0034677.g008
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in which NESH expression was knocked down. Although NESH

overexpression did not affect spine density, NESH knockdown

significantly increased spine density, suggesting that differential

mechanisms are affected in the two cell types, despite their similar

phenotypes.

NESH may regulate F-actin directly or through interaction with

other actin-regulatory proteins. Earlier studies provide some clues

to the mechanism. NESH is known to be a component of the

WAVE complex, which mediates bursts of actin polymerization

through activation of the Arp2/3 complex. The fact that WAVE

complex plays a critical role in neuronal morphogenesis and

synaptic plasticity suggests NESH may coordinate with other

components of the complex in these processes [24,44]. In addition,

p21-activated kinases (PAKs) are downstream effectors of Rac and

Cdc42 GTPases that are important for actin cytoskeletal

reorganization. It is noteworthy that the SH3 domain of NESH

interacts with PAKs and that NESH affects cell motility and tumor

metastasis by regulating PAK2 activity [23]. PAK family proteins

(PAK1, PAK2 and PAK3) are highly expressed in neurons, where

they play a variety of important roles [45,46]. For example, PAK3

has been implicated in neuronal development and plasticity [46],

and its mutation has been identified in X-linked mental

retardation patients [47]. Consequently, the actions of NESH, in

concert with those of PAK, to affect spine morphogenesis, synaptic

plasticity and mental disorders will be of great interest.

Synaptic function and plasticity is closely correlated with the

plasticity of spine structure. Spine enlargement is tied to long-term

potentiation, while spine shrinkage corresponds to long-term

depression. Slight changes in dendritic spines can have tremen-

dous effects on synaptic function and the connectivity within

neuronal circuits. Notably, disruptions in dendritic spine mor-

phology, including the shape, size and number of spines, have

been found in several brain disorders, suggesting that dendritic

spines may serve as a common factor in the pathogenesis of such

neuropsychiatric disorders. Stressing this idea, in various neuronal

disorders, numerous mutations or variants have been identified in

postsynaptic molecules involved in regulating spine morphogenesis

[48,49,50]. Collectively, these findings suggest NESH may be a

crucial factor involved in the regulation of dendritic spine

morphogenesis and synaptic plasticity, and further possibly

involved in the various neuronal disorders.

In summary, NESH is enriched in the hippocampal region and

co-localizes with postsynaptic proteins. The binding of NESH to

filamentous F-actin is crucial for the actin rearrangement

necessary for dendritic spine morphogenesis. Overexpression or

down-regulation of NESH impairs spine maturation, which

disrupts synapse formation and would affect the synaptic plasticity

essential for memory and recognition function. It therefore

appears that by acting as a regulator of spine morphology, NESH

could potentially be involved in neurological disorders.

Materials and Methods

Ethics statement
All animal experiments were approved by the Gwangju Institute

of Science and Technology Animal Care and Use Committee (the

permit number: GIST-2008-36).

Antibodies and fluorescent reagents
Polyclonal anti-SPIN90 serum was described previously [51,52].

Mouse monoclonal anti-Homer1c and anti-myc antibodies were

from Santa Cruz Biotechnology (CA, USA). Mouse monoclonal

anti-b-actin, anti-a-tubulin and anti-GFP antibodies were from

Sigma (St. Louis, MO, USA). Mouse monoclonal anti-PSD95

antibody was from Abcam. Mouse monoclonal anti-bIII-tubulin

antibody was from Millipore Corp. (Billerica, MA, USA). Rabbit

polyclonal anti-VAMP2 antibody was from Affinity BioReagents

(Golden, CO, USA). Rabbit polyclonal anti-GluR1 antibody was

from Calbiochem. Alexa Fluor 488- or 594-conjugated goat anti-

rabbit IgG, goat anti-mouse IgG and phalloidin were from

Molecular Probes (Eugene, OR, USA).

Plasmids and siRNAs
cDNA encoding full-length NESH was amplified by polymerase

chain reaction (PCR) from a rat brain cDNA library and then

subcloned into pGEX4T-1 (GE Healthcare), pcDNA3.0-6xMyc

and pEGFP-C2 vectors (BD Clontech, Palo Alto, CA). NESH

deletion mutants (N-term, C-term) were subcloned into pcDNA3.0-

6xMyc and pGEX4T-1 vectors. GST-SPIN90-C-term was de-

scribed previously [31]. siRNAs were from GenePharma. The

following NESH-specific siRNA sequences were used: si181, sense

59-GGCCAGUGUAGCCUAUCAATT-39 and antisense 59-UU-

GAUAGGCUACACUGGCCAG-39; si591, sense 59-CAGCGG-

UGCCAGACGGCAATT-39 and antisense 59-UUGCCGUCU-

GGCACCGCUGGG-39; si719, sense 59-CCACCUA UAGCGC-

CUGUAATT-39 and antisense 59-UUACAGGCGCUAUAGGU-

GGAG-39; and si1062, sense 59-CUGGAUUCUUCCCAGGG-

AATT-39 and antisense 59-UUCCCUGGGAAGAA UCCAGTG-

39. The siRNA sequences for a negative control were sense 59-

UUCUCCGAACGUGUCACGUTT-39 and antisense 59-ACGU-

GACACGUUCGGAGAATT-39.

Purification of GST fusion proteins and generation of
anti-NESH antibody

To generate anti-NESH antibody, a cDNA corresponding to the

C-terminal region of NESH (amino acids 204–367) was amplified

by PCR and subcloned into pGEX4T-1 vector for GST fusion

protein expression. The resultant GST-NESH fusion protein was

overexpressed in bacteria and purified on a glutathione-Sepharose

column according to the manufacturer’s protocol. Thereafter, the

purified GST fusion protein was dialyzed and used for immuniza-

tions. After the fifth injection, the specificity of the serum was tested

by immunoblot analysis, and then further purified by affinity

chromatography.

Cell culture and transfection
COS-7 and HEK 293T cells were obtained from the American

Type Culture Collection (ATCC, Manassas, USA) and were

maintained in Dulbecco’s modified Eagle’s medium supplemented

with 10% fetal bovine serum. For primary neuronal cultures,

hippocampal neurons were dissected from E18-E19 Sprague–

Dawley rat embryos, dissociated with papain (Worthington

Biochemical Corp., Lakewood, NJ, USA) and plated on poly-D-

lysine-coated coverslips at a density of 36105 cells/60-mm plastic

dish. Neuronal cultures were maintained in Neurobasal Medium

(Invitrogen) supplemented with B-27 (Invitrogen), 2 mM Gluta-

MAX (Invitrogen) and 1 mM sodium pyruvate. Neurons were

transfected using a modified calcium phosphate precipitation

method or Lipofectamine 2000 (Invitrogen).

Immunoblot analysis
Cell lysates were prepared from cultured neurons by rapidly

rinsing the cultures three times in cold PBS, adding SDS lysis buffer

and heating for 5 min. The protein concentration in the lysate was

determined using a BCA protein assay (Pierce, Rockford, IL). SDS-

PAGE was performed on 10% and 12% polyacrylamide gels, and

Western blotting was done on polyvinylidene fluoride membranes.
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After blocking with 5% nonfat dry milk, the membranes were

incubated with the primary antibody. Positive bands were detected

using horseradish peroxidase-coupled secondary antibodies and

were visualized using enhanced chemiluminescence (ECL).

GST pull-down assays
For GST pull-down assays, GST-fused recombinant proteins

(full-length NESH, SPIN90-C-term and GST) were overexpressed

in Escherichia coli BL21 (DE3) and immobilized on glutathione-

Sepharose beads according to the manufacturer’s procedure.

Purified actin proteins (Cytoskeleton) were incubated overnight at

4uC with purified GST or GST-fused proteins immobilized on

glutathione-Sepharose beads in binding buffer (20 mM Tris-HCl

[pH 8.0], 1 mM EDTA, 150 mM NaCl, 0.2% Nonidet P-40,

1 mM PMSF) supplemented with a mixture of protease inhibitors.

Bound proteins were subjected to SDS-PAGE and immunoblotted

with anti-actin antibody.

Co-sedimentation assay
GST-fused NESH proteins were mixed with monomeric actin

diluted in G-buffer (5 mM Tris-HCl [pH 8.0], 0.2 mM CaCl2,

0.2 mM ATP, 0.5 mM DTT), after which a 0.1 final volume of

106 polymerization buffer (20 mM MgCl2, 0.5 M KCl, 10 mM

ATP) was added to initiate polymerization. The mixtures were

incubated for 30 min at 25uC and then centrifuged for 25 min at

90,000 rpm and 25uC in a TLA100 rotor (Beckman Instruments,

Palo Alto, CA). Equivalent portions of pellets and supernatants

were analyzed by SDS-PAGE, and the proteins were stained with

Coomassie Brilliant Blue.

Immunocytochemistry and image acquisition
Cells were fixed and permeabilized with 0.25% Triton X-100 as

described previously [53]. They were then incubated with the

appropriate primary antibodies and visualized using Alexa Fluor-

conjugated secondary antibodies. F-actin was stained with Alexa

Fluor 594-conjugated phalloidin (Molecular Probes) for 30 min at

37uC. The fluorescence images were acquired using a 606
objective lens using an iXon DU-987 EMCCD camera (Andor

Technology, Belfast, Northern Ireland) mounted on an Olympus

IX81 microscope driven by MetaMorph imaging software

(Universal Imaging Co, Downingtown, PA, USA).

Quantification of dendritic spine morphology
Morphometric measurements were made using MetaMorph

software. Each experiment was performed on two to five

independent coverslips, and experiments were usually performed

three times with independent neuronal cultures. In most cases,

cells were co-transfected with GFP to visualize the detailed

morphology of the dendritic spines. To determine spine size, 500–

1000 spines (from 10–20 neurons) were measured for each

condition. Spine length was measured as the distance from the

base of the neck to the furthest point on the spine head. Spine

groups were classified as previously described [38]. The heads of

spines were measured by taking the maximal width of the spine

head perpendicular to the axis along the spine neck. For each

condition, individual spine dimensions were grouped first and

averaged per neuron; means from multiple neurons were then

averaged to obtain a neuron population mean (SD and SEM,

respectively). For spine and synaptic density measurements, all

clearly evaluable areas of 50–100 mm of secondary dendrites from

each imaged neuron were used. This excludes a potential bias

during area selection. All individual spines present on the entire

dendrite were included in the spine density examinations. To

determine synapse number, each synapse was highlighted by

presynaptic markers and postsynaptic markers and then counted.

GluR1 clusters were measured by counting each GluR1 puncta

localized on a spine.

Subcellular fractionation
Subcellular rat brain fractions were prepared as described

previously [54]. Briefly, rat brains were homogenized in buffered

sucrose (4 mM HEPES [pH 7.3], 0.32 M sucrose, 1 mM MgCl2,

0.5 mM CaCl2) containing freshly added protease inhibitors, after

which the homogenate was centrifuged at 900 g for 10 min (the

resulting pellet is P1). The resulting supernatant was centrifuged

again at 12,000 g for 15 min (the supernatant after this

centrifugation is S2). The pellet was resuspended in buffered

sucrose and centrifuged at 13,000 g for 15 min (the resulting pellet

is P2; crude synaptosome).
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