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Abstract

The tumour suppressor gene adenomatous polyposis coli (APC) is mutated in most colorectal cancer cases, leading to the
synthesis of truncated APC products and the stabilization of b-catenin. Truncated APC is almost always retained in tumour
cells, suggesting that it serves an essential function. Here, RNA interference has been used to down-regulate truncated APC
in several colorectal cancer cell lines expressing truncated APCs of different lengths, thereby performing an analysis
covering most of the mutation cluster region (MCR). The consequences on proliferation in vitro, tumour formation in vivo
and the level and transcriptional activity of b-catenin have been investigated. Down-regulation of truncated APC results in
an inhibition of tumour cell population expansion in vitro in 6 cell lines out of 6 and inhibition of tumour outgrowth in vivo
as analysed in one of these cell lines, HT29. This provides a general rule explaining the retention of truncated APC in
colorectal tumours and defines it as a suitable target for therapeutic intervention. Actually, we also show that it is possible
to design a shRNA that targets a specific truncated isoform of APC without altering the expression of wild-type APC. Down-
regulation of truncated APC is accompanied by an up-regulation of the transcriptional activity of b-catenin in 5 out of 6 cell
lines. Surprisingly, the increased signalling is associated in most cases (4 out of 5) with an up-regulation of b-catenin levels,
indicating that truncated APC can still modulate wnt signalling through controlling the level of b-catenin. This control can
happen even when truncated APC lacks the b-catenin inhibiting domain (CiD) involved in targeting b-catenin for
proteasomal degradation. Thus, truncated APC is an essential component of colorectal cancer cells, required for cell
proliferation, possibly by adjusting b-catenin signalling to the ‘‘just right’’ level.
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Introduction

The stimulation of the canonical wnt pathway by wnt growth

factors leads to the activation of a genetic program controlling the

coordinated expansion, fate and sorting of the epithelial cell

population of the colon. The wnt signalling cascade induces the

stabilisation of b-catenin which contributes to the transcription of

specific target genes [1,2,3]. The levels of cytoplasmic b-catenin

are normally controlled by a multiprotein destruction complex

which is assembled over the tumour suppressor APC [4]. The

destruction complex promotes phosphorylation of b-catenin,

which is subsequently degraded in the proteasome [2]. In the

presence of Wnt, the destruction complex is inactivated, resulting

in the stabilization of b-catenin.

In colorectal cancer, epithelial cells proliferate inappropriately

because they acquired mutations in components of the wnt

pathway, therefore mimicking the effect of a permanent Wnt

stimulation [2]. APC mutations occur in a high proportion of

sporadic colorectal carcinomas (up to 80%) and were first

identified in the germline of FAP (familial adenomatous polyposis)

patients [5,6]. Several studies have shown that APC inactivation in

vivo in mice is sufficient to initiate adenoma development

[7,8,9,10,11]. Mutations of the APC gene affect both alleles and

occur mostly in a mutation cluster region (MCR) which is located

approximately in the middle of the open reading frame (fig. 1).

These mutations generate stop codons or frameshifts leading to the

deletion of the C-terminal half of the APC protein. It is commonly

accepted that the major consequence of APC mutations with

respect to wnt signalling is the failure of assembling a functional b-

catenin destruction complex which ultimately results in the

constitutive stabilization of b-catenin.

In addition to this negative selection, colorectal cancer cells

almost invariably retain at least one truncated APC product whose

length is defined by the position of the MCR and, occasionally, a

second but shorter product (fig. 1) [12]. The reason for this

retention is not clear, but the strong selection for the presence of

truncated APC indicates that it must fulfil an important function.

Actually, the ‘‘just right signalling’’ hypothesis [13] for which

experimental support has been recently provided [9,14] states that

APC truncating mutations are selected to avoid too much b-

catenin signalling that would be detrimental to tumour develop-

ment. Our previous data have shown that down-regulation of APC

in SW480 cells results in a stimulation of the b-catenin

transcriptional activity accompanied by a reduction of cell
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proliferation [15]. This indicates that truncated APC in SW480

cells serves an essential function. Human tumours, however,

express truncated APCs of different lengths, having retained

different functional domains, i.e. the b-catenin inhibitory domain

(CiD) and part of the third 20 amino acid repeat, that provide

variable efficiencies in targeting b-catenin for degradation [16,17].

It is not clear whether the observations made in SW480 cells

represent a fortuitous event or can be generalized throughout the

MCR. It is also not known whether truncated APC displaying the

CiD can still control the level of b-catenin under endogenous

settings. In the present work, we used RNA interference [18] to

down-regulate the level of APC in several colon cancer cell lines

expressing truncated APCs of different lengths covering the MCR.

The consequences on the level and transcriptional activity of b-

catenin, proliferation in vitro and tumour formation in vivo were

investigated.

Results

Truncated APC controls proliferation of colorectal cancer
cell lines and b-catenin activity

The first step of our analysis consisted in asking whether APC

would constitute an essential component required for cell

proliferation in vitro. For that purpose, we took advantage of

the availability of a siRNA directed against APC for which we had

already shown the efficiency [15]. This siRNA sequence was

expressed as a small hairpin structure (N-APC shRNA) from a

lentiviral vector [19] co-expressing also GFP (shN-APC, see

Methods). As a negative control, we used the empty viral vector

(shVEC). To investigate the possibility of achieving an allele-

specific down-regulation of APC, we also designed a lentivirus

encoding a shRNA specific for the APC isoform expressed by

VACO4A cells that does not recognize wild-type APC or

truncated APC isoforms from the other colorectal cancer cell

lines (shVACO4A, see methods). The resulting constructs were

packaged into a lentiviral capsid to transduce colorectal cancer cell

lines. Transduced cells having stably integrated the lentiviral

provirus into their genome and therefore expressing GFP were

isolated by fluorescence activated cell sorting (FACS), replated and

analysed for APC expression and a possible effect on cell

population expansion.

The N-APC shRNA inhibited the expression of APC protein

(fig. 2A) and mRNA (fig. 2C) in HT29, GP2D, CaCo2 and LoVo

cells. In contrast, the empty viral vector shVEC or the one

encoding the VACO4A shRNA, which serve as a control, did not

affect the levels of APC in these cells. The consequences of APC

down-regulation were investigated in a cell proliferation assay

measuring the relative numbers of live cells. The N-APC shRNA,

but not the VACO4A shRNA, inhibited the expansion of the

populations of HT29, GP2D, CaCo2 and LoVo cells (fig. 2B).

APC down-regulation was associated with an increase of b-catenin

level in GP2D, CaCo2 and LoVo cells, but not in HT29 cells

(fig. 2A). Fractionation of GP2D and LoVo cells revealed an

increase of nuclear b-catenin upon APC down-regulation (fig. S1).

This did not occur in HT29 cells (fig. S1). The transcriptional

activity of b-catenin, as measured by semi-quantitative RT-PCR

of the b-catenin target genes axin2 [20,21] and Lgr5 [22]

increased in the cell lines transduced with the shN-APC, but not

the shVACO4A (fig. 2C). These effects were not due to an off-

target effect of the shRNA, because transient transfection of an

unrelated APC siRNA [15] in GP2D and CaCo2 cells also led to

reduced cell proliferation and b-catenin-dependent transcription

as measured by a luciferase-based reporter assay (see Methods)

(fig. 3). Finally, we could also show that the N-APC shRNA

inhibited efficiently the expression of both truncated APCs present

in SW948 cells (fig. 4A), led to an up-regulation of the amount of

b-catenin (fig. 4A), attenuated cell proliferation (fig. 4B) and

stimulated the transcriptional activity of b-catenin (fig. 4C).

Together, our results indicate that truncated APC is required for

the expansion of colorectal cancer cells in vitro, in line with a

previous observation made in SW480 cells [15], and that

truncated APC suppresses not only b-catenin signalling but

surprisingly also its protein level.

The VACO4A specific shRNA inhibited APC expression in

VACO4A cells (fig. 2A), which was accompanied by a slight

increase of the b-catenin level (fig. 2A) and a reduced expansion of

the VACO4A cell population (fig. 2B). The observed effects were

likely due to APC down-regulation, because they also occurred

with the unrelated N-APC shRNA. We did not observe any

significant modification of axin2 and Lgr5 transcripts levels

(fig. 2C). The VACO4A shRNA did not affect the APC level in

Figure 1. Truncated APC products from SW480, DLD1, HT29,
GP2D, CaCo2, LoVo, SW948 and VACO4A cells. Functional
domains of APC are indicated and include the Armadillo repeat (Arm)
domain, the 15 (15RA–15RD) and 20 (20R1–20R3) amino acid repeats
that are b-catenin binding sites, the b-catenin inhibitory domain (CID)
which is necessary to target b-catenin for degradation and the first axin/
conductin binding site (SAMP). The mutation cluster region (MCR)
extends from the end of the 15RA to the middle of the 20R3 and
corresponds to the region where most mutations associated with
colorectal cancer have been found. The indicated amino acid positions
refer to the length of the various truncated APCs expressed in the
different colorectal cancer cell lines. SW480, DLD1, GP2D, CaCo2 and
VACO4A cells have a truncating mutation at one allele and underwent
loss of heterozygocity at the second allele, whereas SW948, HT29 and
LoVo cells carry each two different truncating mutations.
doi:10.1371/journal.pone.0034479.g001
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HT29, GP2D, CaCo2 and LoVo cells. These cells express full

length APC mRNAs that are wild-type at the sequence mutated in

VACO4A cells and can thus be taken as surrogates of wild-type

APC. Also, the VACO4A shRNA did not affect the APC level in

HCT116 cells that express the wild-type APC mRNA (fig. S2).

Thus, our data show that it is possible to design an allele-specific

siRNA that distinguishes a deletion from the wild-type allele. We

conclude that the expansion of colorectal cancer cell lines can be

inhibited by RNA interference against APC in an allele-specific

manner.

Truncated APC controls tumour development
In the next step, we asked whether a reduction of the APC level

in colorectal carcinoma cells would also inhibit the formation of

tumours in nude mice. Therefore, HT29 cells transduced with the

control virus shVEC and those encoding either the N-APC

shRNA or the VACO4 shRNA were sorted and injected

subcutaneously into nude mice. The experiment showed that

HT29 cells transduced with the control virus formed tumours of

variable sizes within a period of about six weeks, after which mice

were sacrificed (fig. 5A). HT29 cells expressing the N-APC shRNA

developed only few tumours, which had a relatively modest

volume (fig. 5A) and grew slower than control tumours (fig. 5B). In

contrast, tumours produced by HT29 cells expressing the

VACO4A specific shRNA grew at frequencies and sizes

comparable to control tumours. We conclude that truncated

APC in HT29 cells is required for tumourigenesis.

Discussion

Knockdown of truncated APC reduced the in vitro proliferation

of 6 out of 6 human colorectal cancer cell lines (table 1) and

inhibited tumour development by HT29 cells upon transplanta-

tion in nude mice. A more detailed analysis revealed that down-

Figure 2. Stable knockdown of APC reduces colorectal cancer cell proliferation in vitro and increases wnt signalling. HT29, GP2D,
CaCo2, LoVo and VACO4A cells were transduced with lentiviruses for the expression of either shVEC, shN-APC or shVACO4A and the transduced cells
were sorted by FACS based on GFP co-expressed by the lentivirus. Data are representative of at least two independent experiments. (A) Efficiency of
APC knockdown and b-catenin level as determined by western blotting in Triton-X100 (Tx) or hypotonic (H) cell lysates. a-tubulin and b-actin were
used as controls for equal sample loading. Molecular weights of APC isoforms (kD) are indicated. (B) Effect of APC knockdown on cellular
proliferation, analyzed using the colorimetric MTT assay over the indicated time course. Data are the mean of triplicates+/2standard deviation. (C)
Semi-quantitative RT-PCR of APC, axin2, Lgr5 and GAPDH (21 and 26 cycles).
doi:10.1371/journal.pone.0034479.g002

Figure 3. Transient knockdown of APC reduces colorectal cancer cell proliferation in vitro and increases wnt signalling. GP2D and
CaCo2 cells were transiently transfected with either siGFP or siAPC and further processed two days after transfection. Data are representative of at
least two independent experiments. (A) Efficiency of APC knockdown and b-catenin level. (B) Effect of APC knockdown on cellular proliferation, as
described in legend to figure 2B. (C) b-catenin-dependent reporter assay. Cells were transiently transfected with either the TOPglow or control
FOPglow reporters, together with a b-galactosidase expression vector to correct for variations in the transfection efficiency. Luciferase activity was
measured 48 h post-transfection and normalized to b-galactosidase values. Data are represented as the mean value of triplicates+/2standard
deviation. To visualize FOP activity, values have been multiplied by 4 and 100 for GP2D and CaCo2 cells, respectively.
doi:10.1371/journal.pone.0034479.g003

Role of Truncated APC

PLoS ONE | www.plosone.org 4 April 2012 | Volume 7 | Issue 4 | e34479



regulation of truncated APC in all 6 cell lines did not correlate

with increased apoptosis, by measuring the extent of proteolytical

cleavage of the executioner of apoptosis caspase 3 and its substrate

poly (ADP-ribose) polymerase [23] (data not shown). Our results

extend previous observations showing that truncated APC from

SW480 cells [15] and full length APC from HCT116 [24] cells are

required for cell proliferation in vitro. The ‘‘scan’’ analysis we

performed along the MCR by investigating the role of APCs of

different lengths indicates that truncated APC is still under

selective pressure in the cell lines and provides a general

explanation as to why colorectal cancer cells invariably retain

expression of truncated APC despite their structural variability.

Why is truncated APC required for tumour development in

humans? The combined data from current and previous studies

(summarized in table 1) indicate that APC down-regulation is

associated with a stimulation of the b-catenin transcriptional

activity in SW480 [25], DLD1 [25], CaCo2, LoVo, SW948,

GP2D and HT29 cells. VACO4A cells represent an exception in

the sense that the levels of axin2 and Lgr5 mRNAs were not

affected by APC down-regulation in these cells. However, we

cannot exclude that the transcription of these b-catenin target

genes is already at a maximum in VACO4A cells, but that other

genes are still sensitive to a modification of the b-catenin level.

Thus, it is tempting to hypothesize that colorectal tumours always

retain a truncated APC product to still keep a control over the

transcriptional activity of b-catenin and avoid it to reach a level

too high, detrimental for tumour growth, in accordance with the

‘‘just right signalling’’ model [13]. Alternatively, truncated APC

might be required for tumour development independently of its

control over the transcriptional activity of b-catenin, as previously

discussed [15].

How is truncated APC still able to regulate the transcriptional

activity of b-catenin? Our data indicate that truncated APC can

influence the transcriptional activity of b-catenin by at least two

different mechanisms. In HT29 cells, we observed a stimulation of

the transcriptional activity of b-catenin upon APC down-

regulation without any obvious increase of the b-catenin level.

Truncated APC from HT29 cells has retained not only the CiD

but also the third 20 amino acid repeat, both together conferring a

strong b-catenin down-regulating activity to APC [16,17,26]. It is

therefore not surprising that lowering the APC level in HT29 cells

does not lead to an increase of the b-catenin concentration.

However, the reduction of the APC level in HT29 cells may result

in a higher concentration of ‘‘free’’ b-catenin available for

transcription despite the fact that the overall level of b-catenin

remains constant. This possible titration of b-catenin exerted by

truncated APC may likely involve the 15 and/or 20 amino acid

repeats (fig. 1) [25]. Note however that in the HT29 cell line, the

amount of nuclear b-catenin does not increase upon APC down-

regulation (fig. S1), which is speaking against a mechanism of

cytoplasmic retention of b-catenin by truncated APC [27].

Alternatively, the down-regulation of APC may promote the

activity of other signalling pathways that ultimately lead to b-

catenin-dependent transcription. For example, it has been shown

that APC down-regulation in CBS and Moser colon cancer cells

converts the negative effect of TGFb on wnt signalling into a

positive one, without altering the amount of nuclear b-catenin

[28]. Similarly, it has been reported that APC knock-down

stimulates PAK1-mediated b-catenin phosphorylation on Ser675,

leading to a weaker interaction of b-catenin with HDAC1 but to a

stronger interaction with CBP, thereby resulting in enhanced b-

catenin transcriptional activity [29,30]. APCs from GP2D and the

long APC isoforms from LoVo and SW948 cells have retained the

CiD that provides a b-catenin down-regulating activity [16,17]

and therefore a likely explanation for the up-regulation of both the

level and the transcriptional activity of b-catenin after APC knock-

down. APCs from DLD1, CaCo2, VACO4A and SW480 cells

lack the CiD and representative constructs with a similar length

cannot target b-catenin for destruction upon transient ectopic

expression [16]. Our data indicate however that truncated APCs

from CaCo2 and VACO4A still have retained some residual b-

catenin down-regulating activity. The associated molecular

mechanism is not clear and might be related to the stimulation

of b-catenin phosphorylation, the stabilization of phosphorylated

b-catenin or the transfer to the ubiquitination machinery [31].

Truncated APCs from DLD1 and SW480, described in previous

studies [15,25], do not apparently control the b-catenin level. The

discrepancy relative to VACO4A and CaCo2 cells may first

Figure 4. Knockdown of truncated APC reduces proliferation of SW948 cells in vitro and increases wnt signalling. SW948 cells were
transduced with lentiviruses for the expression of either shVEC or shN-APC and the transduced cells were sorted by FACS based on GFP co-expressed
by the lentivirus. Data are representative of at least two independent experiments. (A) Efficiency of APC knockdown and b-catenin level. (B) Effect of
APC knockdown on cellular proliferation, as described in legend to figure 2B. (C) b-catenin-dependent reporter assay, as described in legend to
figure 3C. To visualize FOP activity, values have been multiplied by 10.
doi:10.1371/journal.pone.0034479.g004
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depend on cell-specific mutational events (other than APC) in

these cells that are from different origins. Second, one cannot

exclude that it depends on the specific nature and/or location of

the APC mutations along the sequence. Third, different b-catenin

and APC intracellular concentrations, as well as different b-

catenin to APC ratios between the cell lines, together with the

extent of APC down-regulation may also explain why down-

regulation of truncated APCs in SW480 or DLD1 cells does not

affect the level of b-catenin. For instance, SW480 cells contain

higher amounts of signalling (not membrane-bound) b-catenin

relative to the other cell lines (fig. S3) and it is possible that a

further accumulation cannot be achieved or tolerated. Inversely,

DLD1 cells express high amounts of truncated APC (fig. S3) and it

is possible that its down-regulation was not efficient enough to

reveal an effect on the b-catenin level. Meanwhile, truncated

APCs from SW480 and DLD1 cells still modulate the transcrip-

tional activity of b-catenin, possibly by one of the mechanisms

described above for HT29 cells.

Germ-line deletions of the whole APC gene in FAP patients

have been described earlier [32,33], but the nature of the somatic

hit that follows the germ-line deletion is not known. These patients

had developed an intermediary type of FAP characterized by the

occurrence of approximately 1000 polyps. A genotype-phenotype

correlation analysis [34] suggests the presence of a mutation in the

MCR of the second APC allele in the polyps. First, the phenotype

is very similar to the one of patients harbouring a germ-line

mutation before the MCR and in whom the development of

polyps is dictated by the acquisition of an optimal truncating

somatic mutation in the MCR of the second allele. Second, the

phenotype associated with a germ-line APC whole gene deletion is

contrasting with the profuse phenotype characterized by a higher

number of polyps (,5000) and LOH consecutive to a germ-line

mutation in the MCR. Thus, if APC was not necessary for tumour

development in patients with a germ-line deletion of the APC

gene, one would expect loss of heterozygocity (LOH) as the

mechanism of inactivation of the second APC allele, because it is

spontaneously more frequent than a mutation [35]. As a

consequence, the patients with a germ-line APC deletion would

have presented with the profuse phenotype, which was not the

case. It is therefore likely that a germ-line APC whole gene

deletion is followed by a mutation in the MCR of the second allele,

a hypothesis which is also supported by our results indicating a

requirement of truncated APC in tumour cells.

Our data contradict those obtained in the mouse showing that

polyposis can initiate after a complete loss of both APC alleles

[36]. Several other mice models of intestinal cancers have also

been created, by introducing constitutive truncating mutations of

APC in the germ-line [8,9,10,11] (for a review, see [37]). Though

developing intestinal adenomas, these models present however two

striking differences to the human disease, that are independent of

the location of the germ-line mutation in the mouse APC

sequence. In the mouse, adenomas develop mainly in the small

intestine, whereas colorectal cancer is far more frequent in FAP

patients. In the mouse, the second wild-type APC allele is

systematically inactivated by homologous recombination with the

mutated allele, leading to LOH [9,36,38,39]. This lack of selective

pressure for a secondary point mutation is contrasting to the

human situation and indicates that the size and even the presence

of APC are not important in the mouse models. It may reflect

some functional difference between both APC orthologues.

Alternatively, it might be that truncated APC becomes necessary

at later stages of tumoural progression which the animals never

reach because the adenomas limit their life span. In both cases, it

follows that the contribution of truncated APC to human

tumourigenesis is unlikely to be understood in the currently

available mouse models, albeit they remain adequate tools to study

the events consecutive to b-catenin stabilization, as recently

demonstrated [14,40].

As truncated APC seems required for the development of

human colorectal cancer, it constitutes a suitable therapeutic

target. Allele-specific RNA interference of APC allows in principle

to envisage a patient-specific therapy for colorectal cancer,

whereby only cells affected by a mutation in the APC gene will

be hampered in their proliferation capacity upon acquisition of a

shRNA matching the mutation [41,42]. Allele-specific RNA

interference using a shRNA specific of truncated APC expressed

Figure 5. Knockdown of truncated APC inhibits tumour
formation by HT29 cells in nude mice. Lentivirus transduced
HT29 cells expressing either shVEC, shN-APC or shVACO4A were
injected subcutaneously into both flanks of nude mice (n, number of
injections). Tumours were measured once a week over a period of 6
weeks post injection. (A) Tumour volumes upon termination shown as a
dot plot. Bar, mean tumour size. (B) Increase of the mean tumour
volume over time, +/2standard deviation.
doi:10.1371/journal.pone.0034479.g005
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in the VACO4A cell line resulted in an inhibition of proliferation

only in the VACO4A cell line containing the mutation matching

the shRNA and not in all other cell lines. The success in producing

a siRNA specific of a defined APC allele depended however on the

nature of the APC mutation. There are several reports indicating

that RNA interference can distinguish two alleles differing by a

point mutation [43], but the allele distinction was better when

wild-type and mutant APC alleles were differing by a deletion

(data not shown), probably because the structure of the RNA

duplex in the RNA-induced silencing complex [18] is more

affected, as compared to the situation involving a point mutation.

Thus, for a better chance of discrimination between wild-type and

mutant APC, it seems preferable to choose two APC alleles

differing by a deletion. Approximately one third of APC mutations

are point mutations (36%), whereas the remaining two-thirds are

either small insertions (12%) or, in most cases, deletions of one or

several base pairs (51%) (visit www.umd.be:2070/ for a detailed

description of APC mutations). The prevalence of insertions and

deletions makes allele-specific RNA interference toward APC an

attractive possibility, but the success in designing a siRNA specific

of a defined APC mutation depends also on the sequence context

where it is located. Indeed some deletions occur in repeated

sequences of a low complexity that may not be adequate for allele-

specific RNA interference. For this reason, it is difficult to predict

how many different insertions and deletions would be suitable for

targeting APC.

Together, we have shown that truncated APCs from colorectal

cancer cells are required for cell proliferation in vitro and still keep

a control over the transcriptional activity of b-catenin despite their

structural variability. It remains to be determined how they exert

these functions at the molecular level.

Materials and Methods

Cells
CaCo2, HT29, GP2D, LoVo, VACO4A and SW948 colorectal

cancer cell lines [44] and HEK293T human embryonic kidney

cells were maintained in DMEM medium (PAA Laboratories,

Cölbe, Germany) supplemented with 10% foetal calf serum

(Perbio Laboratories, Frankfurt/Main, Germany) and 1% peni-

cillin and 1% streptomycin (PAA Laboratories) at 37uC in a

humidified atmosphere with 10% CO2. For culturing VACO4A

cells, Petri plates were coated with mouse collagen IV (50 mg/ml

in PBS). APC mutations in the cell lines are described in [44] and

the resulting truncated APC protein products are shown in fig. 1.

Plasmids and shRNAs
The pSuper-based short hairpin RNA (shRNA) expression

constructs were generated by cloning annealed oligonucleotides

into the BglII/HindIII-digested pSUPER vector [45]. The N-APC

and VACO4A specific shRNA sequences were 729 GAGGT-

CATCTCAGAACAAG and 4053 AGCTGTTGAA-----

TTCAGGAGC, respectively. Numbers refer to the position of

the first nucleotide in the APC open reading frame and the dashes

show the VACO4A specific 5 base pairs deletion.

Lentiviral vectors
Lentiviral plasmid pTRIPDU3-EF1a/EGFP [46] was modified

by inserting the linker 59-aattcggttacctctagaactagtcccgggcatatggtc-

gacgctagcg-39 at the unique EcoRI site (the modified vector is

called pTRIPDU3-EF1a/EGFP-LF). The APC shRNA expression

cassettes were excised from the pSuper based APC shRNA

expression plasmids (as XhoI-XbaI fragments) and sub-cloned

between XbaI-SalI sites in pTRIPDU3-EF1a/EGFP-LF.

Lentiviral vector supernatants
Lentiviral vector particles were produced as described. [47] In

brief, HEK293T cells were cotransfected with the lentiviral

packaging (pCMV-dR8.2dvpr, 18 mg) and envelope (pMD.2G,

9 mg) plasmids, along with the lentiviral vector pTRIPDU3-EF1a/

EGFP-LF-shRNA (40 mg) encoding the shRNAs, in 15 cm culture

dishes with polyethylenimine transfection reagent (1 mg/ml stock,

3 ml/mg DNA). Cells were washed 8 hours later. Viral superna-

tants were collected 48 to 60 hours after transfection, cleared by

centrifugation (2000 g at room temperature), filtered through

0.45 mm filters and either applied directly onto the cell lines or

frozen.

Viral transduction protocol
The cell lines were plated and grown to 80% confluency. An

infection cocktail consisting of the retroviral supernatant contain-

ing 8 mg/ml Sequabrene (Sigma-Aldrich, Steinheim, Germany)

was added directly on the cells and infection was allowed to

proceed for 24 hours, after which cells were washed and cultured

Table 1. Consequences of APC down-regulation.

Cell line (amino acid position of APC truncation) b-catenin level b-catenin activity proliferation

SW480 (1338+LOH) not changed1 up1,2 down4

VACO4A (1354+LOH)5 up not changed down

CaCo2 (1367+LOH)5 Up up2,3 down

DLD1 (1417+LOH) not changed1 up1,2 not done

LoVo (1429+1114)5 Up up3 down

SW948 (1430+1114)5 Up up2 down

GP2D (1450+LOH)5 Up up2,3 down

HT29 (1555+853)5 not changed up3 down

LOH, loss of heterozygocity.
1, reference [25].
2, as measured by using the TOP/FOP assay.
3, as measured by RT-PCR of the axin2 and Lgr5 target genes.
4, reference [15].
5, this study.
doi:10.1371/journal.pone.0034479.t001
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further for 48 hours with fresh medium. GFP positive cells were

sorted by fluorescence activated cell sorting (FACS) on a MoFlo

apparatus (Beckman Coulter, Krefeld, Germany).

Cell proliferation assay
A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

(MTT) assay kit from Roche Diagnostics (Mannheim, Germany)

was used to determine cell numbers according to the manufac-

turer’s instructions.

Cell extracts and western blotting
Cell extracts were prepared and western blotting was performed

as described [1]. The antibodies used were APC antibody (ALi 12–

28) from Abcam (Cambridge, UK), anti-b-actin from Santa Cruz

Biotechnologies (Heidelberg, Germany), anti-a-tubulin from AbD

Serotec (Düsseldorf, Germany), anti-Ecadherin from Sigma

(Taufkirchen, Germany), anti-lamin from Santa Cruz Biotechnol-

ogies (Heidelberg, Germany) and secondary antibodies coupled to

horseradish peroxidase from Dianova (Hamburg, Germany). The

blots were developed using the chemiluminescence reagents

Western LightningTM from Perkin Elmer Life Sciences (Boston,

USA) and the signals were detected under a LAS-3000-Fuji

camera from Raytest (Straubenhardt, Germany).

Nuclear extracts
Cells were washed two times with PBS and incubated for

10 min at room temperature in 10 mM HEPES, pH 7.9, 10 mM

KCl, 0.1 mM EDTA, 0.4% IGEPAL CA630 (Sigma, Tauf-

kirchen, Germany), 1 mM DTT and 1 mM PMSF. Lysates were

harvested using a cell scraper and centrifuged at 4uC at top speed

(150006g) for 3 min. Supernatants and pellets were mixed with

SDS-PAGE sample buffer to give the ‘‘cytoplasmic’’ and nuclear

fractions, respectively.

Semi-quantitative RT-PCR
Total cellular RNA was isolated using peqGold Trifast reagent

from Peqlab (Erlangen, Germany), cDNAs were generated by reverse

transcriptase reactions using AffinityScriptTM QPCR cDNA Synthe-

sis kit from Agilent Technologies Deutschland (Böblingen, Germany)

and PCR was performed using Paq5000TM DNA Polymerase kit

from Agilent Technologies Deutschland, according to manufacturer’s

instructions. The following thermal cycling parameters were used:

30 s at 95uC, 30 s at 55uC (for APC and Lgr5) or 57uC (for Axin2

and GAPDH), and 45 s at 72uC, with an initial step of 95uC for

3 min and a final step of 72uC for 5 min. Sequences of primers were

as follows: APC, 59-AAGTTGCGGCCGCTGGGAACCAAGG-

TGGAAATGGTG-39 (forward) and 59-AAGTCGCGGCCGCC-

TATTCCTATTCAACAGGAGCTGGCATTG-39 (reverse); Axin-

2, 59-GCAAACTTTCGCCAACCGTG-39 (forward) and 59 -CTC-

TGGAGCTGTTTCTTACTGCCC-39 (reverse); Lgr5, 59-CTT-

GGCCCTGAACAAAATACA-39 (forward) and 59- AAGGGT-

TGCCTACAAATGCTT- 39 (reverse); GAPDH, 59-CCTGCT-

TCACCACCTTCTTG -39 (forward) and 59-CTTCACCACCAT-

GGAGAAGG-39 (reverse).

siRNA transfection
siAPC (aagacgttgcgagaagttgga) or siGFP (aagctacctgttccatggcca)

(50–100 nM final concentration) were transfected into cells

overnight using 1 ml Lipofectamine 2000 (Invitrogen, Darmstadt,

Germany) per ml siRNA (20 mM). The sequences show only the

coding strand.

TOP/FOP reporter assays [48]
The TOPglow reporter consists of a tandem repeat of four

TCF/LEF1 binding sites inserted in front of a TATA box [49],

driving the expression of luciferase in a b-catenin-dependent

manner. In the FOPglow reporter, the four binding sites are

mutated to abolish binding of TCF/LEF1. pUHD16.1 plasmid

expressing ß-galactosidase was transiently transfected together

with either FOPglow or TOPglow plasmids at an equimolar ratio

(300 ng each for SW948 using polyethylenimine transfection

reagent (1 mg/ml stock, 3 ml/mg DNA) and 75 ng each for GP2D

and CaCo2 using Lipofectamine 2000). The transcriptional

activity measured 48 h post transfection is defined as the ratio of

TOPglow or FOPglow luciferase values to the b-galactosidase

values.

Xenograft experiments
For xenograft experiments, 66105 HT29 cells infected with

lentiviruses for expression of shVEC, shN-APC or shVACO4A

were resuspended in 200 ml PBS and injected subcutaneously into

the flanks of 6-week-old female BALB/c nu/nu mice (Charles

River Laboratories, Wilmington, USA). Tumour size was

measured once a week with a caliper and tumour volume was

calculated using the formula: (length6width2)/2. Mice were

sacrificed 6 weeks after inoculation or as soon as a reduction of

vitality was observed. Experiments were performed according to

the german animal protection law.

Supporting Information

Figure S1 HT29, LoVo and GP2D cells expressing either
the sh-Vec or the sh-NAPC were fractionated into
cytoplasmic and nuclear extracts. Western blotting using

anti-Ecadherin and anti-lamin antibodies reveals the quality of the

preparations. b-catenin is shown above. The dotted lines indicate

the removal of intervening lanes.

(PPT)

Figure S2 Triton-X100 cell lysates from HCT116 cells
expressing either the sh-VEC, the sh-N-APC or the
shVACO4A were submitted to western blotting using
either anti-APC or anti-b-actin antibodies.

(PPT)

Figure S3 Triton-X100 and hypotonic cell lysates de-
rived from the same numbers of DLD1, HT29, LoVo and
SW480 cells were submitted to western blotting using
anti-APC and anti-b-catenin antibodies, respectively.

(PPT)
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