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Abstract

Expression of the four transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is sufficient to reprogram somatic cells into
induced pluripotent stem (iPSCs). However, this process is slow and inefficient compared with the fusion of somatic cells
with embryonic stem cells (ESCs), indicating that ESCs express additional factors that can enhance the efficiency of
reprogramming. We had previously developed a method to detect and isolate early neural induction intermediates during
the differentiation of mouse ESCs. Using the gene expression profiles of these intermediates, we identified 23 ESC-specific
transcripts and tested each for the ability to enhance iPSC formation. Of the tested factors, zinc finger protein 296 (Zfp296)
led to the largest increase in mouse iPSC formation. We confirmed that Zfp296 was specifically expressed in pluripotent
stem cells and germ cells. Zfp296 in combination with OSKM induced iPSC formation earlier and more efficiently than OSKM
alone. Through mouse chimera and teratoma formation, we demonstrated that the resultant iPSCs were pluripotent. We
showed that Zfp296 activates transcription of the Oct4 gene via the germ cell–specific conserved region 4 (CR4), and when
overexpressed in mouse ESCs leads to upregulation of Nanog expression and downregulation of the expression of
differentiation markers, including Sox17, Eomes, and T, which is consistent with the observation that Zfp296 enhances the
efficiency of reprogramming. In contrast, knockdown of Zfp296 in ESCs leads to the expression of differentiation markers.
Finally, we demonstrated that expression of Zfp296 in ESCs inhibits, but does not block, differentiation into neural cells.
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Introduction

Pluripotent stem cells have the ability to differentiate into all

somatic lineages as well as germ cells, yet they fail to pattern these

lineages into a viable embryo. Additionally, pluripotent stem cells

can be directed to self-renew by the addition of particular growth

factors and can thereby be propagated as immortal cell lines.

Therefore, pluripotent stem cells can, in principle, provide a

virtually unlimited quantity of a wide variety of specialized cells

that can be used for basic research, drug discovery, and

regenerative medicine.

Pluripotent stem cells are also capable of reprogramming

somatic cells. During gastrulation, somatic cells commit to a

particular germ layer. Throughout development, somatic cells

continue to differentiate and form various specialized cells.

Differentiation can be reversed in vitro after the fusion of somatic

cells with pluripotent stem cells. The somatic genome is thereby

reprogrammed and resembles that of a pluripotent cell [1].

Somatic transcripts are downregulated and silenced, and plurip-

otent loci are demethylated and transcribed. This reprogramming

process is highly efficient and has been observed to occur within

one day of fusion [2].

In 2006, Shinya Yamanaka demonstrated that the expression of

the four transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM)

in somatic cells is sufficient to induce pluripotent stem cell (iPSC)

identity [3]. Takahashi et alia initially screened expression data for

genes specifically expressed in pluripotent stem cells [3]. Screening

of 24 candidate genes demonstrated that only four were necessary

for inducing reprogramming. Using OSKM, iPSCs have been

derived from many different of somatic cell types, including neural

stem cells (NSCs) [4,5], keratinocytes [6], and lymphocytes [7,8].

iPSCs have been shown to pass every functional test for

pluripotency, including germline transmission in chimeras and

tetraploid embryo complementation [9,10]. Using tetraploid

embryo complementation, various research groups have obtained

mice that were formed entirely from iPSCs [11,12,13,14].

However, the efficiency of iPSC formation induced by OSKM

is relatively low. The reprogramming of NSCs induced by OSKM

requires approximately 1–2 weeks [4]. In contrast, reprogrammed

cells are observed as early as 24 hours after the fusion of NSCs

with pluripotent stem cells [2,15,16]. This striking difference in

efficiency of these two reprogramming methods suggests that

pluripotent stem cells express additional factors that can enhance

reprogramming.
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We sought to identify a novel, pluripotent-specific gene that is

capable of enhancing iPSC formation. Using previously obtained

expression data, we selected 23 candidate genes and tested each

for the ability to enhance reprogramming [17]. Of the tested

factors, zing finger protein 296 (Zfp296) led to the largest increase in

iPSC formation. We confirmed that Zfp296 was specifically

expressed in pluripotent stem cells and germ cells. Zfp296 in

combination with OSKM induced iPSC formation earlier and

with greater frequency than OSKM plus an empty control vector.

Through chimera and teratoma formation, we demonstrated that

the resultant iPSCs were pluripotent. We showed that Zfp296

activates transcription of the Oct4 gene via the germ cell–specific

conserved region 4 (CR4), and increases Nanog expression when

overexpressed in ESCs. We demonstrated that Zfp296 expression

during the differentiation of ESCs inhibits neural induction.

Finally, we found that shRNA-mediated knockdown of Zfp296 in

ESCs leads to an increase in the expression of differentiation

markers, including Cdx2, Pax6, and T. Therefore, we conclude that

Zfp296 is a novel, pluripotent-specific reprogramming factor.

Results

OSKM plus Zfp296 induces reprogramming more
efficiently and faster than OSKM alone

We hypothesized that ESCs express pluripotent-specific genes

that when added individually to OSKM would enhance the

efficiency of reprogramming. Candidate reprogramming genes

were drawn from our previously published microarray data [17].

First, we filtered for genes that were expressed specifically in ESCs.

These genes were defined as those with at least a four-fold

downregulation in expression on day 4 of differentiation and the

same or even lower expression on day 7 of differentiation.

Candidate genes were required to be expressed in ESCs at a level

that was at least four-fold higher than that in NSCs. Finally,

candidate genes were selected manually for transcription factors

and chromatin regulators, as genes with these functions have

previously been shown to enhance iPSC formation. The final list

consisted of 23 candidate factors (Table 1).

Each of these 23 factors was tested individually for the ability to

enhance iPSC formation. NSCs with a transgenic Oct4-GFP

reporter construct were infected with OSKM together with one of

the candidate factors. As a control, NSCs were infected with

OSKM and an empty retroviral construct (Table 1). The number

of green fluorescent protein (GFP)-positive colonies was used as a

measure of the reprogramming efficiency and the results are

shown in Figure 1. Of our 23 tested factors, a few induced a

significant increase in the number of GFP-positive colonies. Zfp296

and Esrrb led to the largest increases in iPSC colony formation. As

Esrrb has been previously described to enhance iPSC formation,

we decided to focus on Zfp296. A few factors, such as Rhox6 and

Dmrt1, significantly inhibited iPSC colony formation.

Next, we sought to evaluate the impact of Zfp296, when added

to OSKM, on iPSC formation in greater detail. To do this, plates

of NSCs infected with either OSKM plus Zfp296 or OSKM plus

empty vector were scanned every day by using an automated

microscope, and images were scored manually for the presence of

GFP-positive colonies or stage-specific embryonic antigen 1

(SSEA1)-positive colonies. The first GFP-positive colonies were

observed on day 6 for NSCs infected with OSKM plus Zfp296, in

contrast to 8 days for OSKM plus empty vector (Figure 2A). This

represents a 25% decrease in the time required for onset of Oct4-

GFP expression. The number of iPSCs, when scored as either

GFP-positive colonies or SSEA1-positive colonies, formed by

OSKM plus Zfp296 was higher compared with that formed by

OSKM plus empty control on all time points measured—a

significant increase of about 2 fold was consistently observed

(Figure 2A and 2B). Therefore, we conclude that Zfp296 increases

the efficiency of OSKM-induced reprogramming of NSCs into

iPSCs.

iPSCs generated with Zfp296 are pluripotent
The pluripotency of the iPSCs generated by OSKM plus Zfp296

was then evaluated. To this end, we picked individual iPSC

colonies and established individual iPSC lines from NSCs infected

with OSKM plus Zfp296. Immunostaining confirmed that the

iPSCs expressed Oct4 (Figures 3A–C). The expression of GFP

strongly suggests that the endogenous Oct4 gene had been

demethylated and is actively transcribed in the iPSCs generated

by OSKM plus Zfp296 (Figure 3D). Bisulfite sequencing results

corroborated our finding that the endogenous Oct4 promoter had

been demethylated in the iPSCs generated by infection of cells

with OSKM plus Zfp296 (Figure 4).

Next, we determined the differentiation potential of the iPSCs

using two independent in vivo assays. First, iPSCs were injected into

immunodeficient mice to form teratomas. Once tumors had

formed, they were sectioned and stained. Within individual

tumors, forming cartilage (mesoderm), neural progenitors (ecto-

derm), and epithelial cells (endoderm) were found, indicative of

iPSC differentiation into cells with fates from each of the three

germ layers (Figures 3E–G). Next, we aggregated the iPSCs with

morula-stage mouse embryos and were able to obtain chimeras

(Figure 3H). The chimeras were mated, and their offspring were

found to carry the GFP transgene, which was inherited from the

iPSCs, demonstrating germline transmission (Figure 3I). There-

fore, we conclude that the iPSCs generated by infection of cells

with OSKM plus Zfp296 are pluripotent, as they are able to

differentiate into cells with fates from all three germ layers as well

as germ cells.

Zfp296 promotes expression of pluripotency markers and
inhibits expression of differentiation markers

We next determined the expression of Zfp296 in several cell

types and organs by quantitative reverse transcriptase–polymerase

chain reaction (RT-PCR). Zfp296 was highly expressed in

pluripotent stem cells as well as germline stem (GSCs)

(Figure 5A). Significant Zfp296 expression was also detected in

the spleen—but not in the liver, kidney, heart, intestine, brain,

colon, bone marrow, lung, stomach, and skin. Zfp296 was also

expressed in human ESCs and was downregulated during ESC

differentiation (Figure 5B). This data is similar to that described in

a previous report, in which Zfp296 was found to be primarily

expressed by ESCs and testis [18]. However, while Dear and

colleagues reported that Zfp296 expression in the testis was

confined to post-mitotic sperm, we demonstrate high levels of

Zfp296 expression in GSCs [18]. Therefore, Zfp296 is mainly

expressed in pluripotent stem cells and cells of the germ cell

lineage, including GSCs.

The ability of Zfp296 to functionally increase the efficiency of

iPSC formation suggests that the factor may interact with the

regulatory elements of pluripotent genes. The expression pattern

of Zfp296 was specific to pluripotent stem cells and germ cells,

which is similar to the expression pattern of Oct4. As such, we

hypothesized that Zfp296 might directly activate transcription via

Oct4 regulatory elements. To test this, we performed a luciferase

assay with evolutionary conserved regions of the Oct4 promoter

(Figure 6A). We observed that both Nanog and Zfp296 activated

transcription from conserved region 4 of the Oct4 promoter. Of

significant interest is the finding that this distal enhancer element is

Zfp296, a Pluripotency Gene
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responsible for the expression of Oct4 in cells of the inner cell mass

of pre-implantation embryos, ESCs, and germ cells, all of which

also express Zfp296 [19,20].

Next, we evaluated the effects of Zfp296 overexpression in

mouse ESCs. To this end, an inducible Zfp296 vector under the

control of tetracycline was introduced into ESCs. 18 hours after

induction, transgenic Zfp296 RNA was upregulated by 40 fold

(Figure 6B). Quantitative RT-PCR revealed that at 18 hours,

Nanog expression was more than 2-fold upregulated (Figure 6C).

However, the expression of other pluripotency-associated genes,

such as Sox2 and Klf4, was not affected by transgenic Zfp296.

Prolonged induction of transgenic Zfp296 led to a morphologic

change in the cultured ESC colonies—homogeneously round

colonies with a smooth border and surface that indicated

improved quality of the ESCs. Consistent with this observation,

three markers for differentiation, Eomes, Pax6 and T, were all

significantly downregulated in the Zfp296-induced ESCs. There-

fore, we conclude that Zfp296 directly activates transcription of the

Oct4 gene, and leads to upregulation of Nanog expression in ESCs.

These results are consistent with the observation that Zfp296

enhances the efficiency of reprogramming induced by OSKM.

As Zfp296 overexpression in ESCs led to Nanog upregulation, we

assessed whether Zfp296 overexpression would affect the mainte-

nance of ESC pluripotency and inhibit ESC differentiation. The

transgenic ESCs were plated under neural induction conditions in

the presence or absence of induced Zfp296 expression (Figure 6D).

On day 7 of differentiation, the expression of pluripotency markers

Oct4, Sox2, and Rex1 was slightly higher and that of the neural

differentiation markers Pax6 and Sox1 was lower in ESCs

overexpressing transgenic Zfp296 compared with uninduced cells.

This result demonstrates that Zfp296 expression mildly inhibits

ESC differentiation, but it is not sufficient to prevent it.

In our final experiment, lentiviral shRNA–mediated knockdown

of Zfp296 was used to determine the role of Zfp296 in the self-

renewal of ESCs. Two constructs with different targeting

sequences each resulted in a knockdown of approximately 85%

compared with a scrambled control (Figure 7A). Both constructs

resulted in upregulation of the differentiation markers Cdx2, Pax6,

and T in ESCs compared with the scrambled control (Figure 7B).

Although Zfp296 shRNA1 caused downregulation of the expres-

sion of the pluripotency markers Prdm14, Rex1, and Nanog, the

effects of Zfp296 shRNA2 on pluripotent gene expression were

Table 1. Candidate reprogramming factors.

Expression Relative to ESCs Clone #1 Average #GFP+ colonies2

Day 4 Day 7

Zfp296 0.23 0.13 I.30936046 97

Esrrb 0.06 0.05 I.40130872 95

Suv39h1 0.12 0.13 I.5352230 90

Tex19 0.04 0.01 n.a./RT-PCR 69

Nr0b1 0.03 0.02 R.C330034L04 61

Rex2 0.03 0.02 I.30462971 58

Tcfcp2l1 0.13 0.12 I.40087602 57

Piwil2 0.13 0.09 I.40131020 46

Gm817 0.10 0.06 R.4932441K12 46

Qkf 0.25 0.26 gift3 46

LOC435970 0.02 0.01 R.I1C0022H11 45

Mael 0.11 0.01 I.6744032 42

Prdm14 0.06 0.06 R.**4 41

2610305D13Rik 0.20 0.04 R.2610305D13 41

Zhx1 0.21 0.18 I.6406286 36

LOC195331 0.07 0.07 I.30044792 35

Cdyl2 0.06 0.07 I.5690642 32

4933405K07Rik 0.18 0.10 R.4933405K07 32

Mmip2 0.07 0.04 n.a./RT-PCR 26

Grhl3 0.20 0.24 I.3067679 22

Phf17 0.21 0.13 I.5250231 13

Dmrt1 0.10 0.05 I.40129989 12

Rhox6 0.14 0.15 I.30790014 10

empty n.a. n.a. n.a. 41

The 23 candidate reprogramming factors are listed, along with their expression, in differentiated ESCs according to the original array data. Also listed is the cDNA clone
used for subcloning into the pMX retroviral expression vectors and the average number of Oct4-GFP–positive iPSC colonies obtained after infection of NSCs with the
expression vector in combination with OSKM.
1First initial signifies either IMAGE (I) or Riken (R). Indicated genes were isolated by RT-PCR on ESC RNA.
2Tested on NSCs in combination with Oct4, Sox2, Klf4 and c-Myc.
3Qkf cDNA clone was a generous gift from Dr. Tim Thomas.
4PRDM14 was combined from two Riken clones: 6030400A03 and C330011M19 using an internal EcoRI site.
doi:10.1371/journal.pone.0034645.t001
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more modest. Expression of the Oct4 gene was unchanged by

reduced Zfp296 expression. Although our previous luciferase and

overexpression results would have predicted a different outcome, it

is possible that residual Zfp296 is sufficient for regulating the CR4

enhancer of Oct4 in ESCs, or that other factors present in ESCs

compensate for the lack of Zfp296. It is also possible that Zfp296

plays a more significant role in regulating Oct4 expression from

CR4 in GSCs. These data show that reduced Zfp296 expression in

ESCs leads to an increase in the expression of markers for

differentiation, but this Zfp296 reduction is not sufficient to

prevent ESC self-renewal.

Discussion

Somatic cell differentiation and fate commitment can be

reverted to pluripotency through reprogramming. After fusion of

a somatic cell with a pluripotent stem cell, such as an ESC, the

somatic cell genome undergoes reprogramming within 24 hours

[2]. However, reprogramming mediated by the expression of

OSKM requires significantly longer. Therefore, ESCs appear to

express additional factors that can enhance the efficiency of

reprogramming induced by OSKM. In this study, we sought to

identify some of these factors.

We postulated that such additional reprogramming factors

would be expressed specifically in ESCs. Using microarray data

from ESCs undergoing early neural differentiation, we identified

transcripts specifically expressed in undifferentiated ESCs. As all

four of the reprogramming genes discovered by Takahashi et alia

are transcription factors, we focused on transcription factors and

chromatin regulators. A final list of 23 ESC-specific genes was

selected, and these genes were each cloned into retroviral

expression vectors to test for the ability to increase the number

of iPSCs formed by OSKM.

Of the 23 genes tested, Zfp296 led to the largest increase in the

number of iPSC colonies formed when combined with OSKM.

While the NSCs infected with OSKM expression vectors plus an

empty vector consistently formed Oct4-GFP–positive colonies on

day 8, cells infected with OSKM plus Zfp296 expression vectors

formed significant numbers of Oct4-GFP–positive colonies on day

6, with an overall 2-fold increase in iPSC colony formation

observed in cultures infected with OSKM plus Zfp296 compared

with those infected with OSKM plus empty vector. Therefore, the

addition of Zfp296 to OSKM induces reprogramming more

efficiently and faster than OSKM alone.

We confirmed that the iPSCs formed by OSKM plus Zfp296

expression are pluripotent. First, the iPSCs were found to

appropriately express the pluripotent marker Oct4. When the

iPSCs were injected into immunodeficient mice, teratomas formed

containing cells derived from all the three germ layers: ectoderm,

mesoderm, and endoderm. Finally, chimeras formed from the

iPSCs that had been aggregated with morula-stage embryos.

When these chimeras were mated, germline transmission of the

GFP transgene was detected. Therefore, we conclude that Zfp296

enhances OSKM-induced reprogramming into bona fide pluripo-

tent stem cells.

The present study indicates that Zfp296 is expressed specifically

in pluripotent cells and germ cells, and is part of the pluripotent-

specific transcriptional network. Previous work has shown that

Zfp296 is expressed in ESCs and post-mitotic sperm [18]. We have

extended these results by showing that Zfp296 is also expressed in

pluripotent epiblast stem cells, GSCs, and human ESCs.

Figure 1. Candidate reprogramming factor testing results. Number of Oct4-GFP–positive iPSC colonies formed by NSCs infected with OSKM
plus the designated factor relative to OSKM plus an empty retroviral vector. Mean and standard deviations are shown, and p values were calculated
with t-tests.
doi:10.1371/journal.pone.0034645.g001
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The expression pattern of Zfp296 is similar to that of Oct4.

Moreover, we have shown that Zfp296 directly activates

transcription of the Oct4 promoter using the element that is

responsible for Oct4 expression in both ESCs and germ cells—

CR4. Overexpression of Zfp296 in ESCs resulted in increased

expression of the pluripotency gene Nanog and decreased

Figure 2. Timing and efficiency of iPSC colony formation. NSCs were infected with either OSKM+Zfp296 or with OSKM+empty vector. GFP-
positive colonies from 30 fields from an automated microscope were counted in three independent replicates for each of the days shown (A). SSEA1-
positive colonies from 60 fields from an automated microscope were counted in three independent replicates for each of the days shown (B). Mean
and standard deviations are shown, and P values were calculated with t-tests.
doi:10.1371/journal.pone.0034645.g002
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expression of the differentiation markers Eomes, Sox17, and T

relative to uninduced cells. This finding suggests that Zfp296 plays

an important role in both pluripotent stem cells and germ cells.

Zfp296 has been detected at significant levels in the transcriptome

of oocytes and 4-cell–stage embryos, suggesting that Zfp296 may

promote the activation of zygotic Oct4 expression after fertilization

[21].

Figure 3. Pluripotency of iPSCs induced with OSKM+Zfp296. An iPSC line induced with OSKM+Zfp296 is shown in phase (A), DAPI (B), Oct4
immunostained (C), or Oct4-GFP (D). Teratomas formed with this iPSC line were composed of cartilage (mesoderm; E), neural rosettes (ectoderm; F),
and epithelia (endoderm; G). A chimera formed with this iPSC line is shown (H), and offspring from this chimera carried the GFP transgene, which
originated from the iPSCs (I).
doi:10.1371/journal.pone.0034645.g003
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Knockdown experiments in ESCs demonstrated that reduced

Zfp296 levels resulted in an upregulation of differentiation

markers. However, we did not observe a consistent reduction in

Nanog and Oct4 levels. This was surprising given that Zfp296

stimulated transcription of CR4 in a luciferase assay and that

Zfp296 overexpression in ESCs increased Nanog expression.

However, this discrepancy might be explained by residual

expression of Zfp296. Another possibility is that ESCs express

other factors that compensate for the lack of Zfp296. It is also

possible that Zfp296 plays a more important role in the regulation

of Oct4 expression in GSCs than ESCs. Therefore, we conclude

that Zfp296 is a novel pluripotent-specific transcription factor that

increases the efficiency of OSKM-induced pluripotency and the

self-renewal of ESCs.

Materials and Methods

Ethics Statement
This study did not involve human participants. All experiments

involving animals (e.g. cell transplantation) were carried out in

accordance with local institutional guidelines under the protocol

87-51.04.2010.A387, which was approved by Landesamt für

Natur, Umwelt und Verbraucherschutz of the state of North

Rhine-Westphalia, Germany. In vitro experiments were carried out

with existing cell lines obtained from previous studies. The

appropriate citations are given next to each cell line in the

Materials and Methods.

Microarray data
The OG2 ESCs, which were used to collect the expression data,

were derived in the laboratory of Prof. Dr. Hans Schöler, as

previously reported [17]. The differentiation, expression data

collection, and original analysis of the microarray data have also

Figure 4. Oct4 promoter methylation. Bisulfite sequencing results
assessing the DNA methylation status of the Oct4 promoter is shown for
the indicated cell types. OSKM = Oct4, Sox2, Klf4, and c-Myc; ESCs = em-
bryonic stem cells; NSCs = neural stem cells. Open and filled circles
represent unmethylated and methylated CpGs, respectively.
doi:10.1371/journal.pone.0034645.g004

Figure 5. Specificity of Zfp296 expression. Quantitative real-time RT-PCR results are shown for Zfp296 using RNA from the indicated mouse
sources (A) and indicated human ESC-derived cells (B). EpiSCs = epiblast stem cells; ESCs = embryonic stem cells; GSCs = germline stem cells;
TSCs = trophoblast stem cells.
doi:10.1371/journal.pone.0034645.g005

Zfp296, a Pluripotency Gene
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been described previously [17]. We selected candidate genes based

on four main considerations. First, genes had to be either present

or marginally expressed in ESCs as defined by the Affymetrix

scoring system. Second, genes had to have at least 4-fold

downregulation of expression on day 4 of differentiation compared

with (undifferentiated) ESCs. Third, genes had to have lower or at

most 2-fold higher expression levels on day 7 of differentiation

compared with day 4. Fourth, the genes had to have at least 4-fold

higher expression in ESCs compared with NSCs. In addition, the

final candidates were chosen manually based on their identifica-

tion as either transcription factors or chromatin factors. A few

genes, such as Piwil2, were chosen based on a combination of

specific expression and known function of potential relevance to

reprogramming, despite not being transcription factors or

chromatin regulators. Factors that were part of the original screen

by Takahashi et alia [3] were not considered for selection.

Candidate reprogramming factor cloning
Whenever possible, cDNA clones were obtained commercially

(Table 1). IMAGE clones were preferred and purchased from

Open Biosystems. Riken clones were obtained from the FAN-

TOM collection using DNAFORM. The inserts from these

original cloning vectors were isolated by restriction digestion and

ligated into the pMX vectors [22]. Dr. Tim Thomas kindly

provided the Qkf clone. Tex19 and Mmip2 were amplified from

ESC cDNA using PCR and cloned into pMXs. The ESCs have

been described previously, and were derived from preimplantation

mouse embryos [17].

The Zfp296 clone from the IMAGE consortium contained a

sequence-verified point mutation (C262T) that resulted in an

amino acid change (T88I). This mutation was corrected using site-

specific mutagenesis. Primers were designed using the Quikchange

primer design webtool (Agilent; https://www.genomics.agilent.

com) and used to amplify the corrected version directly from the

IMAGE clone. This PCR product was then used to transform E.

coli, and individual clones were picked and sequenced to confirm

correction.

iPSC formation assay
The NSCs used in this study were derived by the laboratory of

Prof. Dr. Hans Schöler and have been reported previously [17].

Retroviral packaging was performed using PlatinumE cells (Cell

Biolabs) transfected with a complex of 9 ml of Fugene 6 (Roche

Applied Science) and 3 mg of the retroviral plasmid to be

packaged. PlatinumE medium consisted of DMEM (Invitrogen),

16penicillin/streptomycin/glutamine (Invitrogen), and 10% fetal

calf serum (FCS; PAA). Two days later, the supernatant was

collected and filtered. 50,000 OG2 NSCs were seeded the day

before infection on gelatin-coated 6-well plates (Sarstedt) and fed

with NSC medium. NSC medium consisted of DMEM/F12

supplemented with N2 supplement, 10 ng/ml epidermal growth

factor (EGF), 10 mg/ml basic fibroblast growth factor (bFGF),

50 mg/ml BSA (Fraction V), and 16 penicillin/streptomycin/

glutamine (all from Invitrogen). For infection, 100 ml of each of the

retroviral supernatants for Oct4, Sox2, Klf4, and c-Myc as well as

200 ml of the supernatant for the factor being tested was added to

the pre-seeded NSCs. NSC medium was added to a total of 2 ml.

Protamine sulfate was added to a final concentration of 6 mg/ml,

and the entire mixture was added to the NSCs. After 24 hours,

infected cells were washed three times with PBS and fed with fresh

NSC medium. Two days later, the cells were again fed with NSC

medium. Two days after that, the infected cells were fed with

FFES cell medium, and the medium was changed every other day

thereafter. FFES medium consisted of Knock-Out DMEM, 16%

Figure 6. Zfp296 activates transcription from the Oct4 promot-
er. Zfp296 and Nanog were tested by luciferase assays for transactiva-
tion of Oct4 promoter fragments (A). The P value for Zfp296-induced
transcription from CR4 compared with control was less than 0.1, as
shown. CR1, CR2, CR3, and CR4 = evolutionary conserved regions 1, 2, 3,
and 4, respectively, as defined by Nordhoff et alia [20]. ESCs were
induced to express Zfp296 for 18 hours followed by quantitative RT-PCR
to assess the expression of transgenic Zfp296 (B) and indicated marker
genes (C) compared with uninduced cells (B). Expression of indicated
marker genes on day 7 of neural differentiation in the presence of
induced Zfp296 expression relative to uninduced cells (D).
doi:10.1371/journal.pone.0034645.g006

Zfp296, a Pluripotency Gene
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Knock-Out Serum Replacement (Invitrogen), 4% FCS (PAA), 1%

nonessential amino acids (Invitrogen), 1% penicillin/streptomy-

cin/glutamine (Invitrogen), 1% beta-mercaptoethanol (fresh 1006
stock solution made by diluting 7 ml of 14.3 M beta-mercapto-

ethanol [Sigma-Aldrich] in 10 ml PBS [Invitrogen]) and 2,000

units/ml of LIF. Images of GFP-positive colonies were captured

on an ArrayScan VTI automated microscope (Thermo) and the

number of such colonies were counted manually. 30 images for

each day were counted from three independent replicates. For

SSEA1, cells infected with the indicated factors in 6-well plates

were immunostained and the images captured by the ArrayScan

VTI. 60 on each day were counted from three independent

replicates.

iPSC culture
All iPSC lines reported in this study are novel cell lines that were

derived from NSCs as described above. These NSCs, as already

indicated, were created in the laboratory of Prof. Dr. Hans Schöler

and have been reported previously [17]. As these iPSC lines are

the derivatives of already established cell lines, neither a new

animal protocol nor other approval is necessary. iPSCs were as

described above and cultured on irradiated mouse embryonic

fibroblasts in ESC medium, which consisted of Knock-Out

DMEM (Invitrogen), 20% FCS (PAA), 1% nonessential amino

acids (Invitrogen), 1% penicillin/streptomycin/glutamine (Invitro-

gen), 1% beta-mercaptoethanol (fresh 1006 stock solution made

by diluting 7 ml of 14.3 M beta-mercaptoethanol [Sigma-Aldrich]

in 10 ml PBS [Invitrogen]) and 2,000 units/ml of LIF. Oct4

promoter methylation was analyzed as described previously [23].

The mouse embryonic fibroblasts (MEFs) used in this study were

derived in the laboratory of Prof. Dr. Hans Schöler and have been

reported previously [17].

Human ESC culture
The human ESC line HUES6 was purchased from the hESC

Collection (Harvard University). The derivation of this line has

been reported previously [24]. For differentiation, we used the

previously published protocol for motor neuron differentiation by

Chambers et alia [25].

Zfp296 Knockdown
Lentiviral shRNA lentiviral knockdown constructs (Sigma:

TRCN0000095891 [shRNA1] and TRCN0000095892

[shRNA2]) were produced in 293T cells (ATCC). Cells were

transfected with 3 mg of the shRNA construct, 2 mg psPax2

(Addgene 12260), and 1 mg pMD2.G (Addgene 12259) using 18 ml

Fugene 6 reagent (Promega). After 3 days, the viruses were

concentrated by ultracentrifugation (26,000 rpm, 2 hours, 4uC)

and resuspended in 1 ml of DMEM low glucose (PAA). 16104

ESCs were subsequently infected with 100 ml of concentrated

virus, and RNA samples were taken 3, 4, and 7 days after

infection. To increase the fraction of infected cells, puromycin

selection (1 mg/ml) was started on day 4. As a negative control and

for normalization of the real-time PCR analysis, a homemade

scrambled shRNA lentivirus was used. For the scrambled

knockdown plasmid, the LVTHM plasmid (Addgene 12247) was

used as the backbone, with GFP replaced with RFP Tomato [26].

Scrambled shRNA was cloned using ClaI/MluI (both from NEB),

with the sequence corresponding to Ito et alia 2010 [27].

Immunostaining
Cells were fixed with paraformaldehyde and permeabilized with

Triton X-100. After blocking, cells were stained overnight as

indicated. The Oct4 antibody was obtained from Santa Cruz

Biotechnology. Secondary antibody staining with AlexaFluor-

conjugated antibodies (Invitrogen) was performed the following

day. The SSEA1 antibody was obtained from the Developmental

Studies Hybridoma Bank (DSHB).

Real-time RT-PCR
Stem cell marker expression in iPSCs was performed at passages

8 and 10. Total RNA was isolated using the MicroPrep Kit from

Zymo Research with on-column DNase I digestion. Reverse

transcription was performed using the Multiscribe Reverse

Figure 7. Zfp296 knockdown in ESCs. Lentiviral shRNA constructs were packaged and used to infect ESCs. Puromycin was added to select for
infected cells beginning on day 4. Efficiency of Zfp296 knockdown is shown on the indicated days after infection (A). Quantitative RT-PCR results are
shown for the indicated genes on day 7 after infection (B).
doi:10.1371/journal.pone.0034645.g007
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Transcriptase Kit (Applied Biosystems). Transcript levels were

determined using the ABI PRISM 7900HT Sequence Detection

System (Applied Biosystems) and the SYBR green master mix

(Bio-Rad). The GSCs used in this study were derived in the

laboratory of Prof. Dr. Hans Schöler and have been reported

previously [28].

Aggregation with zona-free embryos
Cells were aggregated and cultured with denuded post-

compacted 8-cell–stage mouse embryos as reported with a slight

modification [29]. Briefly, 8-cell embryos were flushed from

[(C57BL/66C3H) F1 female mice6CD1 male mice] at 2.5 days

post coitum (dpc) and placed in M2 medium (Hogan et al., 1986).

Clumps of loosely connected cells (10–20 cells each) with short

trypsin treatment were chosen and transferred into microdrops of

KSOM medium with 10% FCS under mineral oil; each clump

was placed in a depression in the microdrop. Meanwhile, batches

of 30–40 embryos were briefly incubated in acidified Tyrode’s

solution [30] until dissolution of their zona pellucida. A single

embryo was place on the clump. All aggregates were assembled in

this manner and cultured overnight at 37uC, 5% CO2. After

24 hours of culture, the majority of aggregates had formed

blastocysts. We transferred 11–14 embryos into each uterine horn

of 2.5-dpc pseudopregnant recipients.

Teratoma analysis
For the teratoma formation assay ,56106 cells were injected

subcutaneously into the flank of severe combined immunodefi-

ciency (SCID) mice. After 4–5 weeks, the teratoma that had

formed was excised, fixed in 4% paraformaldehyde, and subjected

to histological examination with hematoxylin and eosin staining.

Luciferase assay
Transactivation activity was measured using the Dual-Glo

Luciferase Assay System (Promega), following the manufacturer’s

instructions. Briefly, 16105 293T cells were plated onto a 24-well

plate and transfected with Fugene 6 (Roche). The plasmid DNA

consisted of 100 ng of effector DNA (pMX Zfp296, pMX Nanog),

100 ng of pTK-RL (Promega), and 800 ng of pGL3 promoter

vector (Promega) containing conserved regions (CR1–4), respec-

tively (Nordhoff et al., 2000). Luciferase activity was measured

after 48 hours post-transfection and normalized against the

Renilla luciferase activity.

Induction of transgenic Zfp296 transcription in ESCs
The overexpression of Zfp296 in ESCs was achieved through an

improved Tet-On system previously described by Anastassiadis et

alia [31]. As a starting point, OG2 ESCs, which carry the

OG2_Oct4-GFP transgene, were used. As stated above, these

ESCs were derived in the laboratory of Prof. Dr. Hans Schöler

and have been reported previously [17]. The transactivator and

the tet-responsive Zfp296 transgenes were both sequentially

electroporated into the cells by using the Nucleofection II device

from Amaxa. The procedure was performed according to the

manufacturer’s instructions, and subsequent selection was done

with puromycin (1 mg/ml; Sigma P8833) for the transactivator and

with hygromycin (200 mg/ml; Roth Cp12.2) for the tet-Zfp296

transgene. After a clonal cell line was established, the transgene

could be induced by the addition of 2 mg/ml doxycycline (Sigma

D9891) and 561026 M dexamethasone (Sigma D1756) to the

culture medium.
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