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Abstract

Background: The Cancer Genome Atlas (TCGA) Network recently comprehensively catalogued the molecular aberrations in
487 high-grade serous ovarian cancers, with much remaining to be elucidated regarding the microRNAs (miRNAs). Here,
using TCGA ovarian data, we surveyed the miRNAs, in the context of their predicted gene targets.

Methods and Results: Integration of miRNA and gene patterns yielded evidence that proximal pairs of miRNAs are
processed from polycistronic primary transcripts, and that intronic miRNAs and their host gene mRNAs derive from common
transcripts. Patterns of miRNA expression revealed multiple tumor subtypes and a set of 34 miRNAs predictive of overall
patient survival. In a global analysis, miRNA:mRNA pairs anti-correlated in expression across tumors showed a higher
frequency of in silico predicted target sites in the mRNA 39-untranslated region (with less frequency observed for coding
sequence and 59-untranslated regions). The miR-29 family and predicted target genes were among the most strongly anti-
correlated miRNA:mRNA pairs; over-expression of miR-29a in vitro repressed several anti-correlated genes (including
DNMT3A and DNMT3B) and substantially decreased ovarian cancer cell viability.

Conclusions: This study establishes miRNAs as having a widespread impact on gene expression programs in ovarian cancer,
further strengthening our understanding of miRNA biology as it applies to human cancer. As with gene transcripts, miRNAs
exhibit high diversity reflecting the genomic heterogeneity within a clinically homogeneous disease population. Putative
miRNA:mRNA interactions, as identified using integrative analysis, can be validated. TCGA data are a valuable resource for
the identification of novel tumor suppressive miRNAs in ovarian as well as other cancers.
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Introduction

MicroRNAs (miRNAs or miRs) are ,22 nt noncoding RNAs

which target complementary gene transcripts for translational

repression or mRNA cleavage [1]. Having been implicated in the

initiation and progression of human cancers, miRNAs regulate

processes such as cell growth, differentiation, and apoptosis [2]. A

productive miRNA:mRNA interaction can occur with as little as

six consecutive nucleotides, through pairing between the 59-seed of

the miRNA (located in nucleotides 2–7) and sequences which are
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largely localized in the 39-untranslated regions (UTRs) of mRNA

targets; consequently, a given miRNA can potentially impact

hundreds of genes within and across diverse signaling pathways

[3,4,5,6,7].

MiRNAs, along with gene copy number alterations and methyl-

ation of gene promoter regions, globally influence gene expression,

which ultimately determines cellular behavior. The Cancer Genome

Atlas (TCGA) project is a large-scale collaborative effort which seeks to

comprehensively catalogue the molecular aberrations in various

cancers. While the recent initial report from TCGA on 489 high-

grade serous ovarian adenocarcinomas (487 of which had corre-

sponding miRNA data) [8] presented a broad molecular picture of the

disease, much in terms of miRNAs remains to be elucidated. Here, we

comprehensively survey the miRNAs within the TCGA ovarian

dataset, making use of the various molecular profile data types,

miRNA and mRNA in particular, that have all been generated for the

same set of tumors. Previous miRNA expression profiling studies of

ovarian cancer have defined differentially expressed miRNAs in

cancer relative to the corresponding normal control

[9,10,11,12,13,14], though in this present study, such a large dataset

(n = 487 patients) allows us to more fully explore the diversity of

miRNAs within a single ovarian cancer subtype.

Here, we present a number of findings on miRNAs in ovarian

cancer, from various integration-based analyses. These analyses

revolve around the basic question of whether the general rules of

miRNA behavior, as we currently understand them, can be supported

by corroborating patterns within human cancers. Our study serves to

reinforce our current notions of basic miRNA biology, to demonstrate

how current in silico miRNA-gene targeting predictions may be refined

through integrative analysis, and to demonstrate the rich resource of

TCGA in identifying miRNA candidates for functional targeting in

cancer. Our study also provides second-level data mining results for

molecular biologists to more deeply explore specific miRNA-

associated pathways in ovarian cancer.

Results

MiRNAs are influenced by both copy number alteration
and genomic location

We examined the TCGA ovarian cancer datasets, representing

487 tumors profiled for miRNA expression, for patterns of

correlation between the miRNAs and other molecular features, to

see whether the overall trends observed would fit our initial

expectations. To begin with, we considered that miRNAs with

expression levels frequently altered by changes in DNA copy

number may reveal a subset of miRNAs under clonal selection in

the tumors; such miRNAs would be of potential interest as

candidate oncomiRs or tumor suppressive miRs. We therefore

systematically analyzed miRNAs for both loss and gain of DNA

copy number associated with a concordant change in mature

miRNA expression level (Figure 1A, Dataset S1). This analysis

revealed several miRNAs in focally amplified and deleted genomic

regions. In particular, let-7b was the most frequently deleted

miRNA having both recurrent hemizygous genomic loss (86% of

samples) and homozygous deletion (7.2%). Another deleted

miRNA, miR-31, was recently found by our group to suppress

ovarian cancer cell proliferation [10]. Four members of the miR-

30 family were among the most frequently amplified miRNAs.

Interestingly, these members were encoded at two different focally

amplified loci (8q24 and 1p34) and all four miRNAs showed

strong concordant change in mature miRNA expression.

In our data, we also found miRNAs to be frequently coexpressed

with neighboring miRNAs as anticipated. Previously, when

examining miRNA expression profiles in a small dataset of 24

normal human tissues, Baskerville and Bartel found evidence that

proximal pairs of miRNAs are generally coexpressed (suggesting that

they are processed from polycistronic primary transcripts), and that

intronic miRNAs are usually coexpressed with their host gene

mRNA (suggesting that they both derive from a common transcript)

[15]. To extend these preliminary observations to ovarian cancer

(thereby reinforcing current notions of miRNA biology as well as the

integrity of our TCGA data), we made pairwise comparisons for

each chromosome between the expression profiles of all miRNAs

oriented in the same direction, calculating for each pair a correlation

coefficient; the results showed that most miRNA genes within 50–

100 kb of each other had highly correlated expression patterns

(Figure 1B). Notably, at distances beyond 100 kb (exceeding the

length of most human genes), the correlation between pairs dropped

dramatically to zero. While DNA copy number alterations (CNA)

undoubtedly influence gene and miRNA expression in cancer

[10,16], pairwise correlations in copy number levels between

proximal miRNAs showed a very different pattern from the pairwise

expression correlations; high proximal correlations for copy number

extended for .1 Mb in length, with no dramatic drop (Figure S1A).

Approximately 177 of the 558 mature human miRNAs profiled

are located in the genome within the introns of host genes, and we

found miRNAs to be frequently coexpressed with these host genes

in our data. For each of 188 miRNA-host gene pairs (each

comprised of a miRNA located within the boundaries of a known

gene, same orientation, where some mature miRNAs have

multiple genomic locations), we computed the correlation between

miRNA and host gene expression. MiRNA-host gene pairs tended

to be strongly correlated with each other and, with 52% of the

miRNA-host gene pairs with available data showing significant

positive correlation (P,0.01), in agreement with previous studies

[17,18] (Figure 1C). As expected, miRNA expression was also

correlated with host gene copy number, though the correlations

were not as strong as for gene expression (Figure S1B).

Diversity of miRNA and gene expression patterns
suggestive of ovarian tumor subtypes

Previously, unsupervised clustering of miRNA expression data

had suggested three general groupings or subtypes–with designations

C1, C2, and C3–of high-grade serous ovarian tumors. The C1

subtype had been associated with worse patient survival as compared

to the other two subtypes; in addition, the C1 subtype overlapped

somewhat with the gene expression-based ‘‘proliferative’’ subtype,

and the C2/C3 subtypes overlapped more with the gene-based

‘‘mesenchymal’’ subtype [8]. The average ‘‘silhouette’’ widths of the

miRNA-based clusters had indicated them to be somewhat weakly

defined with substantial within-group heterogeneity, while still

reflecting patterns of biological diversity [8]. As described below,

here we sought to further characterize these miRNA-based clusters,

using our mRNA and miRNA expression data.

Given the role of miRNAs in repressing gene expression, we

might anticipate that miRNAs and their mRNA targets in general

would appear anti-correlated in expression in human tumors. A

number of computational algorithms—the most well-known of

these being miRanda [4] and TargetScan [7]—have been

developed to predict the targeting of a given gene transcript by

a specific miRNA (based on both sequence alignment of miRNA

to gene 39-UTR and on species conservation). By integration of

both miRNA and gene expression patterns using previously-used

approaches [10], we could define putative miRNA:mRNA

functional pairs underlying the miRNA-based subtypes. Using

the set of miRNAs and genes differing significantly between the

groups, miRNA:mRNA pairs were defined by both predicted

targeting association and anti-correlation in expression patterns

miRNA-Gene Integration in Ovarian Cancer
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(with the miRNA high and the gene low specifically in the given

subtype, or vice versa) (Figure 2 and Dataset S2). MiRNAs high in

C1 and C2 tumors included let-7 family members (excluding let-

7b). Potential gene targets of interest included genes upregulated

during epithelial-to-mesenchymal transition (EMT), such as ZEB2,

MMP2, SNAI2, FN1, TWIST1, which were all high in the

(mesenchymal-associated) C2 and C3 tumors; furthermore, C2

tumors had high vimentin mRNA and low E-cadherin mRNA.

MiRNAs correlated in expression with worse patient
outcome

A set of molecular correlates of patient outcome is another

resource TCGA data may provide to the research community.

Previously, we identified a gene transcriptional signature predic-

tive of overall survival in ovarian cancer [8]. Here, we carried out

a similar analysis to define a miRNA signature of patient

prognosis. In a training subset of 228 ovarian tumors (with

outcome data, TCGA batches 9–15), 34 human miRNAs were

individually correlated with time to death (Figure 3A, P,0.01,

univariate Cox, average signal.50 units). Each of the 253

validation samples (batches 17–24) was assigned a prognostic

score, reflecting the similarity between its expression profile and

the prognostic miRNA signature pattern; the signature showed

statistically significant associations with survival (Figure 3A, Log

rank P = 0.03, miRNA risk index.0 vs ,0, and P = 0.02,

univariate Cox of the prognostic score as a continuous variable).

Similar attempts at defining miRNA signatures of response to

platinum therapy were unsuccessful (Document S1); however, as

platinum-resistance is most likely a complex and multifactorial

process, a role for miRNAs in platinum-resistance cannot be ruled

out. A previous study [19] identified three miRNAs being

associated with outcome in ovarian cancer; two of these miRNAs,

miR-337 and miR-410, were also significant (P,0.05) in our

training dataset. While a previous study had described an

Figure 1. In ovarian tumors, expression patterns of miRNAs (miRs) are influenced by both copy number alteration (CNA) and
genomic location. (A) MiRNAs correlated with CNA. Left plot shows hemizygous loss (N, = 1 copies) versus homozygous deletion (N = 0) for
miRNA precursors. Correlation (Pearson’s) between precursor DNA copy number and mature miRNA expression is indicated by symbol size, and only
miRNAs with a minimum correlation (R.0.3) are included here; cytoband regions in bold represent focal CNA events. Similarly, right plot shows gain
(N. = 3) versus amplification (N. = 4) for miRNAs having R.0.3 for precursor copy versus mature expression. (B) miRNAs are frequently coexpressed
with neighboring miRNAs. Plot shows relationship between the distance separating miRNA loci and their coordinate expression. Each miRNA was
paired with each of the others lying in the same orientation on the same chromosome. For each pair, the distance between the two loci (right axis)
was ranked, and the correlation coefficient for their expression was plotted according this rank (left axis). (C) miRNAs are frequently coexpressed with
host genes. For each of 188 miRNA-host gene pairs (same orientation), the correlation was computed both between miRNA and host gene
expression; pair orderings are the same (‘‘X’’, no corresponding mRNA or gene copy data; p-values by two-sided t-statistic).
doi:10.1371/journal.pone.0034546.g001
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association between Dicer and Drosha expression levels and

overall survival in ovarian cancer [20], we did not observe this

association in our data (Figure S2).

Similar to what was done for the subtype-specific miRNAs,

miRNA:mRNA predicted pairs were defined, using the larger set

of miRNAs and genes correlated with outcome (P,0.05,

univariate Cox) but in opposite directions to their predicted

interactors (Figure S3 and Dataset S3). In the validation cohort,

we compared the miRNA-based prognostic signature scores with

the gene-based prognostic signature scores generated previously

[8]. The correlation between the two sets of scores was statistically

significant, though not high (Pearson’s R = 0.2, P,0.001, Figure

S4A). An additional set of scores obtained by averaging both

miRNA and gene scores was significant by univariate Cox

(P = 0.003), though a multivariate model combining the two

scores gave indeterminate results, with each score trending

towards significance (P, = 0.07 for each, Figure S4B). In a

three-way analysis separating tumors with high or low scores (.0

or ,0, respectively) for both gene and miRNA from the rest of the

tumors, there was good separation between the groups (Log rank

P = 0.01), with the mixed group (high for miRNA, low for gene, or

vice versa) showing an intermediate outcome as compared to the

predicted worse versus better groups (Figure S4C). In conclusion,

miRNA expression patterns may complement gene expression

patterns in predicting survival, with further study warranted; this

issue of integrating miRNA and mRNA with survival data has also

been examined elsewhere, using different analytical methods [21].

Some miRNAs correlated with disease progression could

conceivably have a functional role in ovarian cancer; miRNAs

correlated with better patient prognosis, for example, could be

considered candidate tumor suppressors. MiR-148a, one of our

better prognosis miRNAs, was recently found to inhibit prolifer-

ation in ovarian cancer cells [22]. With an aim towards uncovering

new candidates for therapeutic targeting, we over-expressed miR-

26b in vitro, which, while not our top significant miRNA, was

correlated with better prognosis (P,0.05), as well as previously

shown as inducing apoptosis in breast cancer [23]. Interestingly,

miR-26b inhibited proliferation of HEYA8 but not OVCAR-8

cells (Figure S5, both cell lines being derived from ovarian

cancers), though cell line-specific effects of miRNAs in ovarian

cancer have been reported previously (possibly reflecting genotypic

differences) [10]. One other miRNA from our signature that we

tested, miR-146a, had no effect in either HEYA8 or OVCAR-8

(data not shown); no other miRNAs from this signature were tested

in vitro by our group.

MiRNAs and their predicted gene targets tend to be anti-
correlated within ovarian tumors

A key to studying miRNAs is identifying their gene targets.

While miRNA targeting predictions made in silico (the vast

majority being unvalidated) may have sizable rates of false

positives and negatives, we hypothesized that considering

correlations between gene and miRNA expression across a large

panel of tumors could provide further support for potential

Figure 2. MiRNA correlates of molecular subtype, with
associated gene expression patterns. Unsupervised clustering of
miRNA expression data had identified three subtypes (C1–C3) of high-

grade serous ovarian tumors. For miRNAs and genes differing
significantly between the groups (t-test P,0.01, fold change.1.5, any
subtype compared to the other tumors), predicted miRNA:mRNA
functional pairs were defined, based on both anti-correlation in
expression and predicted miRNA targeting interaction (both miRanda
and TargetScan). For each miRNA:mRNA group (e.g. miRNA high/gene
low in C1 versus other tumors), expression patterns are represented as
heat maps (rows, miRNAs or gene transcripts; columns, profiled
samples).
doi:10.1371/journal.pone.0034546.g002
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miRNA:mRNA targeting relationships. To this end, we computed

all possible miRNA:mRNA correlations across the 487 TCGA

ovarian tumors, for the top expressed 191 miRNAs and 8547

genes. We then sorted the 19168547 miRNA:mRNA pairs by low

to high correlation, and found that among the most anti-correlated

pairs, there was high enrichment for predicted miRNA:mRNA

targeting interactions by miRanda algorithm (Figure 4A), where

no such enrichment was observed for the positively correlated

miRNAs:mRNAs. (This trend was observed when considering all

other miRNAs and genes in addition to those most highly

expressed, Figure S6.) In addition to validating the public target

prediction databases as being enriched for true positives, this

finding indicated that thousands of miRNA:mRNA targeting

interactions are active in ovarian cancer and influence tumor gene

expression heterogeneity.

The impact of CNA on expression level can vary greatly

between genes, conceivably introducing bias when evaluating

association of miRNA and gene expression levels. Therefore, in

addition to a direct Pearson’s correlation between miRNA and

mRNA, we applied a simple linear regression model to account for

‘noise’ due to CNA, evaluating the association between expression

levels of a miRNA and mRNA, when CNA status of the gene is

held fixed. Interestingly, the Pearson’s model and the regression

model of miRNA:mRNA correlations both gave very similar

overall results in terms of predicted target enrichment (Figure 4A),

with the regression model’s negatively correlated pairs showing

slightly greater target enrichment (Figure S7). While, in general,

CNA did not represent a major confounding factor, the regression

model could identify individual miRNA:mRNA correlations which

were missed by the Pearson’s model, including miR-29a:HARS2

(Figure S8).

As another way to globally represent miRNA:mRNA interac-

tions in ovarian cancer, for all miRNA:mRNA pairs with the

strongest negative correlation (regression coefficient ,27.0, based

on the linear model), we clustered the matrix of correlation

coefficients (Figure 4B, consisting of 1760 genes and 35 miRNAs,

matrix data table available as Dataset S4), thereby grouping

miRNAs when they are negatively correlated with same genes and

vice versa. We then cut the gene dendrogram to extract 6 gene

clusters (based on what appeared to be natural separations within

the cluster tree), each of which was found to be uniquely enriched

for different gene classes (Document S2), including a cluster with

Wnt and Hedgehog pathway gene members, a cluster with cell

adhesion genes, two clusters with immune response genes, and a

cluster of cell cycle-related genes. For several individual miRNAs,

the genes anti-correlated in expression were significantly enriched

for in silico predicted targets (Figure 4B and Figure S9 and Figure

S10).

Genes anti-correlated with miRNAs are enriched for
miRNA seeds predominantly in the 39-UTRs

Popular algorithms for miRNA targeting prediction, such as

miRanda or TargetScan, rely on basic assumptions, including

targeting within the gene 39-UTR. While miRNAs are understood

to typically bind 39-UTRs, there have been a number of studies

showing target sites in coding regions as being effective [24,25],

and others suggesting alternative 59-UTR targeting [26,27]. In

order to determine the overall trends as indicated by our data, in

terms of where miRNAs tend to bind, we examined miR-

NA:mRNA pairs anti-correlated in expression for the presence of

miRNA seed sequences (7mers) in either the 39-UTR, 59-UTR, or

coding sequence regions. Overall, high enrichment was found for

7mer seed sequences in the 39-UTRs of genes anti-correlated with

the corresponding miRNA (Figure 5), which was comparable to

the enrichment patterns observed using miRanda or TargetScan

predictions (which incorporate additional sequence features with

seed sequence alignment); weaker enrichment patterns were found

for seed sequences in coding regions, while no enrichment was

evident for 59-UTRs.

MiR-29a impacts anti-correlated gene targets and ovarian
cancer cell viability

The above results indicate widespread effects of miRNAs on

gene expression in ovarian cancer, though any putative miR-

NA:mRNA interactions of interest remain to be validated. There

are a number of ways one could arrive at candidate miRNAs for

functional studies, using any of the results presented in our study.

We focused our attention here on the miR-29 family, given its

Figure 3. MiRNAs correlated with patient survival in ovarian cancer. Using a training dataset of TCGA miRNA expression profiles, a
prognostic miRNA signature was defined (left panel) and then applied to a test dataset (right panel), each tumor being assigned a score measuring
how well the tumor’s expression patterns reflected those of the signature pattern. Kaplan-Meier analysis (log-rank tests) compares time to death for
ovarian cancer patients showing higher risk (prognostic score.0) versus lower risk (prognostic score,0). Univariate Cox test treats the prognostic
score as a continuous variable. (miR-923 was recently determined to be an rRNA fragment, according to miRBase.).
doi:10.1371/journal.pone.0034546.g003
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strong anti-correlation with many cell cycle-related genes

(Figure 4B). Members of the miR-29 family have been

demonstrated to act as tumor suppressors in acute myeloid

leukemia and lung cancer, in part by reverting aberrant

methylation patterns through its targeting of DNA methyltrans-

ferases (DNMT) and methylation-silenced tumor suppressors

[28,29]. Top anti-correlated genes of miR-29 in ovarian cancer

included DNMT3A and DNMT3B (Figure 6A), suggesting a similar

role for miR-29 in high-grade serous ovarian cancer. MiR-29a was

under-expressed and DNMT3A mRNA was over-expressed in the

DNA methylation subtype ‘‘MC2’’ (Figure S11); furthermore,

possible targets of DNMT3A methylation in the ovarian tumors

(having DNA methylation levels correlated with DNMT3A

expression) were enriched for genes showing an impact by

methylation (Figure S12, Table S1).

Genes anti-correlated with miR-29a were enriched for miR-29a

targets as predicted by sequence analysis (either TargetScan or

miRanda, Figure 6A). However, many in silico predicted targets

did not show the anticipated anti-correlation patterns, again

suggesting that by factoring in expression data, we could reduce

Figure 4. Correlations between miRNAs and genes in ovarian cancer. (A) MiRNAs and their predicted gene targets tend to be anti-correlated
within ovarian tumors. Scatter plot showing mean correlation and fraction of predicted target interactions (miRanda-mirSVR score.0.1), using bins of
10000 miRNA:mRNA pairs (total number of pairs represented: 191 miRNAs X 8547 genes). Dashed line corresponds to chance expected baseline
fraction (13.2%) of predicted target interactions. Correlations were computed using both Pearson’s (gray line) and a simple linear regression model to
account for ‘noise’ due to DNA copy alterations (black line). (B) Hierarchical clustering matrix (with Pearson’s correlation coefficient as distance metric,
Ward’s Linkage) of correlation coefficients for all miRNA:mRNA pairs having a strong negative correlation (regression coefficient smaller than 27.0,
only negative correlations represented). For each gene cluster, enriched gene classes are indicated. *, significant anti-enrichment (P,0.001, one-sided
Spearman’s rank, TargetScan or miRanda) for predicted targets within miRNA:mRNA correlations.
doi:10.1371/journal.pone.0034546.g004

miRNA-Gene Integration in Ovarian Cancer

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e34546



the false positive rate for target predictions. Furthermore, as

additional evidence for miR-29 activity, a correlation-based

sequence motif analysis found that the miR-29 seed sequence

complement was the top enriched motif in 39-UTRs of mRNAs

anti-correlated with miR-29a expression (Figure 6B), further

suggesting that miR-29 directly regulates expression levels of

many target mRNAs in the tumors; this analysis also showed

strong enrichment for non-canonical miR-29a seed motifs (i.e.

motifs not following the typical pattern of nucleotides 2–7) with a

bulge in position 3 of the miR-29a sequence, suggesting that target

prediction methods requiring perfect base pairing in the seed

region of the miRNA target duplex could miss a substantial

fraction of functional miRNA target interactions.

By forcing miR-29a expression in vitro in the ovarian cancer cell

line HEYA8, we confirmed that a number of the genes anti-

correlated with miR-29a—DNMT3A, DNMT3B, CDC6, CBX1,

MYBL2, and TIMELESS (four of which were predicted direct

targets)–were repressed by miR-29a (Figure 6C), which demon-

strated these gene targets as relevant in both the in vitro functional

models as well as the human tumor specimens; one gene tested,

SAE1, showed anti-correlations but no functional repression.

While miR-29 expression was not associated with survival

(P.0.05, univariate Cox), forced miR-29a expression impacted

cell proliferation in OvCar-8 and HEYA8 cell lines (Figure 6D)

and had an additional effect on chemotherapeutic agent cisplatin

in inhibiting the growth of these lines (Figure 6E).

Discussion

Molecular profiling of cancers is thought to potentially provide

important new classifications of patients and insight into observed

heterogeneity within a given disease. Over ten years ago, global

gene expression analyses of breast cancer defined distinct

molecular subtypes, which encompassed much of the known

heterogeneity of the disease in terms of histology [30]. Recently,

gene expression profiles have sub-classified cancers such as

glioblastoma and high-grade serous ovarian cancer [8,31]; diseases

which might be considered relatively homogeneous from a clinical

standpoint actually show highly diverse patterns at the gene

transcript level. In our study, we see extensive diversity of miRNA

patterns within high grade serous ovarian cancer, suggestive of

disease subtypes and patient outcome differences. We might

expect these diverse miRNA patterns to be reflected in the gene

expression data. Here, correlative analyses between mRNAs and

miRNAs helped establish aspects of normal miRNA biology, such

as the influence of host gene expression on intronic miRNAs, as

being maintained in cancer.

Before we began our study, it was unclear whether a broad

analysis of miRNAs would show them to have a widespread

impact on gene expression programs in ovarian cancer, as we have

now established through the clear patterns of anti-correlation

observed between miRNAs and predicted targets. Numerous

functional miRNA-gene targeting relationships have been validat-

ed in previous studies, using cell lines, and artificially modulating

certain miRNAs in vitro can show clear effects on cell behavior.

However, an overarching question with regards to cell line studies

is whether these are truly relevant to human cancers. While data

from experimental models (such as cell lines) help to establish

cause-and-effect relationships in the laboratory, data from human

tissues (such as cancer) can establish correlative (though not

necessarily causal) relationships that arguably appear relevant to

human disease; the combination of experimental and human tissue

data therefore ought to provide the strongest support for the

disease-specific relevance of a particular miRNA and its gene

targets.

The integration of miRNA and gene expression data within the

same large panel of tumors allows us to define miRNA:mRNA

correlations that are indicative of miRNA targeting. The observed

enrichment of in silico predicted miRNA targets within anti-

correlated miRNA:mRNA pairs both helps strengthen our

confidence in the in silico predictions (as based on the canonical

rules of miRNA:mRNA interaction), as well as allowing us to

prioritize those predictions that appear most relevant in ovarian

cancer. We should note, however, that our overall findings are

broad, allowing individual exceptions to the general rule (e.g. 59-

UTR targeting or miRNA-mediated upregulation of genes), and

that our study does not rule out future discoveries regarding new

rules of miRNA behavior not covered by our basic assumptions;

furthermore, a whole gene array analysis is perhaps limited in

being unable to detect alternative transcripts of the same gene

differing in 39-UTRs. Notwithstanding its limitations, our

analytical approach allowed us to identify miR-29a, previously

showing tumor-suppressive effects in other cancers, as having a

similar role in ovarian cancer. More functionally-relevant miRNAs

and their targets remain to be identified and explored, and TCGA

data will remain a valuable resource for miRNA:mRNA

Figure 5. Gene transcripts with miRNA 7mer in the 39-UTR tend to be anti-correlated with expression of the corresponding miRNA.
Analogous to Figure 4A, scatter plot showing mean correlation versus significance of enrichment for predicted target interactions (enrichment
expressed as a Fisher’s exact z-score), when separately considering the following potential interactions: 7mer seed sequence in 39-UTR (black dotted
line), 7mer seed sequence in 59-UTR (black dashed line), 7mer seed sequence in coding sequence region (‘‘cds,’’ gray dotted line), miRanda prediction
(black solid line), TargetScan prediction (gray solid line). Plot uses bins of 10000 miRNA:mRNA pairs (total number of pairs represented: 191 miRNAs X
8547 genes). Fisher’s exact z-score of +/22.57 corresponds to significant enrichment (nominal P,0.01) for predicted targets within miRNA:mRNA
pairs.
doi:10.1371/journal.pone.0034546.g005
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integrated approaches to discovering novel candidate targets for

cancer therapy in ovarian as well as other cancers.

Materials and Methods

Molecular profiling datasets
The set of 487 tumors analyzed were from the original TCGA

set of 489 [8] (samples TCGA-04-1536 and TCGA-61-1911 did

not have quality miRNA data at the time of this study). The

miRNA array normalization steps are as follows. The gMean-

Signal from raw array files (‘‘level 1’’) were quantile normalized

and log transformed, removing duplicate samples and control

probes (‘‘level 2’’). Multiple median centering steps set the median

of every batch to the median of all batches: in brief, within each

batch, we first subtracted the median for each miRNA, then

calculated the across batch median and added it back to all

samples within that batch; the resulting data were collapsed to

miRNA levels (‘‘level 3’’). The level 3 miRNA data are available at

the TCGA Data Portal [32]. For gene expression analysis, we

relied on the previously described ‘‘unified’’ dataset [8].

miRNA:mRNA correlation analysis
Differentially expressed genes and miRNAs were identified

using two-sided t-test on log-transformed data. Java TreeView

[33] represented expression patterns as color maps. MiR-

NA:mRNA targeting relationships for both subtype correlates

and patient survival correlates were identified using TargetScan

Human (release 5.0) [7] and miRanda (September 2008) [34];

SigTerms facilitated retrieval of putative miRNA:mRNA pairs

[35]. Predicted targeting relationships for miRNA:mRNA corre-

lations were identified using miRanda (microRNA.org, August

2010, conserved set). For estimating absolute miRNA precursor

copy levels (Figure 1A), we used the cBio Cancer Genomics Portal

[36]. The top 191 miRNAs X 8547 genes (Figures 4 and 5) were

defined as: for miRNAs, those in the top 100 with highest signal in

at least ten individual samples; for genes, with expression above

the tumor sample median in at least ten samples. Using a

previously-described statistical framework evaluating correlation of

39-UTR oligonucelotide (word) occurrences and mRNA expres-

sion changes [37], we analyzed motifs enriched in 39-UTRs of

mRNAs anti-correlated with miR-29a expression, computing

word association z-score with P-value for all 21,504 words of

length 5–7.

Survival analysis
The definition and validation of a prognostic miRNA signature

was carried out essentially as described for the previously-defined

prognostic mRNA (gene) signature [8], using the previously-

defined training and validation subsets with expression values

normalized within each subset to standard deviations from the

median. Given the miRNA signature from the training dataset,

the prognostic t-score was defined for each validation profile as

the two-sided t-statistic comparing, within each tumor profile, the

average of the poor prognosis miRNAs with the average of the

good prognosis miRNAs.

Cell cultures
OVCAR-8 cells were obtained from the NCI-Frederick Cancer

DCTD Tumor/Cell Line Repository (Frederick, MD), and HEY-

A8 cells were obtained from Gordon Mills (M.D. Anderson), both

cell lines having been properly authenticated by their respective

sources; cells were passaged in our laboratory for no more than

two months after resuscitation. Cells were cultured in RPMI 1640

(Gibco) with 10% heat-inactivated fetal bovine serum (Denville

Scientific) and penicillin-streptomycin (Invitrogen).

miR-29a overexpression
Cell lines were transfected in 6-well plates (66104 cells/well)

using 2.5 ml/well of Lipofectamine 2000 Transfection Reagent

(Invitrogen) and 10 pmol of hsa-miR29a (Ambion), according to

manufacturer’s instructions. Control groups of cells were treated

with transfection reagent alone (mock transfection), or transfected

with pre-miR negative control #1 (Ambion).

Proliferation assays
Cell were seeded (3000/well) in a 96 well plate and transfected

using 0.1 ml/well of Lipofectamine 2000 Transfection Reagent

(Invitrogen) and 0.5 pmol of hsa-miR29a (Ambion), with lipofecta-

mine alone or pre-miR negative control #1 (Ambion) as controls.

Cell proliferation was assayed at 24, 48, and 72 hrs post-transfection

using the MTS-based CellTiter 96 cell proliferation assay (Promega,

Madison, WI). The time course MTS assay experiments were run

three times (separate days), each with a different set of biological

quadruplicates (n = 12 per group); within each experiment run, the

viability measures within each time point were centered on the

mean of the WT group for the first run. For cisplatin treatment, cells

were transfected as described above, and media was replaced after

24 hrs with media containing Cisplatin (Sigma) (0–7.5 mg/mL);

viability was assayed 72 hrs post-transfection; experiments were run

three times, each with a different biological replicate (n = 3 per

group); for each run, viability measures within each concentration

point were centered on the mean of values for the first run.

Quantitative real-time PCR (QPCR)
Total RNA (60 ng) was reverse transcribed in a 40 ml reaction

using the TaqManH MicroRNA Reverse Transcription Kit (ABI).

Custom primer sequences are in Table S2. QPCR was performed on

a StepOne Real-Time PCR System (ABI) using Power- SYBR Green

PCR Master Mix (ABI) in a 20 ml reaction and human ribosomal

RNA 18 s as an endogenous control (which was itself not miR-29a-

regulated, data not shown). The QPCR experiments were run four

times (separate days), each with independent biological samples (n = 4

per group); within each experiment run, relative expression values

were normalized to standard deviations from the mean.

Supporting Information

Dataset S1 miRNAs most correlated in expression with
DNA copy number.

(XLSX)

Figure 6. MiR-29a impacts anti-correlated gene targets and ovarian cancer cell viability. (A) Correlation of gene expression with miR-29a
expression (genes from Figure 4B, same ordering). Predicted miR-29a targets are indicated. (B) Top eight words (of all 5, 6 and 7mers) enriched in 39-
UTRs of mRNAs anti-correlated with miR-29a expression (FDR,1e-6). (C) QPCR analysis showing relative quantity of selected miR-29a anti-correlated
gene targets after miR-29a overexpression in HEYA8 ovarian cancer cells (SCR, scrambled control; WT, untreated; two-sided t-test P,0.05, mir-29a vs
SCR and miR-29a vs WT, each comparison, except for SAE1). (D) MTS assays demonstrating the effect of miR-29a overexpression on proliferation of
HEYA8 and OVCAR-8 cells (Lipo, lipofectamine-treated alone, no miRNA; two-sided t-test P,0.001, miR-29a vs each of three control groups at both
48 h and 72 h). (E) Effect of miR-29a (72 h) on proliferation, under a range of concentrations of cisplatin treatment (at 48 h). Error bars represent
standard error.
doi:10.1371/journal.pone.0034546.g006
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Dataset S2 miR:mRNA pairs correlated with tumor
subtype.
(XLSX)

Dataset S3 miR:mRNA pairs correlated with patient
outcome.

(XLSX)

Dataset S4 miR:mRNA correlation matrix for top
expression miRs and mRNAs.
(XLSX)

Document S1 Lack of correlation of miRNAs with
platinum response.
(DOC)

Document S2 Functional gene classes associated with
negatively correlation miR:gene pairs.
(PDF)

Figure S1 The observed patterns of miRNAs (miRs)
being frequently coexpressed with neighboring miRNAs
and host genes are not solely due to copy number
alterations. (A) As in main Figure 1A, but with the

correlations between miRNA copy levels (SNP 1 M dataset,

collapsed into miRNAs). (B) For purposes of comparison with

the results of main Figure 1B, for each of 188 miRNA-host gene

pairs (same orientation), the correlation was computed between

miRNA expression and host gene copy (part D, using MSKCC

1 M CGH dataset, averaged by gene); ordering of mRNA-host

gene pairs is the same between main Figure 1B and

Supplemental Figure 1B; ‘‘X’’, no corresponding mRNA or

gene copy data.

(PNG)

Figure S2 Lack of association between Dicer and
Drosha levels with overall survival in the TCGA cohort.
A previous study of 111 invasive epithelial ovarian cancer samples

found that the distribution of Dicer mRNA levels was bimodal,

and that both Dicer and Drosha levels were positively associated

with overall survival (Merritt et al, 2008). (A) Dicer mRNA was not

bimodal in TCGA. (B) The data did not support a significant

difference in overall survival between patients with low and high

Drosha or Dicer levels. This was the case when comparing the top

and bottom 50% of patients as well as the lower and upper

quartiles (P.0.45, logrank test). A marginal improvement in

overall survival was seen in patients where Dicer levels were in the

extreme upper and lower quartiles (P = 0.026, logrank test),

although median survival for uncensored patients was not

improved in this case. Likewise, no association was revealed by

Cox proportional hazards regression (P = 0.45 and P = 0.53 for

Dicer and Drosha, respectively).

(PNG)

Figure S3 miRNAs and associated genes correlated with
patient survival in ovarian cancer. (A) Using a training

dataset of TCGA microRNA expression profiles, a prognostic

gene signature was defined (left panel) and then applied to a test

dataset (right panel), each tumor being assigned a score measuring

how well the tumor’s expression patterns reflected those of the

signature pattern. Kaplan-Meier analysis (log-rank tests) compares

time to death for ovarian cancer patients showing higher risk

(prognostic score.0) versus lower risk (prognositc score,0).

Univariate Cox test treats the prognostic score as a continuous

variable. (B) As for part A, but using gene expression profiles to

define survival gene correlates. (C) Numbers of predicted miRNA-

mRNA functional pairs for each algorithm and intersection of

algorithms based on anti-correlated expression in ovarian cancer.

(D) Top enriched miRNA targeting associations (one-sided

Fisher’s exact of P,0.05) for the genes correlated with better

prognosis, for the given algorithm.

(PNG)

Figure S4 Comparison of prognostic signature scores
derived from miRNA versus gene expression. Previously

(TCGA consortium, 2011), a gene expression signature of

prognosis was derived and applied to the same validation dataset

used to validate our miRNA prognostic signature. (A) Scatterplot

comparing miR and gene prognostic scores in the validation

cohort (N = 253). R-value and P-value by Pearson’s. (B) Cox

survival analysis of miR and gene prognostic signature scores

(evaluated as a continuous variable). The scores were evaluated

individually by univariate Cox, as well as an averaging of the two

scores. By multivariate Cox, the scores were evaluated in the

same model. (C) Kaplan-Meier analysis evaluating survival time

for three groups of patients: score.0 for both miR and gene

(pink), score,0 for both miR and gene (yellow), and all others

(blue).

(PNG)

Figure S5 miR-26b, associated with longer survival in
ovarian cancer patients, impacts cell viability in vitro in
HEYA8 cell line but not in OVCAR8. (A) Kaplan-Meier

analysis evaluating survival time for patient with higher versus

lower levels of miR-26b. Univariate Cox test evaluates miR-

26b expression as a continuous variable; Log rank test

compares the top 25% of expressors with the rest of the

patients. (B) MTS assays demonstrating the effect of miR-26b

overexpression on proliferation of HEYA8 cells (Lipo, lipofec-

tamine-treated alone, no miRNA; two-sided t-test P, = 0.01,

miR-26b vs each of three control groups at both 48 h and

72 h). (C) No effect was observed for miR-26b on proliferation

of OVCAR-8 cells. Over-expression and MTS experiments for

miR-26b were carried out in the same manner as for the miR-

29a experiments of Figure 6D.

(PNG)

Figure S6 MiRNAs and their predicted gene targets
tend to be anti-correlated within ovarian tumors. Similar

to main Figure 4A, except here all miRNAs and genes

represented in the dataset are considered (A), in addition to the

top most expressed miRNAs and genes (B), from Figure 4A, as

well as the remaining miRNAs and genes expressed below the set

threshold (C). miRNA:gene pairs are subdivided into bins of

10,000 each. Miranda predictions and Regression model results

were used.

(PNG)

Figure S7 MiRNAs and their predicted gene targets
tend to be anti-correlated within ovarian tumors, with
the regression model’s negatively correlated pairs
showing slightly greater target enrichment as compared
to the Pearson’s model. Scatter plot showing cumulative mean

correlation and fraction of predicted target interactions (miRanda-

mirSVR score.0.1), using bins of 10,000 miRNA:gene pairs (total

number of pairs represented: 191 miRNAs X 8547 genes). (Similar

to main Figure 4A, except number of interactions is cumulated

from low to high correlation.)

(PNG)

Figure S8 miR-29a:HARS2 as an example demonstrat-
ing correction of CNA bias in miRNA:gene expression
correlation. Correlations were computed using both Pearson’s

correlation (scatter plot outlined in red) and a simple linear
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regression model to account for ‘noise’ due to DNA copy

alterations (scatter plots outlined in blue).

(PNG)

Figure S9 Within ovarian tumors, several specific
miRNAs tend to be anti-correlated with their predicted
gene targets. Left panel shows hierarchical clustering matrix

(with pearson correlation coefficient as distance metric,Ward’s

Linkage) of correlation coefficients for all miRNA:gene pairs

(yellow = positive correlation; blue = negative correlation). The

two right panels show the corresponding predicted targeting

interaction (both PicTar and TargetScan algorithms) for the

miRNAs/genes (same gene ordering). *, significant anti-enrich-

ment (P,0.001, Spearman’s rank, one-sided) for predicted targets

within miRNA-to-gene correlations.

(PNG)

Figure S10 For each miRNA in the miRNA:gene corre-
lation matrix (from Figure 4), enrichment of predicted
target genes within each of the six different gene
clusters. Enrichment (bottom panel) is given by the fraction of

predicted target genes in a given cluster (miRanda miRSVR

score,21.0), divided by the background expected ratio (overall

fraction of miRNA target genes among all genes measured on

array and with predicted target sites of any human miRNA).

(PNG)

Figure S11 Methylation subtype 2 is associated with
combined low miR-29 and high DNMT3A levels.

(PNG)

Figure S12 Possible targets of DNMT3A methylation in
the ovarian tumors (having DNA methylation levels
positively correlated with DNMT3A expression level)
show a significantly higher proportion of genes with
mRNA expression levels strongly affected by DNA
methylation (P,1.4Ee-26, Wilcoxon Rank-sum).

(PNG)

Table S1 DNA methylation probes most correlated with
DMN3TA expression.

(XLSX)

Table S2 PCR primer sequences.

(DOCX)
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