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Abstract

We explore the connection between a stochastic simulation model and an ordinary differential equations (ODEs) model of
the dynamics of an excitable gene circuit that exhibits noise-induced oscillations. Near a bifurcation point in the ODE model,
the stochastic simulation model yields behavior dramatically different from that predicted by the ODE model. We analyze
how that behavior depends on the gene copy number and find very slow convergence to the large number limit near the
bifurcation point. The implications for understanding the dynamics of gene circuits and other birth-death dynamical
systems with small numbers of constituents are discussed.
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Introduction

Gene circuits are sets of interacting genes and proteins (and

perhaps other biological molecules). It is now widely recognized

that stochastic fluctuations play an important role in the dynamics

of gene circuits [1] The effects of these fluctuations on gene

expression have been studied in a variety of papers [2–7]. In fact,

these stochastic fluctuations may explain some aspects of

phenotype behavior: how differentiated cells emerge from cells

with identical genetic makeup and identical environments,

although many other so-called epigenetic effects such as DNA

methylation, histone modification, and small interfering RNAs

also play a role in differentiation and inheritance of differentiated

characteristics [7–9].

These fluctuations, always present when gene copy numbers

and the numbers of resulting messenger RNAs (mRNAs) and

proteins are small, must be taken into account to understand the

dynamics of genetic oscillators such as circadian clock networks.

Similar issues arise in the modeling of chemical reaction networks

[10] and ecological populations [11] when the number of

constituents is small. In this paper, however, we focus on the

dynamics of gene circuits.

Many studies of gene regulatory circuits have focused only on

steady-state behavior. For many gene circuits, however, temporal

behavior yields important information that is not accessible from

just steady-state conditions. Furthermore, in many situations,

protein production occurs in bursts and sometimes gene regulation

varies in time due to environmental changes, cell differentiation

and disease. Measuring and understanding the temporal dynamics

of gene circuits also helps to identify causal relations and feedback

loops, the details of which are hidden under steady-state

conditions. The importance of temporal behavior in understand-

ing gene circuits was emphasized in a recent review [12].

Many important cellular and organismal periodic processes are

controlled by genetic networks with more or less periodic

oscillations. From the dynamics point of view, these periodic

oscillations are surprising because most genes are present with only

small copy numbers—typically one or two copies per cell. Naively,

one might expect that the large relative fluctuations normally

associated with small molecular numbers would lead to irregular

oscillations. In reality, many of these genetic circuits exhibit quite

regular periodicity even when the copy numbers are small. The

long-term goal of our study is to understand how genetic circuits

are able to maintain regular oscillations in spite of the molecular

fluctuations associated with small numbers. In this paper, we focus

on the connections between two classes of models of gene circuit

dynamics: deterministic (ordinary differential equation) models

and stochastic models.

Once the key elements of a genetic circuit are identified, the

dynamics of the circuit can be specified either by a set of

deterministic ordinary differential equations (ODEs) (often called

rate equations) or by a stochastic formulation, usually implement-

ed as a Monte Carlo simulation of the dynamics. The stochastic

formulation, by design, includes fluctuations due to small

molecular numbers. Such fluctuations are of course absent from

the ODE models. The goal of this paper is to see how the behavior

of stochastic models is related to the deterministic behavior of the

commonly used ODE models.

An equivalent stochastic formulation using the so-called master

equation [13] for the dynamics of the probability distribution for

the number of molecules of the relevant species is, in most cases,

intractable for anything but the simplest networks. There are also

intermediate methods that add stochastic terms to the determin-

istic differential equation models. These intermediate methods are

often described by chemical Langevin equations [14], which can

be derived from the master equation for the probability

distribution under appropriate approximations. While the sto-

chastic models are viewed as being more realistic than the rate

equation models for gene circuits, they are computationally

expensive even for modest size networks. Thus, we would like to
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understand when the ODE results can be used in place of the

stochastic models and when they cannot.

The usual mathematical folklore is that the behavior described

by the stochastic simulations should approach that described by

the rate equations as the number of molecules, including the

number of gene copies, becomes large. What is generally lacking is

any prediction of how large those numbers must be to see similar

behavior. In the absence of analytical solutions for the probability

distributions that result from the chemical master equation, we

must resort to simulations and phenomenological models, which

we shall pursue in this paper.

The converse problem, how the deterministic results are

modified as the number of genes and molecules gets smaller, can

be treated in a systematic fashion via the so-called omega-

expansion of the master equation as developed by van Kampen

[13]. This approach yields, as a first approximation, the rate

equations for the system dynamics. The next terms in the

expansion (proportional to 1=
ffiffiffiffiffi
N
p

, where N is a measure of the

system size) give a Langevin equation description of the dynamics:

rate equations supplemented with stochastic driving terms.

For realistic biological systems, however, we are almost always

concerned with small gene copy numbers and relatively small

numbers of mRNAs and proteins. The question then arises of how

the dynamics are modified as these numbers increase though they

remain far from the traditional ‘‘thermodynamic (large number)

limit.’’

The gene circuit model used here falls into the class of

‘‘excitable’’ dynamical systems: for a range of parameter values,

the behavior of the system tends toward a time-independent steady

state (after initial transients die away). However, a sufficiently large

perturbation can push the system away from its steady state

conditions and excite a large excursion (a protein production

burst, for a gene circuit) before the system returns to the steady

state. For an excitable gene circuit, we have found as expected (the

details are given in what follows) that as the gene copy number

increases, the molecular (stochastic) model results, in general,

approach those of the rate equation (ODE) model as long as the

parameter values are significantly different from those on the

border between oscillations and steady-state behavior in the rate

equation model. Near the boundary between the two dynamical

regimes, however, the stochastic model behavior is oscillatory with

a regularity that is almost independent of gene copy number (at

least over the range of gene copy numbers [between 1 and 48]

explored in this study). This is a new result that may have

implications for the evolutionary interpretation of the design of

genetic oscillators: there may be an advantage in having oscillating

genetic networks poised on the boundary (as defined by rate

equations) between oscillatory and steady-state behavior because

in that regime, the oscillator properties are reasonably indepen-

dent of gene copy number. This behavior might be studied

experimentally using synthetic gene networks [15][16].

What remains missing is a method for predicting how the

convergence to the deterministic behavior depends on the

numbers of the various molecular constituents and the parameter

values. For an excitable system, the answer to this question should

depend on the parameters of the dynamical model that determine

the height of the escape barrier that sets the excitability of the

system’s dynamics. Later in this paper, we provide a phenome-

nological model that may guide more formal analytical treatments.

The effects of gene copy number variation are of interest more

broadly because it has been recognized that such variations lead to

phenotypic variation and, in some cases, disease. In a recent paper

[17], the effects of deleting one copy of various genes in the

galactose response system in the yeast Saccharomyces cerevisiae were

studied and modeled to explore if and how the system

compensates for changes in ‘‘network dosage’’ (essentially changes

in gene copy number). Copy number variations in the human

genome have been explored in recent studies [18] [19].

An extreme case occurs in aneuploidy [20], which refers to

having an abnormal number of chromosomes. Aneuploidy can

affect health and disease as well as phenotypic variations [21].

Experiments have shown that cells do not generally compensate for

changes in gene copy or chromosome number [22]. Gene copy

number variations may also result in nervous system disorders [23].

In recent work [24], Zakharova et al have investigated system-

size effects in cellular network models of oscillatory gene circuits.

The models allow coupling among the gene circuits in different

cells. Their work focused on seeing how the so-called stochastic

bifurcations [25] change as the number of cells in the network

changes. Stochastic bifurcations are marked by changes in the

structure of the probability distributions for the proteins produced

by the gene circuits. For the model used, the authors found that

the stochastic bifurcations were similar for networks with 1, 2, and

500 cells.

Methods

Oscillatory Gene Circuit Model
Since most real gene circuits are complex with many interacting

genes and proteins, we have focused on a relatively simple model

of a genetic oscillator [26], which we shall refer to as the VKBL

model. This model involves two genes, their promoter regions, the

messenger RNAs, and two product proteins, one of which

enhances the production of both proteins while the other forms

a complex with the activator protein thus effectively inhibiting the

production. In an earlier study, Hilborn and Erwin (2008) found

that the regularity of the oscillations in this model shows a local

maximum as a function of gene copy number, an effect known as

stochastic coherence (or coherence resonance). This was the first

systematic study of stochastic coherence in a gene circuit model. In

the current study, we have explored a wider range of parameter

values to understand the conditions under which stochastic

coherence occurs in this model and to explore the connections

between the molecular (stochastic chemical reaction) model of the

dynamics and the rate equation (ODE) model of the dynamics. In

the stochastic model version, we have found oscillations over a

much wider range of parameters, including those for which the

differential equation model predicts only a steady-state. (This fact

was pointed by Vilar et al. but not explored in detail.) Our results

show that the rate equation predictions must be interpreted

carefully and that the presumably more realistic stochastic model

often shows dramatically different behavior.

The VKBL model is described in terms of 16 reactions:

DAzA
cA

D’A ð1Þ

D’A
hA

DAzA ð2Þ

DRzA
cR

D’R ð3Þ

D’R
hR

DRzA ð4Þ
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D’A
a’A

D’AzMA ð5Þ

DA

aA
DAzMA ð6Þ

MA

dMA
X ð7Þ

MA

bA
MAzA ð8Þ

AzR
cC

C ð9Þ

A
dA

Y ð10Þ

D’R
a’R

MRzD’R ð11Þ

DR

aR
MRzDR ð12Þ

MR

dMR
Z ð13Þ

MR

bR
MRzR ð14Þ

C
dA

R ð15Þ

R
dR

W ð16Þ

In Eqs. (1)–(16), the non-italic symbols represent the specific

molecule type (rather than the number of molecules). D’A and DA

represent the DNA operator sites with and without protein A

(Activator) bound, respectively. D’R and DR are the correspond-

ing R (Repressor) protein operator sites. MA and MR are the

mRNAs for the two proteins. C represents the Activator-Repressor

complex. The model assumes that when the complex decomposes

Activator is degraded. Thus, dA appears in Eq. (15). W, X, Y, and

Z are inactive decay products. The model ignores any changes in

concentration due to cell growth or cell division (mitosis). The

numerical values of the parameters are given in Table 1; they are

the same as those used by [26]. A schematic diagram of the VKBL

model is shown in Fig. 1.

The dynamics predicted by the 16 reactions can be simulated by

means of the Gillespie algorithm [10,27], which makes use of

computer-generated random numbers to implement the reactions

stochastically in such a way that times between reactions of a

particular type follow an exponential distribution and the

probability of a reaction’s occurring is proportional to its reaction

rate constant. Figure 2 shows the dynamics of the R protein for the

R protein degradation rate dR~0:2.

The VKBL model can also be described by nine rate equations

for the number (or equivalently, concentrations, since we are

dealing with a fixed volume) of bound and unbound operator sites,

mRNAs, and the resulting proteins and the protein complex.

Following the notation of [26], we write the rate equations as

dDA=dt~hAD’A{cADAA ð17Þ

dDR=dt~hRD’R{cRDRA ð18Þ

dD’A=dt~cADAA{hAD’A ð19Þ

dD’R=dt~cRDRA{hRD’R ð20Þ

dMA=dt~a’AD’AzaADA{dMA
MA ð21Þ

dMR=dt~a’RD’RzaRDR{dMR
MR ð22Þ

dA=dt~bAMAzhAD0AzhRD0R

{A cADAzcRDRzcCRzdAð Þ
ð23Þ

dR=dt~bRMR{cCARzdAC{dRR ð24Þ

dC=dt~cCAR{dAC, ð25Þ

where the italic symbols indicate the number (concentration) of

molecules present of each type. The rate equation model treats the

molecular numbers (concentrations) as continuous variables.

In exploring the dynamics of the VKBL model, we used dR, the

degradation rate of protein R, as the control parameter. (There is

some empirical evidence that protein degradation plays a role in

controlling circadian oscillation periods [28].) For

dR,0.087812…, the rate equations predict that the system will

move towards a steady state with unchanging numbers of proteins

A and R. For dR.0.087812…, the behavior consists of perfectly

periodic oscillations consisting of bursts of mRNA and protein

production. In the language of nonlinear dynamics,

dR~0:087812::: (with the values of the other parameters listed

in Table 1) marks a subcritical Hopf bifurcation in the dynamical

behavior of the ODE model. For this bifurcation, no hysteresis

(bistability) is evident. Figure 3 illustrates the bifurcation by

plotting the maximum and minimum values of R(t) as a function of

dR.

The VKBL model exhibits excitable behavior for dR,0.087812

: the rate equations predict that concentrations will tend to steady

state values, but a sufficiently large perturbation will induce a burst

of mRNA and protein production before the behavior returns to

the steady state. In that range of parameter values, however, the

stochastic simulations show more or less regular bursts of protein

production—a type of noise-induced oscillation. The dynamics of

the system can be understood by plotting the nullclines for a

Stochastic and Deterministic Gene Circuits
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reduced version of the VKBL model [26]. The reduced model is a

two-variable model derived by assuming that the molecular

numbers of all the species except proteins R and C equilibrate to

the instantaneous values of the numbers of R and C. The system is

then described by two differential equations:

dR=dt~
bR(aRhRza0RcRa½R(t)�)

dMR
(hRzcRa½R(t)�)

{cCa½R(t)�R(t)zdAC(t){dRR(t)

ð26Þ

dC=dt~cCa½R(t)�R(t){dAC(t), ð27Þ

where

a½R(t)�~ 1

2
a0Ar(R){kD

� �

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0Ar(R){kD

� �2
z4aAr(R)kD

q ð28Þ

and

r(R)~
bA

dMA
cCRzdAð Þ and kD~

hA

cA

: ð29Þ

For the reduced model, the intersection of the nullclines (the

curves for which dR/dt and dC/dt = 0) determine the fixed point for

the system. Figure 4 shows the nullclines with the RC plane

projection of a trajectory from the full stochastic model superposed

for dR~0:06, for which value the fixed point is stable. The ODE

version of the model shows just steady state behavior (after transients

die away while the stochastic model shows noise-induced oscillations.

As an aside, we note that excitable systems may also display

(relatively) small amplitude oscillations around the steady-state

fixed point. See, for example [29], and [30]. We ignore those

small-amplitude oscillations here.

To investigate the connection between the behavior of the ODE

model and the stochastic simulation model, we study how the average

time between protein production bursts—the inter-burst interval

(IBI)—and the regularity of the inter-burst intervals depends on the

system size. We change the system size in two ways: (1) by varying the

gene copy number and (2) by varying the transcription rates (with

gene copy number fixed). We note that system-size effects in a model

close to the one described here were studied by [31], in which the

overall volume of the system was increased, keeping concentrations

fixed. Using the chemical Langevin equation method, Hou and Zin

[32] studied the volume dependence of noise effects in a simplified

circadian clock network consisting of only mRNA and two proteins.

The latter paper did not involve the gene copy number explicitly.

Results

Gene Copy Number Variation
We first examine how the system behavior depends on the gene

copy number. As mentioned previously, for dRw0:087812::: the

Figure 1. A schematic diagram of the VKBL model. The symbols next to the reaction arrows are the reaction rate parameters. The other
symbols are defined in the text. Modified from a similar figure in Vilar et al 2002 [26].
doi:10.1371/journal.pone.0034536.g001

Table 1. Numerical values of the parameters used in this
study.

Parameter Numerical Value

hA 50 h21

cA 1 molecules21 h21

hR 100 h21

cR 1 molecules21 h21

aA 50 h21

a9A 500 h21

aR 0.01 h21

a9R 50 h21

dMA 10 h21

dMR 0.5 h21

dA 1 h21

bA 50 h21

bR 5 h21

cC 2 molecules21 h21

They are the same as those used by [26]. dR , the R protein degradation rate, is
used as a control parameter.
doi:10.1371/journal.pone.0034536.t001

Stochastic and Deterministic Gene Circuits
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rate equation model predicts that protein bursts will occur at

regular intervals. The stochastic simulation model exhibits similar

behavior for all values of the gene copy number studied here (1

through 48). This behavior is illustrated in Fig. 5.

For dR values below the bifurcation value, the ODE model

predicts a time-independent steady state (no protein bursts). The

stochastic simulation model yields protein bursts throughout this

parameter range (i.e. the stochastic model predicts noise-induced

oscillations) as illustrated in Fig. 6, which shows how the time

Figure 2. R protein number as a function of time (in hours). Upper panel: R protein degradation rate dR~0:2 (and other parameters as
described in the text) with the dynamics simulated using the stochastic algorithm (Gillespie model). Gene copy = 1. The corresponding rate equation
model predicts perfectly periodic oscillations, as shown in the lower panel, for this set of parameters.
doi:10.1371/journal.pone.0034536.g002

Figure 3. A bifurcation diagram for the genetic circuit model. The maximum and minimum numbers of protein R are plotted as a function of
the R protein degradation rate dR with gene copy number = 1. For dRv0:087812::: the system displays steady-state (time independent) behavior.
doi:10.1371/journal.pone.0034536.g003

Stochastic and Deterministic Gene Circuits
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between protein bursts (the inter-burst interval, IBI) depends on

gene copy number for several values of dR, the R protein

degradation rate, near the ODE bifurcation value. For dR values

well above the bifurcation value, the IBIs are almost independent

of gene copy number. This behavior is expected because the ODE

model gives perfectly periodic oscillations for those parameter

values and we anticipate that the stochastic simulation results

should approach those of the ODE model as the gene copy

number increases. There is an overall trend as well: as dR

increases, the time between bursts decreases since the protein

Figure 4. A phase-space diagram for the genetic circuit model. Panel (a): The nullclines for the reduced model described by Eqns. (26) and
(27) with the R protein degradation rate dR~0:06 are shown by the dash and dash-dot lines. The RC plane projection of a trajectory from the full
stochastic model is superposed. This segment of the trajectory consists of three protein bursts. The phase space point circulates in the direction
indicated by the arrows. Panel (b): An expanded view of panel (a) in the neighborhood of the fixed point, indicated by the arrow near the lower left
corner.
doi:10.1371/journal.pone.0034536.g004

Figure 5. R protein number as as a function of time (in hours). The R protein degradation rate dR~0:06 with the dynamics calculated with the
stochastic algorithm. The rate equation model predicts a time-independent steady-state (after transients die away) for this set of parameter values.
Gene copy number = 1.
doi:10.1371/journal.pone.0034536.g005

Stochastic and Deterministic Gene Circuits
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degradation rate is the dominant effect in setting the length of the

protein burst.

For parameter values close to and below the ODE bifurcation

value dR~0:087812:::, the IBI increases as the gene copy number

increases as seen in Fig. 6. The behavior begins to approache that

of the ODE model (steady state) with (on average) longer times

between bursts. In addition, the time between bursts becomes

more irregular, as discussed below, and illustrated in Fig. 7. The

amplitude of the bursts, however, becomes more regular (in terms

of relative fluctuations) compared to the behavior with gene copy

number = 1 (Fig. 5).

We characterize the regularity of the protein bursts with a

regularity parameter 1R defined as the ratio of the average IBI (T)

to the standard deviation of the IBIs:

1R~
STTffiffiffiffiffiffiffiffiffiffiffiffi
var T
p , ð30Þ

where var T is the variance of the IBIs. Figure 8 shows the

regularity of the time intervals between protein bursts as a function

of gene copy number for dR values above, near, and below the

bifurcation value. We see that for dR well below the bifurcation

value, the regularity decreases as the gene copy number increases,

reflecting the increasing irregularity of the time between protein

bursts.

For dR well above the bifurcation value, we see that the

regularity increases rapidly with gene copy number as expected

since the stochastic simulation results should approach the

completely periodic (1R??) results from the ODE model for

large gene copy numbers. Close to the bifurcation value, however,

the regularity is almost independent of gene copy number, at least

over the range of values explored here. This effect is analogous to

‘‘critical slowing down’’ (very long relaxation times) near phase

transitions in thermodynamic systems [33,34].

Changing transcription rates
We can also change the number of molecules in the system by

increasing the transcription rates, leaving the gene copy numbers

fixed. For the sake of simplicity, we implemented these increases

by multiplying all of the transcription rates by a common factor

transMF. Figure 9 displays the regularity of the protein burst

intervals as a function of transMF for four values of the control

parameter dR, the R protein degradation rate. We see the same

general trends that are shown in Fig. 8, but the rise in regularity

for dR~0:2 is not as dramatic as that shown in Fig. 8.

We can also compare the two methods of varying system size by

looking at the regularity results in cases where the product of the

gene copy number and the transcription rate multiplicative factor

is constant. Three such comparisons are shown in Table 2. Note

that in all three cases, the product with the higher gene copy

number yields a regularity larger than that in the case with the

higher transMF, though the differences are not large compared to

the standard deviation of each of the regularity results. These

results tell us that increasing the gene copy number (at least for

small gene copy numbers) is more effective in enhancing the

regularity than is increasing the transcription rates.

Modeling the Interburst Interval
The results presented above came from stochastic simulations of

the dynamics of the VKBL model. One might ask if a more

analytic approach is available to predict the average interburst

interval and the regularity of the resulting bursts. For relatively

simple models of excitable systems, the answer is yes, but even then

the formalism is moderately complex and may require numerical

evaluation of integrals to obtain quantitative results [35].

Figure 6. The inter-burst interval (IBI) plotted as a function of the logarithm of the gene copy number. Four values of the control
parameter dR, the R protein degradation rate, were used with the stochastic simulation model. Lines have been added to guide the eye.
doi:10.1371/journal.pone.0034536.g006

Stochastic and Deterministic Gene Circuits
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Figure 7. Protein R number versus time (in hours). The data were calculated using the stochastic simulation method. The R protein
degradation rate dR~0:06 with gene copy number = 24. Compare with Fig. 5 where gene copy = 1.
doi:10.1371/journal.pone.0034536.g007

Figure 8. The average regularity of the protein burst intervals plotted as a function of the logarithm of the gene copy number. Four
values of the control parameter dR, the R protein degradation rate, were used with the stochastic simulation. The average was taken over 10
independent noise realizations. In most cases the uncertainty bars are smaller than the plotted symbols. Lines added to guide the eye.
doi:10.1371/journal.pone.0034536.g008

Stochastic and Deterministic Gene Circuits
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To develop a simpler formal description of these effects, we

model the stochastic dynamics as a so-called first-passage problem

[13]. Let us assume that the system has settled into the state space

region around the ODE fixed point. With small values of the noise

amplitude, the system will remain near that fixed point. However,

if a sufficiently large noise ‘‘kick’’ occurs, the system can escape

from the neighborhood of the fixed point and undergo a large

excursion through state space producing a burst of proteins before

returning to the neighborhood of the fixed point (low protein

numbers in the model considered here). This behavior indicates

that there is an escape barrier near the fixed point, the ‘‘height’’ of

which depends on the system parameters. A typical average first

passage time t for escape can be expressed as

t~t0 eB=STD{1
� �

, ð31Þ

where B is the barrier height (expressed in terms of molecule

numbers), STD is the noise standard deviation and t0 is a

parameter that sets the time scale for the system under study. For

low and moderate noise amplitudes, the duration of the burst (the

long excursion through state space) TB is approximately

independent of the noise amplitude. The overall time between

bursts is then given by

IBI~TBzt: ð32Þ

When STD is very small compared to B, the average time between

bursts will be large. The system hardly ever escapes from the fixed

point region. As the noise amplitude increases, t decreases: larger

noise kicks allow the system to escape from the fixed point region

more quickly.

The barrier height is determined by the model parameters (e.g.

dR in the VKBL model) including the gene copy number. For

typical chemical reaction models (exponentially distributed times

between reactions), the noise standard deviation STD is propor-

tional to the square root of the number of molecules present

(Poisson distribution). To reproduce the observed IBI as a function

of gene copy number, we must have the barrier height

proportional to the gene copy number raised to some power

greater than 1/2. For this model, let’s assume the barrier height is

proportional to the gene copy number N and that STD~
ffiffiffiffiffi
N
p

, the

Poisson distribution result. Eq. (32) then becomes

IBI~T0zt0(ea
ffiffiffi
N
p

{1): ð33Þ

Figure 10 shows the results of fitting Eq. (33) to the protein

interburst intervals (IBIs) calculated from the simulation data. The

Figure 9. The average regularity of the protein bursts as a function of the logarithm of the transcription rate multiplicative factor
transMF. Four different values of dR, the R protein degradation rate, were used with the stochastic simulation method. Gene copy number = 1. The
averages were computed from 10 independent noise realizations.
doi:10.1371/journal.pone.0034536.g009

Table 2. Regularity of the protein burst intervals for several
combinations of the product gene copy number6transMF.

transMFRgene
copy number Q 0.5 1 2 3

1 7.3960.12 7.6560.11 7.8460.13

2 7.6360.13 8.3260.13

3 8.0260.17

The R protein degradation rate dR~0:06. Compare regularity values with
identical products (gene copy number)6(transMF).
doi:10.1371/journal.pone.0034536.t002

Stochastic and Deterministic Gene Circuits
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model provides a reasonable fit to the data over a large range of

gene copy numbers.

Discussion

The results presented in this paper indicate that stochastic

effects due to small gene copy numbers play an important role in

the dynamics of oscillatory gene networks. Many of these networks

are described by models whose behavior is ‘‘excitable.’’ That is, in

the absence of stochastic fluctuations, the model may predict time-

independent steady state concentrations of mRNA and the

associated proteins. However, when stochastic effects, primarily

due to fluctuations associated with small gene copy numbers, are

taken into account, the model may predict (more or less regular)

bursts of mRNA and protein production. If the parameters of the

model are close to the boundary between steady state behavior

and oscillatory behavior for the deterministic (non-stochastic)

model, the stochastic model may exhibit this burst behavior over a

wide range of gene copy numbers. For large gene copy numbers,

one would expect the behavior of the stochastic model to approach

that of the deterministic model, but close to the boundary between

steady-state and oscillatory behavior (a bifurcation), that conver-

gence can be very slow.

From the biological perspective, one might argue that Nature

allows the system parameters to evolve to be close to the

bifurcation boundary because in that parameter region, the

average time between mRNA and protein bursts and the

regularity of those bursts is relatively independent of gene copy

number and transcription and translation rates. Whether this

conclusion is true in a system exhibiting a supercritical Hopf

bifurcation will be explored in future work.
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Architecture-dependent noise discriminates functionally analogous differentia-

tion circuits. Cell 139(3): 512–522.

8. Margueron R, Reinberg D (2010) Chromatin structure and the inheritance of

epigenetic information. Nat Rev Genet 11(4): 285–296.

9. Mazzio EA, Soliman KFA (2012) Basic concepts of epigenetics: Impact of

environmental signals on gene expression. Epigenetics 7(2): 119–130.

10. Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions.

J Phys Chem 81(25): 2340–2361.

11. Lande R, Engen S, Sæther B (2003) Stochastic population dynamics in ecology

and conservation. Oxford; New York: Oxford University Press.

Figure 10. The protein interburst interval (IBI) plotted as a function of the logarithm of the gene copy number. Squares: results from
Eq. (33) with T0 = 56 hrs, a = 0.35 and t0~15 hrs: Circles: results from the stochastic simulation of the reactions in Eqs. (1)–(16) with the R protein
degradation rate dR~0:06.
doi:10.1371/journal.pone.0034536.g010

Stochastic and Deterministic Gene Circuits

PLoS ONE | www.plosone.org 10 April 2012 | Volume 7 | Issue 4 | e34536



12. Kim HD, Shay T, O’Shea EK, Regev A (2009) Transcriptional regulatory

circuits: Predicting numbers from alphabets. Science 325(5939): 429–432.
13. van Kampen NG (1992) Stochastic processes in physics and chemistry.

Amsterdam: Elsevier.

14. Gillespie DT (2000) The chemical langevin equation. J Chem Phys 113(1):
297–306.

15. Murphy KF, Balázsi G, Collins JJ (2007) Combinatorial promoter design for
engineering noisy gene expression. Proc Nat Acad Sci 104(31): 12726–31.

16. Lu TK, Khalil AS, Collins JJ (2009) Next-generation synthetic gene networks.

Nat Biotechnol 27(12): 1139–1150.
17. Acar M, Pando BF, Arnold FH, Elowitz MB, von Oudenaarden A (2010) A

general mechanism for network-dosage compensation in gene circuits. Science
329(5999): 1656–1660.

18. Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, et al. (2010)
Diversity of human copy number variation and multicopy genes. Science

330(6004): 641–646.

19. Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, et al. (2011) Mapping
copy number variation by population-scale genome sequencing. Nature

470(7332): 59–65.
20. Torres EM, Williams BR, Amon A (2008) Aneuploidy: Cells losing their

balance. Genetics 179(2): 737–746.

21. Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, et al. (2010) Aneuploidy
confers quantitative proteome changes and phenotypic variation in budding

yeast. Nature 468(7321): 321–325.
22. Springer M, Weissman JS, Kirschner MW (2010) A general lack of

compensation for gene dosage in yeast. Mol Syst Biol 6: 368–368.
23. Lee JA, Lupski JR (2006) Genomic rearrangements and gene copy-number

alterations as a cause of nervous system disorders. Neuron 52(1): 103–121.

24. Zakharova A, Kurths J, Vadivasova T, Koseska A (2011) Analysing dynamical

behavior of cellular networks via stochastic bifurcations. PLoS ONE 6(5):

e19696-1-12.

25. Arnold L (2003) Random dynamical systems. Berlin: Springer.

26. Vilar JMG, Kueh HY, Barkai N, Leibler S (2002) Mechanisms of noise-

resistance in genetic oscillators. Proc Nat Acad Sci 99(9): 5988–5992.

27. Gillespie DT (1976) A general method for numerically simulating the stochastic

time evolution of coupled chemical reactions. J Comput Phys 22: 403–434.

28. Busino L, Bassermann F, Maiolica A, Lee C, Nolan PM, et al. (2007) SCFFbx13

controls the oscillation of the circadian clock by directing the degradation of

cryptochrome proteins. Science 316: 900–904.

29. Galla T (2009) Intrinsic fluctuations in stochastic delay systems: Theoretical

description and application to a simple model of gene regulation. Phys Rev E

80(2): 021909-1-9.

30. Boland RP, Galla T, McKane AJ (2009) Limit cycles, complex floquet

multipliers, and intrinsic noise. Phys Rev E 79(5): 051131–1.

31. Steuer R, Zhou C, Kurths J (2003) Constructive effects of fluctuations in genetic

and biochemical regulatory systems. BioSystems 72(3): 241–251.

32. Hou Z, Xin H (2003) Internal noise stochastic resonance in a circadian clock

system. J Chem Phys 119(22): 11508–11512.

33. Yeomans JM (1992) Statistical mechanics of phase transitions. Oxford

[England], New York: Oxford University Press.

34. Sethna JP (2006) Statistical mechanics, entropy, order parameters, and

complexity. Oxford, New York: Oxford University Press.

35. Hilborn RC, Erwin RJ (2005) Fokker-planck analysis of stochastic coherence in

models of an excitable neuron with noise in both fast and slow dynamics. Phys

Rev E 72: 031112-1-14.

Stochastic and Deterministic Gene Circuits

PLoS ONE | www.plosone.org 11 April 2012 | Volume 7 | Issue 4 | e34536


