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Abstract

Background: The genetic tractability and the species-specific association with beetles make the nematode Pristionchus
pacificus an exciting emerging model organism for comparative studies in development and behavior. P. pacificus differs
from Caenorhabditis elegans (a bacterial feeder) by its buccal teeth and the lack of pharyngeal grinders, but almost nothing
is known about which genes coordinate P. pacificus feeding behaviors, such as pharyngeal pumping rate, locomotion, and
fat storage.

Methodology/Principal Findings: We analyzed P. pacificus pharyngeal pumping rate and locomotion behavior on and off
food, as well as on different species of bacteria (Escherichia coli, Bacillus subtilis, and Caulobacter crescentus). We found that
the cGMP-dependent protein kinase G (PKG) Ppa-EGL-4 in P. pacificus plays an important role in regulating the pumping
rate, mouth form dimorphism, the duration of forward locomotion, and the amount of fat stored in intestine. In addition,
Ppa-EGL-4 interacts with Ppa-OBI-1, a recently identified protein involved in chemosensation, to influence feeding and
locomotion behavior. We also found that C. crescentus NA1000 increased pharyngeal pumping as well as fat storage in P.
pacificus.

Conclusions: The PKG EGL-4 has conserved functions in regulating feeding behavior in both C. elegans and P. pacificus
nematodes. The Ppa-EGL-4 also has been co-opted during evolution to regulate P. pacificus mouth form dimorphism that
indirectly affect pharyngeal pumping rate. Specifically, the lack of Ppa-EGL-4 function increases pharyngeal pumping, time
spent in forward locomotion, and fat storage, in part as a result of higher food intake. Ppa-OBI-1 functions upstream or
parallel to Ppa-EGL-4. The beetle-associated omnivorous P. pacificus respond differently to changes in food state and food
quality compared to the exclusively bacteriovorous C. elegans.
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Introduction

Evolutionary changes in development and behavior take place in

the context of ecology. In turn, what and how organisms eat are the

most salient aspects of their ecology readily observable under

laboratory conditions. Because of its exclusively bacteriovorous diet,

relatively simple neuronal architecture, and genetic tractability, the

nematode Caenorhabditis elegans is an attractive model for the study of

how gene expression impinges upon feeding behavior, and how food

availability andquality can interactwithgenotypes [1,2]. InC. elegans,

as well as in other free-living nematodes, the most prominent organ

involved in feeding is the pharynx. Food intake begins at the buccal

cavity and is pumped into two pharyngeal bulbs composed of the

anterior bulb (corpus), the isthmus, and the posterior bulb (terminal

bulb). Contractions of the pharyngeal muscle groups (pumping)

followedposteriorly sweeping relaxationof themuscles in the isthmus

(peristalsis) result in food ingestion in C. elegans [3].

P. pacificus is a necromenic nematode specifically associated with

several species of phytophagous beetles around the globe, in

particular the Oriental Beetle Exomala orientalis in Japan and

Northeastern US, as well as the Cyclocephala masked chafers in

Southern California (RL Hong, unpublished results) [4–6]. Free-

living P. pacificus populations can also be found in the soil and

maintained on strict bacterial diets in the laboratory. P. pacificus

belongs to the Diplogasteridae family of nematodes whose

common ancestor with the Rhabditidae family diverged approx-

imately 250–420 million years ago [7]. Unlike the Rhabditid C.

elegans, Diplogastrids lack pharyngeal grinders in the terminal bulb

(posterior pharynx) that help to breakup bacteria but instead have

a larger buccal cavity anterior to the pharynx that contain two

chitinous teeth. P. pacificus, in particular, have phenotypic

dimorphism consisting of two mouth forms, one with a narrower

buccal cavity called the stenostomatous form, and another with

a broader buccal cavity known as the eurystomatous form [8–10].

The evolution of teeth in Pristionchus nematodes may be

advantageous for the necromenic lifestyle in which Pristionchus

can feed on various food sources such as bacteria, fungi, and other
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nematodes. All Pristionchus species however, can sustain itself on an

E. coli-only diet in the laboratory.

Despite such divergent feeding physiology and natural ecology,

we currently have sparse knowledge of P. pacificus feeding

behavior. A recent study showed that P. pacificus decrease forward

bending frequency from on to off food state whereas C. elegans

increase forward bending frequency when transferred from on to

off food [11]. Other free-living nematodes such as Oscheius

myriophila, Rhabditella, and Pellioditis typica display similar reactions

as C. elegans to changes in food state [11]. Only Panagrellus redivivus

displayed the same feeding behavior as P. pacificus. Changes in

foraging behavior by speeding up or slowing down locomotion

presumably need to be coordinated with changes in food intake. In

C. elegans, the feeding rate is measured by the rate of pharyngeal

pumping– pumping is higher on food than in the absence of food

[12]. Thus P. pacificus responds to a lack of food by slowing down

locomotion, whereas C. elegans increase locomotion but reduce

pharyngeal pumping when food is removed. This study will

address how P. pacificus adjust food pumping rate in response to

food availability and food quality.

In C. elegans, a pleiotropic gene known to integrate environ-

mental perception, behavior, and growth is Cel-egl-4. Cel-EGL-4 is

a highly conserved cGMP dependent protein kinase G (PKG)

important for a variety of food-seeking behaviors, such as

pharyngeal pumping, chemosensation, and locomotion [13–16].

PKGs in other invertebrates such as the fruit fly Drosophila and the

honeybee Apis mellifera also play prominent roles in regulating

foraging and a polymorphism in PKG is maintained in wild

Drosophila populations [17,18]. Past studies in P. pacificus demon-

strated that differences in Ppa-egl-4 expression level is involved in

the natural polymorphism for an insect sex pheromone attraction

between two P. pacificus strains [16]. In this study, we found that

the Ppa-egl-4(tu374) null allele animals are predominantly

stenostomatous in mouth form, compared to the ,2:1 stenosto-

matous:eurystomatous ratio found in the wild-type PS312

population [10]. Since EGL-4 function is conserved across phyla

and can generate phenotypic changes both at the macroevolu-

tionary level (from insects to nematodes), as well as at the

microevolutionary level (within Drosophila and P. pacificus popula-

tions), we sought to address in this study the hypothesis that EGL-4

can also be responsible for coordinating genetic changes in feeding

behavior at an intermediate evolutionary scale by comparing the

feeding behaviors of P. pacificus and C. elegans nematodes.

Results

P. pacificus Pharyngeal Pumping Rate Changes in
Response to Food Availability and Food Type
Both P. pacificus and C. elegans live solely on E. coli OP50 under

normal laboratory conditions. To investigate whether food types

can alter pumping rate, we cultured P. pacificus PS312 for more

than six generations on two other bacterial species found in soil2

the gram-negative Caulobacter crescentus NA1000 found in freshwa-

ter and neutral soil [20] and the gram-positive Bacillus subtilis

PY79 [21]. Wild-type PS312 cultured on E. coli OP50 showed

,25% increased pharyngeal pumping rate (pumps per minute of

the corpus, ppm (Fig. 1A) when removed from food for at least 5

minutes. Similarly, PS312 cultured on C. crescentus and B. subtilis

showed increased ppm when removed from food by ,23% and

,26%, respectively (Fig. 1B). However, we were surprised to find

the magnitude of increase in pumping to be the same, although

these 3 bacterial species differ in size (C. crescentus=E. coli,B.

subtilis) and growth rate (C. crescentus,B. subtilis,E. coli) [3,22,23].

Interestingly, P. pacificus pumps more rapidly both on and off C.

Figure 1. P. pacificus pharynx and pharyngeal pumping rate on
various bacteria species and strains (mean6SEM). (A) Wild-type
PS312 pharynx (Nomarski DIC). Pharyngeal pumping is visible as
contractions of the muscles of the corpus (bracketed, anterior is right).
The isthmus and the terminal bulb are visible on the right. The scale bar
represents 20 mm. (B) Pumping rates of P. pacificus wild-type PS312
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crescentus than on and off E. coli and the larger B. subtilis. This

observation suggests that food size alone does not influence the

pumping rate.

Our finding that P. pacificus increases pharyngeal pumping soon

after food deprivation, but that the magnitude of this initial

starvation response does not differ on the three diverse species of

bacteria we tested, led us to further ask if changes in the size and

growth rate within a single bacteria species can affect the increase

in pumping rate off food. We took advantage of the availability of

C. crescentus cell cycle mutants by feeding P. pacificus on two other

strains of C. crescentus with defects in the DNA replication regulator

(ctrA) that affect the cell length as well as the growth rate. SM921

cells (medium) are on average twice as long as the wild-type

NA1000 (small) while LS2195 cells (large) are more than twice as

long as NA1000 (S. Murray, unpublished results) [24]. We found

that nematodes grown on the longer, slower dividing C. crescentus

strains displayed no increase in pumping rate off food, resulting in

the same rate as on food (,130 ppm) (Fig. 1C). Hence, increasing

the C. crescentus cell length or reducing its growth rate or both

seemed to abolish the immediate increase in pumping rate off

food, although the pumping rate on food remained unchanged.

This lack of response may be due to the longer time it takes to

sense the removal of the longer mutant bacteria, or a complete

elimination of the response to food removal. It remains unclear

how the longer bacteria size or slower metabolism of the mutant

strains causes this delayed ‘‘panic’’ effect. It makes sense that

nematodes pump faster when facing possible starvation, but it will

be more interesting to understand in the future why certain food

quality can suppress this immediate reaction to food removal.

The cGMP Signaling Pathway is Important for Controlling
Pharyngeal Pumping Rate in P. pacificus
P. pacificus is a free-living nematode capable of eating non-

bacterial food such as fungi and other nematodes [9,10]. Previous

comparative studies highlighted that one major difference between

P. pacificus and C. elegans foraging behavior is the decrease in

locomotion from on to off food state [11]. Hence, we examined to

see if there are other differences in feeding behavior in P. pacificus,

such as food intake rate. In C. elegans wild-type N2, the pharyngeal

pumping rate is measured by counting the pumping movements of

the grinder in the terminal bulb of the pharynx, and pumping

decreases initially when transferred from a well-fed state on food

(e.g. E. coli OP50) to an off food state without any bacteria

(,1 hour) [12] Because P. pacificus do not pump in the terminal

bulb but instead pump only in the corpus (anterior bulb), we

measured pumping rate by visually counting the contractions of

the corpus. We found that, unlike C. elegans N2, P. pacificus wild-

type PS312 showed increased pumping rate when off food

compared to on food, although both rates are much lower than

the pumping rate of C. elegans (.200 ppm).

To determine which genes affect pumping rate, we first

measured the pumping rate of the Ppa-egl-4(tu374) loss-of-function

null allele [16]. P. pacificus EGL-4 is the ortholog of the C. elegans

cGMP dependent protein kinase G (PKG) known to regulate

pharyngeal pumping, chemosensation, and locomotion [13–

15,25,38]. The Cel-egl-4 loss-of-function mutants lack feeding

quiescence after fasting and pumps faster than wild-type N2 on

food (pers. comm. van Buskirk) [3]. We found that the loss of Ppa-

EGL-4 function also greatly increased pumping off food compared

to wild-type PS312, although pumping on food remained the same

between wild-type and Ppa-egl-4. The Ppa-egl-4 locus has also been

shown to be involved in the natural polymorphism of chemoat-

traction towards the lepidopteran sex pheromone E-11-tetradece-

nyl acetate (E-TDA) [16]. P. pacificus Washington (PS1843) is

strongly attracted to E-TDA whereas the California (PS312)

reference strain is completely insensitive to E-TDA. However,

a brief one-hour soaking treatment of PS312 with the stable, cell

permeable 8-bromo-cGMP can increase Ppa-egl-4 transcript level

and induce PS312 chemoattraction to E-TDA [16]. The same

exogenous cGMP treatment can also induce PS312 chemoattrac-

tion to the sex pheromone of the Oriental Beetle, Z-7-tetradece-2-

one (Z-TDO), but this cGMP-dependent ZTDO attraction does

not wholly depend on Ppa-egl-4 [16].

Next, in an effort to find other factors that mediate the

exogenous cGMP-dependent attraction to Z-TDO in P. pacificus

PS312, we isolated an Oriental Beetle pheromone Insensitive

allele, Ppa-obi-1(tu404), that no longer chemotax to Z-TDO after

cGMP treatment (RL Hong, unpublished data). We wondered if

the loss of Ppa-obi-1, in addition to altering chemosensation, could

also affect feeding behavior. We found that Ppa-obi-1 animals had

a lower pumping rate on E. coli compared to wild-type, an effect

that is suppressed by the loss of EGL-4 function. However, Ppa-obi-

1, Ppa-egl-4, and Ppa-egl-4; Ppa-obi-1 double mutants all displayed

a significantly higher pumping rate off food than wild-type PS312,

although this increase is more variable in Ppa-obi-1 animals. This

result suggests that Ppa-OBI-1 promotes pumping on food but

negatively regulates Ppa-EGL-4 to control pumping rate off food.

Thus, the loss of Ppa-obi-1 resulted in decreased pumping rate on

food while the loss of Ppa-egl-4 and/or Ppa-obi-1 resulted in

increased pumping rate off food (Fig. 2A). The mutant phenotypes

also imply that pharyngeal pumping on and off food are regulated

differently by the cGMP pathway.

Since P. pacificus cultured on C. crescentus displayed increased

pumping on and off food, we asked if Ppa-EGL-4, which regulates

pumping rate both on and off E. coli, also regulates this process on

C. crescentus. We found that both Ppa-egl-4 and Ppa-egl-4; Ppa-obi-1

double mutants on C. crescentus NA1000 showed increased

pumping on food, but not off food (Fig. 2B). The loss of Ppa-obi-

1 did not affect pumping rate on C. crescentus. In contrast, Ppa-obi-1

off food had decreased pumping. The reduction in Ppa-EGL-4 or

Ppa-OBI-1 function also reduced the magnitude of pumping

increase from on to off food (11–15% increase in the mutants

compared to 23% increase in the wild-type). More interestingly,

the off C. crescentus pumping rate is the same between Ppa-egl-4 and

wild-type, in contrast to the faster pumping rate of Ppa-egl-4 on E.

coli. One explanation could be that ,160 ppm is near the

maximum physiological limit for pharyngeal pumping rate in P.

pacificus. To address this possibility, we cultured nematodes at

15uC and found that the lower temperature decreased the

pumping rate of both wild-type and Ppa-egl-4 animals. However,

Ppa-egl-4 off C. crescentus displayed only a modest increase in

pumping compared to wild-type at 15uC, but not when compared

to the magnitude of increase between on to off food animals grown

at 20uC (Figs. 2A and 2C). Therefore, though it is possible that the

lack of a stronger increase in pumping in the mutants off C.

crescentus is due in part to the inability of the muscles to pump faster

at 20uC, the degree of difference on and off C. crescentus in Ppa-egl-4

is fixedly lower than that of Ppa-egl-4 on and off E. coli. This finding

cultured on E. coli OP50 (n = 25–36), C. crescentus NA1000 (n = 35–38), or
B. subtilis PY79 (n = 20–31) were measured on food or off food. The rate
difference between on/off food states on each bacterial strain is
significant. (C) Pharyngeal pumping rate of P. pacificus PS312 cultured
on different sizes of C. crescentus strains. Small wild-type NA1000
(n = 35–38), medium SM921 (n = 13–20), large LS2195 (n = 18–21) strains
were used as the food source. Only the rate difference between on/off
food states on the smallest strain (wild-type NA1000) is significant. (Two
tailed t-test, P,0.001).
doi:10.1371/journal.pone.0034464.g001
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also suggests that Ppa-EGL-4 has two roles: Ppa-EGL-4 controls

pumping rate off food regardless of food type but controls

pumping rate in a food-specific manner, such as on C. crescentus,

but not on E. coli. In contrast, Ppa-obi-1 controls pumping rate both

on and off food for E. coli, but only off food for C. crescentus.

Ppa-EGL-4 Affects Mouth Form Dimorphism and
Pumping Rate in P. pacificus
Unlike C. elegans, distinct genetically homogeneous P. pacificus

populations are each composed of two distinct subpopulations with

different mouth forms [8–10]. The ratio of stenostomatous to

eurystomatous mouth forms in the wild-type PS312 population

(51617% stenostomatous) can be altered by passage through the

dauer larvae stage (100% stenostomatous) [10]. Interestingly, we

found that Ppa-egl-4(tu374) is a genetic mutant that distorts the

mouth form ratio towards a high percentage of the stenostomatous

morph (87611%). Because the stenostomatous mouth form has

a narrower, longer buccal cavity, more stenostomatous animals in

the Ppa-egl-4 population contribute to the increase in pharyngeal

pumping rate in Ppa-egl-4 animals.

To determine if the loss of Ppa-egl-4 affected directly the

pumping rate via pharyngeal muscles or indirectly via distortions

in mouth form ratio in the population, we sought to measure the

pumping rate of a population composed of only a single mouth

morph. To do this, we measured dauer passaged wild-type and

Ppa-egl-4 animals cultured on OP50 because they are nearly 100%

stenostomatous (Fig 3). We found that the predominantly

stenostomatous wild-type population pumped faster than the

not-dauer passaged animals, although still not as fast as the Ppa-egl-

4 mutants, regardless of dauer passage. Therefore, the increased

pumping rate in the Ppa-egl-4 mutants is due both to a direct

physiological effect on pharyngeal neurons as well as an indirect

developmental effect of increasing the likelihood of stenostomatous

mouth formation.

Ppa-egl-4 Mutants Show Increased Roaming and Forward
Velocity
Nematodes on solid media can be observed as moving forwards,

backwards, or not at all (stopped for at least 4 seconds). Unlike C.

elegans, which increases locomotion (body bends/minute) when

transferred from on to off food, P. pacificus decreases locomotion

when deprived of food from a well-fed state [11]. Because the

pharynx pumps constantly, we wished to determine if the increase

in pumping rate of Ppa-egl-4 off food is coupled with alterations in

foraging behavior. The PKG in other invertebrates such as

Drosophila and honey bee also play a key role in food-seeking

behavior [17,18]. In C. elegans, Cel-egl-4 loss-of-function mutants

Figure 2. Pharyngeal pumping rate of P. pacificus mutants on/
off OP50 E. coli and NA1000 C. crescentus (mean6SEM). (A)
Pumping on/off OP50 E. coli. Wild-type PS312 (n = 25–36), Ppa-egl-
4(tu374) (n = 17–32), Ppa-obi-1(tu404) (n = 13–20), Ppa-egl-4; Ppa-obi-1

(n = 15). The difference in pumping between on/off food states for each
nematode strain is significant (not indicated; two tailed t-test, P,0.001).
Pumping rate on food is significantly slower in Ppa-obi-1(tu404)
compared to the other 3 genotypes, whereas pumping rate off food
is significantly faster in all mutants compared to wild-type PS312
(Dunnett’s Multiple comparisons test, P,0.01). (B) Pumping on/off
NA1000 C. crescentus. PS312 (n = 35–38), Ppa-egl-4 (n = 16–18), Ppa-obi-
1(tu404) (n = 14–18), Ppa-egl-4; Ppa-obi-1 (n = 14–18). The difference
between on/off food states for each nematode strain is significant (two
tailed t-test, P,0.001). Pumping rate off food is significantly slower in
Ppa-obi-1(tu404) compared to the other 3 genotypes, whereas Ppa-egl-4
and Ppa-egl-4; Ppa-obi-1 pump faster than wild-type (Dunnett’s Multiple
comparisons test, P,*0.05,**0.01). (C) Pumping on/off on C. crescentus
NA1000 at 15uC. PS312 (n = 26-32), Ppa-egl-4 (n = 22–24). The rate
difference between on/off food states for Ppa-egl-4 is significant (two
tailed t-test, P,0.001). Ppa-egl-4 pumps faster than wild-type on C.
crescentus (Dunnett’s Multiple comparisons test, P,***0.001).
doi:10.1371/journal.pone.0034464.g002
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show increased roaming behavior on food compared to wild-type,

as exhibited by a more time spent on forward locomotion [14,26],

while Cel-egl-4 gain-of-function mutants displayed increase in

dwelling, as signified by more stops and reversals [25]. We

compared the foraging behaviors of the various P. pacificus feeding

mutants in the absence of food (E. coli OP50). The loss-of-function

Ppa-egl-4(tu374) null animals spent more percentage of time off

food moving forward (P,0.05, Fig. 4A). In contrast, the Ppa-obi-1

mutant showed decreased reverse durations compared to wild-type

(P,0.01), although the durations moving forward were not

significantly different than wild-type. Furthermore, Ppa-egl-4;

Ppa-obi-1 animals spent more of their time not moving compared

to the wild-type or single mutants (P,0.05), and also differs in

duration of forward and reverse movements compared to wild-

type (P,0.01). Thus, the loss-of-function Ppa-egl-4 mutants in P.

pacificus, as in the case of C. elegans, displayed an increased

proportion of forward movements, while the Ppa-obi-1 mutation

completely reversed the Ppa-egl-4 roaming phenotype. However,

the Ppa-egl-4; Ppa-obi-1 double mutant animals displayed forward

and stopped durations not observed in the single mutants while the

reduced reversal duration of Ppa-obi-1 appears to be epistatic to

Ppa-egl-4.

In addition to differences in the percentage of time spent on

certain movements, we examined whether P. pacificus and C. elegans

differ fundamentally in speed and reaction to change in food state

by measuring mean forward velocity on and off food. We found

that not only is P. pacificus significantly slower than C. elegans by 4–5

fold both on and off food, P. pacificus also does not display

a dramatic increase in velocity when food is removed from well-fed

individuals as is the case in C. elegans (Fig. 4B). Furthermore, we

found differences between wild-type P. pacificus and mutants in the

cGMP pathway. Specifically, although Ppa-egl-4 mutant animals

Figure 3. Mouth form affect pharyngeal pumping rate off OP50
E. coli. The proportion of young adult hermaphrodites with stenosto-
matous mouth form changes in the population with dauer passage (d)
(percentage of stenostomatous indicated inside the bars). The pumping
rate of stenostomatous dauer passaged wild-type is intermediate
between not-dauer passaged wild-type and the mostly stenostomatous
Ppa-egl-4 mutants, regardless of dauer passage (Dunnett’s Multiple
comparisons test, P,**0.01,***0.001).
doi:10.1371/journal.pone.0034464.g003

Figure 4. Locomotion of P. pacificus mutants (mean6SEM). (A)
Proportion of durations P. pacificusmutants spent off food (E. coli OP50)
moving forward, moving backwards, and not moving. PS312 (n = 7),
Ppa-egl-4 (n = 20), Ppa-obi-1 (n = 18), Ppa-egl-4;Ppa-obi-1 (n = 9). The
percentage time spent is significantly different between wild-type and
the mutant strains (Dunnett’s Multiple Comparisons Test *P,0.05). (B)
Forward velocities of C. elegans N2 and P. pacificus strains measured on
or off food. Velocity is in millimeters per second cultured on E. coli
OP50. C. elegans wild-type N2 (n = 31–94), P. pacificus wild-type PS312

cGMP Signaling in Nematode Pristionchus pacificus
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spent more time moving forward, they do not move faster on or off

food compared to wild-type. Ppa-obi-1 however, is slower than

wild-type on food. In contrast, the Ppa-egl-4; Ppa-obi-1 double

mutants have significantly reduced forward velocity off food

compared to the wild-type or Ppa-egl-4 mutants alone. We

speculate that Ppa-OBI-1 acts upstream of Ppa-EGL-4 to

positively regulate forward velocity in the absence of food,

although in a more complex manner than for pharyngeal

pumping. Interestingly, the Ppa-obi-1 mutant exhibited a similar

degree of strong increase in velocity from on to off food (40%

faster off food) observed in the C. elegans wild-type (30% faster off

food).

We found equally profound differences between P. pacificus and

C. elegans when we focused on the reversal frequency. Whereas C.

elegans wild-type moved ,5x faster forward, P. pacificus wild-type

reversed almost 4x more frequently than C. elegans (Fig. 4C). Given

its slow forward velocity, P. pacificus may instead increase reversal

frequency to enhance coverage of the local area rather than

increase its foraging range when confronted with possible

starvation. The reversal frequency of Ppa-egl-4 and Ppa-obi-1 were

less on food than off food in contrast with wild-type and Ppa-egl-4;

Ppa-obi-1 double mutants. In the case of Ppa-egl-4; Ppa-obi-1 double

mutants however, reversal frequency was equally low on and off

food. The decreases in reversal frequency coincided with increases

in pumping rate off food in Ppa-egl-4, Ppa-obi-1, and Ppa-egl-4; Ppa-

obi-1 double mutants. This result suggests that when P. pacificus

lacks food, Ppa-EGL-4 functions to coordinate foraging patterns

by regulating the proportion of time moving forward, reversal

frequency, and the rate of pharyngeal pumping.

C. crescentus Increases P. pacificus Fat Content
A previous study in C. elegans by Shtonda and Avery (2006)

demonstrated that the presence of high quality food correlated

with changes in locomotion behavior [40]. We hypothesized that

the observed difference in pharyngeal pumping behavior due to

differences in food or genotype would also influence the nutritional

status of the nematodes. Wild-type P. pacificus pumped food more

rapidly on and off C. crescentus NA1000 than on and off E. coli

OP50. We therefore asked if the increase in pumping on C.

crescentus has consequences in fat accumulation because it is more

nutritious. We utilized the Nile Red dye to detect triacylglyceride

(TAG) content in the intestines of fixed animals [27]. The size of

stained lipid bodies in the anterior intestine of C. elegans N2 and P.

pacificus PS312 were similar in size when fed on E. coli OP50, but

increased dramatically when P pacificus strains were cultured on C.

crescentus (Fig. 5). This supports the notion that the faster pumping

on C. crescentus may be driven by preference for bacteria that

provide higher fat content, rather than a reaction to lower density

of food per pump. Interestingly, C. elegans cultured on C. crescentus

did not show a significant increase in fat storage compared to those

cultured on OP50 and thus may reflect a very different

metabolism from P. pacificus (Fig. 6). Next, we investigated whether

the higher pumping rate in Ppa-egl-4(tu374) on C. crescentus would

result in even higher fat accumulation. To our surprise, the fat

storage level was unchanged compared to the wild-type on C.

crescentus, but the fat level in Ppa-egl-4 cultured on OP50 was found

to be higher than in wild-type PS312 (P,0.05). This result is in

contrast to the previous finding that a Cel-egl-4 gain-of-function

allele did not accumulate more fat using the same Nile Red

staining method [27]. Unlike the wild-type, Ppa-obi-1 did not

accumulate more fat when cultured on C. crescentus (P,0.001,

Tukey-Kramer). Thus, C. elegans N2 did not seem to accumulate

fat differently on E. coli and C. crescentus, whereas P. pacificus PS312

accumulated almost 3x more fat on C. crescentus compared to on E.

coli. The higher fat accumulation also correlated with the faster

pharyngeal pumping on C. crescentus compared to on E. coli in wild-

type P. pacificus. However, this correlation between pharyngeal

pumping rate and fat storage level did not hold for Ppa-egl-4 and

Ppa-obi-1 mutants, perhaps due to the distinct but overlapping

regulatory circuits for pharyngeal pumping on and off food.

Alterations in these two genes can affect the magnitude of this fat

storage difference between E. coli and C. crescentus diets. Ppa-egl-

4(tu374) specifically increases the fat level on OP50 compared to

wild-type, whereas Ppa-obi-1 reduces the fat level on C. crescentus

compared to wild-type.

Discussion

P. pacificus is a necromenic nematode specifically associated with

several species of beetles, whereas C. elegans is primarily found in

vegetable composts [5,6,19,28]. In the course of evolution, their

contrasting ecologies produced stark differences in feeding

behavior as evident by their feeding organs. P. pacificus lack

pharyngeal grinders but have teeth and show predatory behavior

towards C. elegans and other nematodes (RJ Sommer, personal

communication) [10]. The ability of P. pacificus to catch and kill

moving prey, coupled with their ability to proliferate in the

laboratory solely on bacteria, suggest P. pacificus has a flexible diet

and potentially complex feeding strategies in nature. Our present

study interrogates the relationship between P. pacificus genotypes

and their responses to food states and food types.

Comparison of EGL-4 Functions
The PKG EGL-4 has conserved functions in regulating feeding

behavior in both C. elegans and P. pacificus. Specifically, the Ppa-egl-4

mutants increased their rate of pharyngeal pumping, along with

increased duration roaming off food through increased proportion

of time moving forward. Interestingly, the Ppa-egl-4 mutants did

not pump faster on OP50 but only off of OP50. One interpretation

is that animals lacking Ppa-EGL-4 are more sensitive to the

removal of food. This sensitivity may also depend on food

metabolism, as shown by the increase in fat storage of Ppa-egl-4

grown on OP50. P. pacificus pumped faster when food is more

nutritious (on C. crescentus), or when the higher fat storage of the

Ppa-egl-4mutant animals demands even more food intake from less

nutritious food (on E. coli). PS312 cultured on C. crescentus also

seemed to induce more fat accumulation as demonstrated by the

animals’ increased pharyngeal pumping and fat storage. However,

the nutritional content of C. crescentus NA1000 may be significantly

different from E. coli OP50. Although Ppa-egl-4 on C. crescentus also

showed increased pumping on food, Ppa-egl-4 did not show further

(n = 16–25), Ppa-egl-4 (n = 16–24), Ppa-obi-1 (n = 20–22), Ppa-egl-4; Ppa-
obi-1 (n = 11–27). The differences between on and off food states for C.
elegans N2, Ppa-obi-1 and Ppa-egl-4; Ppa-obi-1 are significant (two-tailed
t-test, P,***0.001, ,**0.01). Forward velocities are significantly
different from wild-type on food for Ppa-obi-1 as well as off food for
Ppa-egl-4; Ppa-obi-1 (Dunnett’s Multiple Comparisons test, P,0.05). (C)
Reversal frequencies of C. elegans and P. pacificus mutants. Reversals
frequencies of nematodes cultured on E. coli OP50 were measured on
or off food. C. elegans wild-type N2 (n = 25–51), P. pacificus wild-type
PS312 (n = 16–25), Ppa-egl-4 (n = 16–24), Ppa-obi-1 (n = 20–22), and Ppa-
egl-4; Ppa-obi-1 (n = 11–27). Reversal frequencies between on and off
food states for Ppa-egl-4 and Ppa-obi-1 strains are significantly different
(two-tailed t-test, P,***0.001). Reversal frequencies on food are
significantly different between wild-type and Ppa-egl-4; Ppa-obi-1.
Reversal frequencies off food are significantly different between wild-
type and Ppa-obi-1 as well as Ppa-egl-4; Ppa-obi-1 (Dunnet’s Multiple
Comparisons test, P,0.01).
doi:10.1371/journal.pone.0034464.g004
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increase in fat content, perhaps because the larger size of fat

droplets in wild-type P. pacificus cultured on C. crescentus is already

close to the physiological limit. We observed that Ppa-obi-1,

a chemosensory mutant that does not respond to exogenous

cGMP, showed egl-4-dependent phenotypes in pharyngeal pump-

ing. This suggests that Ppa-OBI-1 acts upstream to negatively

regulate Ppa-EGL-4 in feeding behavior (Fig 7).

In addition to conserved physiological functions, our findings

also indicate that Ppa-EGL-4 has also been co-opted to regulate

the mouth form dimorphism that is found in the Pristionchus genus.

We found that wild-type PS312 nematodes are 51617%

stenostomatous, while Ppa-egl-4(tu374) nematodes are 87611%

stenostomatous. However, it is not clear if Ppa-EGL-4 normally

represses stenostomatous development or promotes eurystomatous

development. The development of the mouth form is phenotyp-

ically plastic within a single genotype and is influenced by

environmental signals, such as starvation [10]. Passage through the

dauer larvae, another phenotypically plastic trait induced by

starvation, greatly increases the proportion of stenostomatous

animals in the population. The stenostomatous mouth form is

partly characterized by a longer, narrower buccal cavity that can

restrict passage of food particles, hence the mostly stenostomatous

Ppa-egl-4 animals may pump faster to compensate for receiving less

food per pump. To discriminate between the direct regulation of

pharyngeal neurons versus the indirect developmental effect of

mouth form dimorphism by Ppa-EGL-4, we compared dauer

passaged wild-type and Ppa-egl-4 mutants (both ,100% stenosto-

matous). Our finding that dauer passaged wild-type pumps faster

than not-dauer passaged wild-type (with less stenostomatous) but

still slower than Ppa-egl-4, regardless of dauer passage, suggests

both direct and indirect effect of Ppa-EGL-4 on pharyngeal

pumping (Figs. 3 and 7). Therefore, Ppa-EGL-4 regulates feeding

behavior by integrating environmental signals with development

and physiology. In the wild, it may be advantageous for starvation

induced P. pacificus dauer juveniles that recovery on limited food to

have more individuals with stenostomatous mouth forms that

pump faster when subsequently confronted with low food patches.

The role of PKG in regulating food acquisition behaviors is

conserved across large evolutionary distances, suggesting the high

connectivity of PKG to various cellular signals, from nematodes to

humans [29,30]. However, how PKG functions diverge with

respect to specific roles in feeding and metabolism has not been

investigated at a shorter evolutionary scale, i.e. between members

of different taxonomic families such as between the Rhabditidae

and Diplogasteridae. Table 1 summarizes and compares the

various functions of Ppa-EGL-4 in P. pacificus and C. elegans based

on genetic analyses. Interestingly, although PKG regulate

locomotion and pharyngeal pumping in both P. pacificus and C.

elegans, these two nematodes species react in opposite manners to

food removal. C. elegans respond to food removal by moving faster

and pumping less, while P. pacificus neither change forward velocity

nor reversal frequency, and pumps faster when food is gone. One

interpretation for these strategies is that C. elegans are more

‘‘confident’’ that they will get to a food source soon but refrain

Figure 5. Representative Nile Red staining of fixed nematodes.
The diameters of the two largest stained lipid droplets in the anterior
intestine were measured for fat quantification and are indicated with
arrows for the OP50-fed worms as examples. Anterior is to the left and
the scale bar for (C) represents 25 mm. Images on the left column (A-D)
show nematodes cultured on E. coli OP50 while images (E-H) on right
column show nematodes cultured on C. crescentus NA1000. Nematodes
were fixed in paraformaldehyde and stained with Nile Red.
doi:10.1371/journal.pone.0034464.g005

Figure 6. Comparisons of fat storage in the intestines of fixed
nematodes. The diameters of the two largest stained bodies per
animal in the anterior intestine between the end of the pharynx and the
invaginating vulva of L4 or J4 stage animals were measured to calculate
the average volume based on spherical geometry (mean6SEM).
Comparable gain and exposure settings were used. C. elegans wild-
type N2 (n = 38–52), P. pacificus wild-type PS312 (n = 34–45), Ppa-egl-4
(n = 37–55), Ppa-obi-1 (n = 36–52). Fat storage on E. coli OP50 was higher
in Ppa-egl-4 than in wild-type PS312. Fat storage in both PS312 and
Ppa-egl-4 was higher when cultured on E. coli than on C. crescentus
(***P,0.001; *P,0.05). Fat storage was higher on C. crescentus in both
PS312 and Ppa-egl-4 than in C. elegans N2 and Ppa-obi-1 (not indicated;
P,0.01). (Tukey-Kramer Multiple comparisons test, P,0.05).
doi:10.1371/journal.pone.0034464.g006
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from maximum pumping until they find food, while P. pacificus are

less ‘‘confident’’ that food is nearby so they remain in the same

foraging pattern but pump faster to get the most out of the food

that remains. Another major difference between the two

nematodes is exhibited by EGL-49s role in controlling body size.

Previous studies show that the loss of EGL-4 function increased

body size in C. elegans but decreased body size in P. pacificus [16,31].

The loss of EGL-4 function in C. elegans reduced fat content

whereas Ppa-egl-4(tu374) mutants showed higher fat content [25].

However, the Nile Red staining on Cel-egl-4(lf) has been performed

on live worms and recent work demonstrated that staining on fixed

worms more accurately reflects fat content [27]. Nile Red staining

on fixed gain-of-function allele Cel-egl-4(ad450) specimen did not

differ from wild-type N2 in fat storage. The observed phenotypic

differences between P. pacificus and C. elegans egl-4 loss-of-function

mutants may be due to changes in EGL-4 transcriptional targets

[32] or the diverged functions between the two known PKGs in

their genomes or a combination of both. Both the C. elegans and the

P. pacificus genomes encode another transcribed PKG paralog

(WBGene00015650). Therefore the egl-4 null alleles in both

nematode species likely represent a reduced rather than a complete

lack of PKG activities, and thus additional studies on the

distributions of functions between the PKG paralogs in both

species are needed.

C. crescentus Induces Faster Pumping and Fat Storage
Microfauna studies and transmission electron micrographs

strongly suggest that E. coli OP50 is not effectively digested by P.

pacificus because intact E. coli cells remain in the intestine [33,34].

This may be because P. pacificus lacks grinders to break up bacteria

cells and have instead evolved a very different feeding apparatus,

the toothed mouth, that is better suited for diverse food sources

such as fungal spores and nematodes, in addition to the various

bacteria found on beetle carcasses. Nevertheless, because P.

pacificus can proliferate on the same OP50 diet as C. elegans, we

tested other bacteria species as food for P. pacificus and found that

P. pacificus pumped more rapidly and stored more fat when

cultured on C. crescentus than on E. coli.

E. coli and C. crescentus are both gram-negative bacteria.

However, E. coli has an optimal growth temperature of 37uC
commonly found in the intestines of endotherms, while C. crescentus

is found in freshwater and sub-terrestrial environments with

optimal growth temperatures between 23–28uC [20], conditions

much closer to where P. pacificus and C. elegans are found in nature.

C. crescentus is a model for understanding prokaryotic development

and cell cycle regulation because of its dimorphic life cycle

involving motile swarmers with flagellum and sessile cells with

adhesive stalks [24]. In particular, phospholipids are the primary

fatty acids in the cell membranes of bacteria and do not differ

significantly among E. coli strains, whereas triacylglycerides have

been found to differ significantly among OP50, HB101, and

HT115 strains of E. coli [27]. In addition to cell length, the C.

crescentus strains with defects in DNA replication used in this study

can also differ in metabolism as well as cell cycle rate (S Murray,

personal communication). A recent study also indicated that C.

elegans pump faster on non-pathogenic bacteria than on pathogenic

bacteria, especially when selected for fitness during experimental

evolution [35], suggesting that P. pacificus cultured on C. crescentus

may find it more nutritious. Our future research will seek to

address how different strains of C. crescentus may influence

pharyngeal pumping rate and metabolism in P. pacificus.

Genetic Interactions between Ppa-egl-4 and Ppa-obi-1
Tables 2 and 3 summarize the changes in pharyngeal pumping

and locomotion behavior in wild-type versus Ppa-egl-4 and Ppa-obi-

1 mutants. Ppa-obi-1(tu404) was isolated from a P. pacificus

chemoattraction screen for insensitivity to the Oriental Beetle

sex pheromone after treatment with exogenous cGMP. Consistent

with Ppa-obi-19s function in modulating the cGMP pathway, Ppa-

obi-1(tu404) lack the enhanced pharyngeal pumping and locomo-

tion phenotypes of Ppa-egl-4(tu374). The Ppa-obi-1 mutation in the

Ppa-egl-4 background reversed the loss-of-function Ppa-egl-4 for-

ward roaming phenotype such that the Ppa-egl-4; Ppa-obi-1 double

mutant exhibited more dwelling than wild-type and single

mutants. However, the slower pharyngeal pumping and decrease

in forward velocity phenotypes of Ppa-obi-1 on food was masked by

Ppa-egl-4 in the Ppa-egl-4; Ppa-obi-1 double mutants. The forward

velocity off food is slowest in the Ppa-egl-4; Ppa-obi-1 double

mutants, suggesting that Ppa-EGL-4 and Ppa-OBI-1 interactions

involved in regulating forward velocity depend on food state. We

speculate that based on these epistatic interactions for various

Figure 7. Model for direct and indirect Ppa-EGL-4 regulation of
pharyngeal pumping rate on E. coli OP50. The loss of Ppa-EGL-4
increases pumping rate directly by regulating pharyngeal neurons, as
well as indirectly by increasing the number of animals with the
narrower stenostomatous mouth form in the population.
doi:10.1371/journal.pone.0034464.g007

Table 1. A comparison of egl-4 mutant phenotypes in C. elegans and P. pacificus.

egl-4 mutation body length fat storage
pharyngeal
pumping

Forward
movement egg holding odor sensing odor adaptation

Cel-egl-4(lf) q26,31 Q25 q# q14 q38 Q13 Q13

Ppa-egl-4(lf) Q16 q* q* q* no affect16 Q16 Q16

In C. elegans, the loss-of-function (lf) alleles n479 and ks62 have been used in multiple studies; In P. pacificus, only the loss-of-function null allele tu374 have been
described. For fat storage measurements, Cel-egl-4(gf) and Ppa-egl-4(lf) alleles refer to Nile Red staining on fixed animals. *this study; #van Buskirk pers. comm;
[13,14,16,25,26,31,38].
doi:10.1371/journal.pone.0034464.t001
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feeding phenotypes, Ppa-OBI-1 acts both upstream as well as in

parallel to Ppa-EGL-4 in signaling pathways involving other yet-

to-be identified factors. Preliminary studies on Ppa-egl-4 and Ppa-

obi-1 show largely non-overlapping expression patterns, suggesting

that these two cGMP signaling components intersect functionally

but are expressed in distinct cell types (RL Hong, unpublished

results).

Materials and Methods

Nematode and Bacterial Strains
Nematode strains were cultured between 20–23uC. The wild-

type strains of C. elegans and P. pacificus were N2 Bristol and PS312

California, respectively. Ppa-egl-4(tu374) and Ppa-obi-1(tu404) were

generated in the PS312 background by UV and X-ray

mutagenesis and are presumed to be both loss-of-function null

mutations (Hong et al 2008 and unpublished results to be

described elsewhere). Ppa-egl-4; Ppa-obi-1 double mutants were

obtained by PCR genotyping F2 cross progeny with the long body

phenotype of Ppa-obi-1(tu404) for the 780 bp Ppa-egl-4(tu374)

deletion [16]. For bacteria, Escherichia coli OP50, Bacillus subtilis

PY79 and C. crescentus NA1000 were the reference strains. E. coli

and B. subtilis cultures were inoculated in LB at 37uC while C.

crescentus cultured were grown in Peptone Yeast Extract (PYE) at

28uC. C. crescentus strains with defects in ctrA required for proper

DNA replication resulted in the larger cell sizes of SM921 (longer,

ctrAP1?)(S. Murray, personal communication) and LS2195

(longest, ctrA405+S) [24]. 150 ml of fresh overnight bacteria

inoculates were seeded onto 6-cm culture plates containing

Nematode Growth Media (NGM). Nematode cultures were

acclimated for at least 6 generations on each bacterial strain

before being assessed for pumping rate, locomotion, and fat

storage.

Pharyngeal Pumping Rate
In C. elegans, the pharyngeal pumping rate is measured by

visually counting the contractions of the ‘‘grinder’’ in the posterior,

or terminal pharyngeal bulb. Counts are often observed using

video recordings because the pumping rate is too fast to count by

eye. Unlike C. elegans, P. pacificus does not have grinders and the

terminal bulb does not pump, but instead pumps only in the

corpus (anterior pharynx). The counts in P. pacificus are ,200

pumps per minute (ppm) and measured by visually counting the

contractions of the corpus using a ZEISS LUMAR stereomicro-

scope at 80x magnification. Worms from well-fed cultures were

placed on assay plates containing either a thin lawn of an

overnight culture of the same bacteria (on food) or on plates not

containing any food (off food for 5 minutes). For each animal, we

counted pumps for five 15-second intervals, with .2 minutes

between intervals, and then multiplied its mean by four to derive

the mean pumps per minute.

Mouth Form Dimorphism
To obtain populations composed primarily of the stenostoma-

tous mouth form, we picked wild-type PS312 and Ppa-egl-4(tu374)

dauer juveniles from 2–3 week old starved culture plates onto

OP50 seeded lawns and let them resume development for 3 days

at ,22uC. The mouth forms of young adults of both not-dauer

passaged and dauer passaged populations were analyzed at 630x

using Nomarski optics and classified as stenostomatous (narrow

buccal cavity and flat dorsal tooth) or eurystomatous (wide buccal

cavity and barbed dorsal and ventral teeth) according to Bento et al

2010 [10]. A total of at least 45 animals from 5 dauer populations

in each category were observed for mouth form and animals

whose mouth forms cannot be classified were not included in the

ratio count.

Nile Red Fat Staining
We utilized the previously described method of using the

lipophilic dye Nile Red (Sigma-Aldrich, N3013) to detect the

presence of triacylglycerides and phospholipids in the intestines of

fixed animals [27]. Detection of fat storage by Nile Red in live

worms is unreliable due to lysosome processing but detection in

fixed specimen have been shown to be reproducible and correlated

with fat detection by TLC/GC [39,27]. In brief, nematode

cultures were washed twice with M9 buffer and freeze-thawed

thrice (liquid nitrogen/30uC water bath) in 500 ml of 0.5% freshly

diluted paraformaldehyde in M9 buffer (w/v). The fixed worms

were then washed twice with 500 mg/ml of freshly diluted Nile

Red solution in PBS buffer and incubated at room temperature for

45–60 minutes. The stained worms were subsequently washed

twice with 3x volumes of M9 buffer and placed on 2% Noble agar

pads on glass slides for fluorescence microscopy using a Leica

DM6000 with the cy5 filter. At least 3 independently grown

cultures were analyzed per nematode genotype per food type.

Both the size and intensity of stained lipid droplets have been

found to correlate with fat levels. However, we found the size of

the lipid droplets to be more consistent than the intensity of

staining within genotypes. Therefore we measured the diameters

Table 2. Changes in pharyngeal pumping rate in Ppa-egl-4
and Ppa-obi-1 mutants compared to wild-type P. pacificus.

Food Type egl-4 obi-1 egl-4;obi-1

on E. coli – Q –

off E. coli q q q

on C. crescentus q – q

off C. crescentus q* Q –

*at 15uC.
doi:10.1371/journal.pone.0034464.t002

Table 3. Changes in locomotion on/off E. coli OP50 in Ppa-
egl-4 and Ppa-obi-1 mutants compared to wild-type P.
pacificus.

Behavior egl-4 obi-1 egl-4;obi-1

% Forward
(off food)

q – Q

% Reverse
(off food)

– Q Q

% Stopped
(off food)

– – q

Forward Velocity
(on food)

– Q –

Forward Velocity
(off food)

– – Q

Reversal Frequency
(on food)

– – Q

Reversal Frequency
(off food)

– Q Q

doi:10.1371/journal.pone.0034464.t003
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of the two largest fluorescent droplets in the medial anterior

portion of the intestine (buccal cavity in focus and half way

between the pharyngeal-intestinal valve and the invaginating

vulva, approximately 50 mm) of L4/J4 stage hermaphrodites

cultured on 3 day-old E. coli OP50 or C. crescentus NA1000 lawns.

The mean values of these lipid droplets were expressed as volumes

(N6106 mm3) using the Leica LAS imaging analysis software.

Nematode Locomotion and Data Analysis
Worms were tested by automated tracking continuously

cultured on E. coli OP50, and tested on OP50. We used 10 cm

non-seeded NGM plates to test different parameters of locomo-

tion. Worms were placed on assay plates containing either a thin

lawn of an overnight culture of E. coli OP50 or plates not

containing any food [36]. As previously described, 10 cm NGM

plates used for recordings were equilibrated to 20uC for 18–20

hours. Approximately one hour before beginning recordings,

600 ml of fresh OP50 overnight culture was spread on each plate

to achieve a thin, featureless lawn of food across the entire surface.

Excess solution was drawn from the edge with a Pipetman. Food

was allowed to dry on the agar surface of a tissue paper-covered

plate until the surface exhibited a matte finish (about 45 minutes).

L4/J4 hermaphrodites of both C. elegans and different mutations of

P. pacificus were picked to freshly seeded plates 16–20 hours prior

to recording. Individual worms were transferred to assay plates

and the plate placed in a holder on the microscope stage. After two

minutes of recovery, the worm was located and recording begun

using an automated worm tracker and image recorder specially

designed for studying worm locomotion [36,37]. Each worm was

recorded for five minutes. Data extraction, processing and analysis

were done using image processing and analysis software as

previously described [36,37]. From each video recording of 5

minutes, we used the middle 4 minutes, and used the software to

derive values for frequency of undulations. All incubations and

recordings were done in a constant temperature room at 20uC.

Statistical Analysis
Means, SEM (error bars), and P values for two-tailed t-test were

performed by Microsoft Excel. Significant P values in figures are

denoted by: *P,0.05; **P,0.01; ***P,0.001. One-way AN-

OVA, Tukey-Kramer and Dunnett’s Multiple comparisons post-

hoc testing were performed using the InStat statistical software.
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