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Abstract

Tight junctions (TJs) and adherens junctions (AJs) are key determinants of the structure and permeability of epithelial
barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the
mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis,
soluble N-ethylmaleimide sensitive factor (NSF) attachment protein alpha (aSNAP), regulates epithelial junctions. aSNAP was
enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-
mediated knockdown of aSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells,
which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion
of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression
of p120 catenin did not rescue the defects of junctional structure and permeability caused by aSNAP knockdown thereby
suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of
cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine
nucleotide exchange factor, GBF1. These findings suggest novel roles for aSNAP in promoting the formation of epithelial
AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins.
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Introduction

Intercellular junctions are the most characteristic morphological

features of differentiated epithelia. These plasma membrane

structures mediate physical interactions between adjacent epithe-

lial cells thereby ensuring the integrity of epithelial layers and

creating a barrier to free paracellular passage of different

substances. Furthermore, junctions are essential for establishing

the apico-basal cell polarity that determines absorptive or secretion

phenotypes of epithelial cells [1,2]. Several types of junctions have

been identified in mammalian epithelia including tight junctions

(TJs), adherens junctions (AJs), desmosomes, and gap junctions

[1,2,3]. The most apically located TJs and subjacent AJs are

considered key regulators of the paracellular barrier and epithelial

cell polarity.

Adhesive properties of epithelial junctions are determined by

specialized integral membrane proteins such as the AJ constituent

E-cadherin, or the TJ components claudins, occludin, and

junctional adhesion molecule (JAM)-A [4,5,6,7,8]. By interacting

with their partners on opposing plasma membrane, these integral

proteins mediate cell-cell attachment and formation of the

paracellular barrier. On the cytosolic face of the plasma

membrane, the transmembrane junctional constituents interact

with scaffolding, cytoskeletal and signaling proteins to form

cytosolic plaques of AJs and TJs [4,5,6,7,8]. Components of the

AJ cytosolic plaque, a-, b- and p120 catenins, and the TJ plaque

proteins, zonula occludens (ZO)1–3 enhance adhesive properties

of epithelial junctions and regulate AJ/TJ biogenesis [5,6,7,8,9].

The current paradigm considers AJs and TJs as highly dynamic

structures that undergo constant remodeling (disassembly and

reassembly) [10,11,12,13,14]. Such junctional plasticity is essential

for the reorganizations of epithelial layers during normal tissue

morphogenesis, but can also lead to epithelial barrier disruption in

several diseases [10,13,15,16]. The body of evidence suggests that

the remodeling of AJs and TJs is regulated by vesicle trafficking,

where disassembly and reassembly steps are mediated by the

endocytosis and exocytosis of junctional proteins respectively

[15,17,18]. Internalization of AJ/TJ proteins is well documented

in epithelial cell monolayers challenged with various pathogenic

stimuli and has been summarized in several recent reviews

[10,13,16,18,19]. By contrast, the functional roles and mechanisms

of AJ/TJ exocytosis remain poorly understood, although this process

has been implicated in the formation and maintenance of epithelial

barriers. For example, a steady-state exocytosis of E-cadherin and

occludin has been detected in confluent epithelial monolayers with

functional junctions [20,21,22,23] and disruption of exocytosis was

shown to attenuate reformation of AJs and TJs [20,24,25,26,27].

One can therefore suggest that inhibition of junctional protein

exocytosis may represent an important mechanism, by which various

pathogenic stimuli disrupt the integrity of epithelial barriers.
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Exocytosis is a directional transport of vesicles from the

cytoplasm to the plasma membrane [28]. This multistep process

involves tethering, docking and fusion of vesicles with the target

membrane and is controlled by a variety of accessory and signaling

proteins [28,29,30,31]. The ultimate fusion of two phospholipid

membranes is a critical event of exocytosis that is mediated by the

SNARE (Soluble N-ethylmaleimide-sensitive factor Associated

Receptor) multiprotein complex [32,33,34,35]. Different compo-

nents of the SNARE machinery are located on both the vesicle

and the target membranes; their interactions bring these

membranes into close opposition to create a fusion pore

[32,33,34,35]. SNARE-mediated membrane fusion appears to

be important for assembly of epithelial AJs and TJs [27,36],

although the molecular details and regulatory mechanism of this

process are unknown.

To support a continuous exocytosis, mature SNARE complexes

must be constantly disassembled and reused for new membrane

fusion events. Such SNARE disassembly and recycling is mediated

by N-ethylmaleimide Sensitive Factor (NSF) and its adaptors,

soluble NSF-attachment proteins (SNAPs) [32,33,34,37,38].

Mammalian cells express a, b and cSNAPs among which the a
and c isoforms are ubiquitous, while bSNAP is predominantly

expressed in neural cells [39]. aSNAP acts by recruiting NSF to

the SNARE complex, stimulating NSF activity and transducing

conformational changes from NSF that lead to disassembly of the

SNARE cylinder [40,41]. Additionally, aSNAP is known to

interact with other proteins; however, the functional roles of such

interactions remain unknown [39,42,43,44,45]. A handful of

previous studies implicated aSNAP in the regulation of cell-cell

adhesions. For example, siRNA mediated knockdown of this

protein in vascular endothelium was shown to disrupt VE-

cadherin-based AJs [46]. Furthermore, an aSNAP mutation that

dramatically decreases its protein expression in hyh mice resulted in

distorted apico-basal cell polarity in the neuroendocrine epitheli-

um [47]. Still, the exact roles and mechanisms of aSNAP-

dependent regulation of epithelial junctions are unknown.

In the present study we examined the involvement of aSNAP in

regulating structure and barrier properties of apical junctions in

cultured human intestinal epithelial cells. We report here that

aSNAP plays key roles in controlling the structural integrity of AJs

and TJs and the development of the paracellular barrier.

Molecular mechanisms underlying aSNAP-dependent regulation

of epithelial junctions may involve control of the Golgi integrity

and expression of AJ proteins.

Results

Depletion of aSNAP prevents development of the
paracellular barrier and assembly of apical junctions in
intestinal epithelial cells

In order to mediate delivery of AJ/TJ proteins to apical

junctions aSNAP must be enriched at the areas of cell-cell contact.

We analyzed aSNAP localization in polarized T84 colonic

epithelial cell monolayers by dual immunolabeling and confocal

microscopy, which showed a significant colocalization of aSNAP

with occludin at mature TJs (Figure 1A). This in vitro observation

was reinforced by immunolabeling of normal human intestinal

mucosa that also revealed enrichment of aSNAP at apical

junctions and its colocalization with occludin in crypt epithelium

(Figure 1A, arrows). We next used a calcium switch model to

investigate if aSNAP is involved in early stages of junction

assembly. In contact-naı̈ve, calcium-depleted SK-CO15 colonic

epithelial cells, b-catenin demonstrated a diffuse cytosolic labeling,

whereas aSNAP accumulated in the perinuclear region (Figure 1B,

arrowheads). Re-addition of extracellular calcium (calcium

repletion) triggered rapid (within 1 h) translocation of b-catenin

to newly forming AJ-like junctions (Figure 1B). Similarly, aSNAP

showed early relocalization to nascent cell-cell contacts during

calcium repletion (Figure 1B, arrows). Together, these data

indicate a close association of aSNAP with epithelial junctions in

vitro and in vivo.

To examine the roles that aSNAP plays in regulation of AJs and

TJs we used small interfering (si) RNA to downregulate this

protein in SK-CO15 cells. We found that two different aSNAP-

specific siRNA duplexes (D1 and D2) decreased its protein

expression by up to 93% on day 3 (Figure 2A) and day 4 (data not

shown) post-transfection, without affecting the protein level of

NSF. Remarkably, such aSNAP depletion completely prevented

establishment of the paracellular barrier. SK-CO15 cells plated on

membrane filters and transfected with control siRNA steadily

developed a transepithelial electrical resistance (TEER) that

reached approximately 1500 V6cm2 by day 4 post-transfection

(Figure 2B). In contrast, the TEER values of aSNAP-depleted cell

monolayers did not exceed 10 V6cm2 under these experimental

conditions (Figure 2B). Furthermore, immunofluorescence labeling

and confocal microscopy revealed the typical ‘chicken wire’

staining pattern of b-catenin and occludin in the control SK-

Figure 1. aSNAP is enriched at epithelial junctions in vitro and
in vivo. (A) Dual immunofluorescence labeling and confocal microsco-
py show colocalization (arrows) of aSNAP (red) and tight junction
protein occludin (green) in confluent T84 cell monolayers and normal
human colonic mucosa. (B) Immunofluorescence images show
predominantly-perinuclear localization of aSNAP in calcium-depleted
SK-CO15 cells (arrowheads) and its rapid translocation to newly-formed
AJs in calcium-repleted cells (arrows). Scale bar, 10 mM.
doi:10.1371/journal.pone.0034320.g001

aSNAP and Epithelial Junctions
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CO15 cells on day 4 post-transfection (Figure 2C, arrows), which

is indicative of well-formed AJs and TJs. In contrast, aSNAP-

depleted cells were characterized by predominantly intracellularly-

located b-catenin and short disconnected areas of occludin

labeling at cell-cell contacts (Figure 2C, arrowheads). aSNAP

knockdown also dramatically interrupted junctional recruitment of

claudin-4, ZO-1 and a-catenin (data not shown) thereby indicating

global disruption of TJ and AJ structure.

We next asked whether the observed cell-cell adhesion defects in

aSNAP-depleted cells were due to altered expression of AJ/TJ

proteins. Downregulation of aSNAP with two different siRNA

duplexes selectively decreased the levels of p120 catenin and E-

cadherin by up to 92% and 75% respectively on day 4 post-

transfection (Figure 2D). Loss of p120 catenin protein was already

obvious on day 2 of the aSNAP knockdown (data not shown),

whereas the decrease in E-cadherin level occurred later, on day 4

post-transfection. In contrast, expression of TJ proteins such as

claudins-1 and 4, occludin and JAM-A, was significantly increased

by aSNAP depletion (Figure 2D). All together, our data indicate

that the loss of aSNAP triggers profound disruption of epithelial

apical junctions and downregulation of key AJ proteins.

Effects of aSNAP depletion on the integrity of epithelial
junctions and the paracellular barrier are independent of
apoptosis

While examining the effects of aSNAP-knockdown on the

integrity of the epithelial barrier, we noticed another phenotype

involving cell rounding and detachment, which could be

indicative of cell death (data not shown). Therefore, we examined

activation of the most common cell death pathway, apoptosis, in

aSNAP-depleted SK-CO15 cells. We observed significant

induction of apoptosis, as characterized by PARP cleavage,

caspases 3 and 7 activation (Figure 3A) and an increase in cell

labeling with FITC-Annexin V (data not shown). This apoptosis

induction was prevented by the cell-permeable pan-caspase

Figure 2. siRNA-mediated depletion of aSNAP prevents formation of the paracellular barrier and AJ/TJ assembly, and selectively
downregulates p120 catenin and E-cadherin expression. (A) Immunoblotting analysis shows that two different aSNAP-specific siRNA
duplexes (D1 & D2) dramatically decrease its protein expression in SK-CO15 cells on day 3 post-transfection. (B) TEER measurements demonstrate
that aSNAP-depleted SK-CO15 cell monolayers fail to develop the paracellular barrier. (C) Immunofluorescence labeling shows formation of normal b-
catenin-based AJs and occludin-based TJs (arrows) in control SK-CO15 cell monolayers on day 4 post-transfection. By contrast, aSNAP-depleted cells
have significant intracellular accumulation of b-catenin and fragmented TJ strands (arrowheads). (D) Immunoblotting analysis shows that selective
aSNAP depletion increases the level of TJ proteins but dramatically downregulates p120 catenin and E-cadherin expression in SK-CO15 cells on day 4
post-transfection; *p,0.05, #p,0.01 compared to the control siRNA-treated group (n = 3). Scale bar, 20 mM.
doi:10.1371/journal.pone.0034320.g002
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inhibitor Z-VAD-fmk (Figure 3A, and data not shown). Since

apoptosis is known to disrupt epithelial barriers and induce

degradation of some junctional proteins, we asked if this cell

death mechanism was responsible for AJ/TJ disassembly and

downregulation of p120 catenin caused by aSNAP depletion.

SK-CO15 cells were transfected with either control or aSNAP-

specific siRNA (duplex 1), and one day later were treated for 72 h

with either vehicle (DMSO) or Z-VAD-fmk (50 mM). Caspase

inhibition failed to prevent disruption of the paracellular barrier

(Figure 3B), AJ and TJ disassembly (Figure 3C), and did not

restore normal levels of p120 catenin (Figure 3D) in aSNAP-

depleted cells. In some experimental systems, caspase inhibitors

can switch the cell death program from apoptosis to necroptosis.

To exclude this possibility, we performed additional experiments

involving a dual inhibition of apoptosis and necroptosis by a

combination of Z-VAD-fmk and necrostatin (Nst)-1. Such co-

inhibition of two major cell death pathways failed to prevent

junctional disassembly in aSNAP-depleted SK-CO15 cells

(Figure S1, arrowheads).

To ensure that the observed cellular changes caused by aSNAP

knockdown did not represent off-target effects of siRNA

expression, we performed rescue experiments involving overex-

pression of bovine aSNAP lacking complementation for human

siRNA sequences. Remarkably, expression of this siRNA-resistant

protein completely reversed the decrease in paracellular perme-

ability, AJ/TJ disassembly and loss of p120 catenin expression

caused by aSNAP knockdown (Figure 4A–C). It also prevented

epithelial cell apoptosis (Figure 4A). Together, these experiments

strongly suggest that disruption of apical junctions and induction

of apoptosis represent two specific and independent functional

consequences of aSNAP depletion in human epithelial cells.

Downregulation of p120 catenin disrupts epithelial AJs
and TJs but cannot explain defects of cell-cell adhesions
induced by aSNAP knockdown

Given the established roles for classical cadherins and p120

catenin in regulation of cell-cell adhesions, one can suggest that

downregulation of these proteins plays a role in AJ/TJ disassembly

Figure 3. Disruption of apical junctions and downregulation of p120 catenin expression in aSNAP-depleted cells are not mediated
by apoptosis. (A) Immunoblotting analysis of cleaved PARP and active caspases 3 & 7 shows that aSNAP depletion causes significant cell apoptosis
in SK-CO15 cells on day 4 post-transfection, which is prevented by inhibition of caspases with Z-VAD-fmk (50 mM). (B–D) To examine the role of
apoptosis in junction disassembly, SK-CO15 cells were transfected with either control or aSNAP-specific siRNA (duplex 1), and one day later, were
exposed to either vehicle or Z-VAD-fmk (50 mM) for 72 h. Inhibition of apoptosis does not prevent disruption of the paracellular barrier (B), disruption
of AJs and TJs (C, arrows) or down-regulation of p120 catenin expression (D) in aSNAP-depleted epithelial cells; *p,0.05, #p,0.01 compared to the
control siRNA-treated group (n = 3). Scale bar, 20 mm.
doi:10.1371/journal.pone.0034320.g003
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in aSNAP-depleted cells. Previous studies have demonstrated that

p120 catenin knockdown decreased cadherin expression and

impaired AJ structure in cultured cells and animal tissues

[48,49,50,51,52]. On the other hand, E-cadherin appeared to be

dispensable for AJ and TJ integrity [53,54]. Based on these data,

we examined whether the loss of p120 catenin mimics the effects of

aSNAP depletion on structure and permeability of epithelial

junctions. The p120 catenin-specific siRNA SmartPool decreased

this protein level by ,94% and downregulated E-cadherin

expression by ,80%, but did not substantially affect the amount

of aSNAP and b-catenin in SK-CO15 cells (Figure 5A).

Interestingly, p120 catenin depletion inhibited development of

the paracellular barrier (Figure 5B) and junctional recruitment of

b-catenin, occludin (Figure 5C), claudin-4 and ZO-1 (data not

shown), thereby phenocopying all the observed effects of aSNAP

knockdown on epithelial cell-cell adhesions. Next we asked if

overexpression of p120 catenin can prevent AJ/TJ disassembly in

aSNAP-depleted SK-CO15 cells. siRNA-mediated knockdown of

aSNAP was performed in control cells (SK-neo) and cells stably

overexpressing p120 catenin isoforms 1 or 3 (SK-p120-1 and SK-

p120-3). Among these stable cell lines, SK-120-3 cells preserved a

high level of p120 catenin even after aSNAP depletion (Figure

S2A). However, following aSNAP knockdown, p120-overexpress-

ing cells still showed dramatic disruption of the paracellular barrier

(Figure S2B) and a similar extent of AJ/TJ disassembly as

compared to SK-neo controls (Figure S2C, arrows). These

experiments indicate that p120 catenin downregulation alone

cannot explain AJ/TJ disassembly in aSNAP-depleted epithelia

and, therefore, suggest the existence of alternative mechanisms

that cooperate in inducing a dramatic dismantlement of epithelial

junctions.

Effects of aSNAP depletion on epithelial junctions are
NSF-independent and associated with Golgi
fragmentation

Since aSNAP regulates protein trafficking to the plasma

membrane [28,37,39], one can suggest that AJ/TJ disassembly

in aSNAP-depleted epithelia reflects inability of vesicles carrying

junctional proteins to fuse with the plasma membrane. If this

hypothesis is correct, a similar phenotype should be observed after

knockdown of NSF, which is the major functional partner of

aSNAP in regulating membrane fusion in the exocytic pathway

[28,38]. However, depletion of NSF did not recreate the major

effects of aSNAP knockdown on epithelial junctions. First, NSF-

depleted SK-CO15 cells demonstrated unaltered expression of

p120 catenin (Figure 6A) and E-cadherin (data not shown) as

compared to appropriate controls. Second, these cells developed

an abnormally-leaky paracellular barrier; however, their TEER

values (up to 200 V6cm2) were still approximately 20 fold higher

than those observed in aSNAP-deficient cells (compare Figures 2B

Figure 4. Junctional disassembly and apoptosis in aSNAP-depleted cells can be rescued by expression of siRNA-resistant bovine
aSNAP. (A) Immunoblotting analysis shows preserved aSNAP level in SK-CO15 cells with stable expression of bovine aSNAP (SK-aSNAP) after siRNA
depletion of endogenous human protein. Comparing to the control cells (SK-neo), such bovine aSNAP overexpression completely prevents induction
of apoptosis (A), disruption of the paracellular barrier (B) and AJ/TJ disassembly (C, arrowheads) caused by loss of endogenous aSNAP; #p,0.01
compared to the control siRNA-treated group (n = 3). Scale bar, 20 mm.
doi:10.1371/journal.pone.0034320.g004
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and 6B). Third, NSF-depleted cells did not show gross defects in

junctional localization of b-catenin and occludin (Figure 6C).

Finally, aSNAP and NSF were not essential for each other’s

stability since downregulation of aSNAP did not significantly alter

NSF expression (Figure 2A) and vice versa (Figure 6A). Collectively,

these results support the conclusion that loss of aSNAP disrupts

epithelial junctions via NSF-independent mechanisms.

In addition to NSF, aSNAP was shown to interact with several

other proteins predominantly localized at the Golgi and the

endoplasmic reticulum (ER) [42,43,44,45,55]. It was also impli-

cated in mediating the reconstituted ER-to-Golgi trafficking [56].

Based on these data, we rationalized that impairment of the Golgi

structure and functions may underlie the defects of junctional

assembly in aSNAP-depleted epithelial cells. To test this

hypothesis we analyzed the effects of aSNAP knockdown on the

morphology of the Golgi and the Endoplasmic Reticulum Golgi

Intermediate Compartment (ERGIC) by immunolabeling their

resident proteins Giantin and ERGIC53 respectively. In control

SK-CO15 cells, the Golgi appeared as a set of characteristic

tubular structures surrounding the nucleus and the ERGIC had a

condensed perinuclear organization (Figure 7, arrows). By

contrast, in aSNAP-depleted cells, which can be distinguished by

the diffuse intracellular staining of b-catenin, the perinuclear

morphology of both Golgi and ERGIC was severely disrupted and

Giantin and ERGIC53-containing vesicles were scattered

throughout the cell (Figure 7, arrowheads). A quantitative image

analysis revealed 9161% and 562% cells with an intact Golgi in

the control group and aSNAP-siRNA-treated group respectively

Figure 5. Downregulation of p120 catenin expression phenocopies the effects of aSNAP depletion on epithelial junctions. (A)
Immunoblotting analysis shows that p120 catenin-specific siRNA dramatically decreases p120-catenin and E-cadherin protein expression in SK-CO15
cells. (B) TEER measurements demonstrate that p120 catenin-depleted SK-CO15 cell monolayers do not develop the paracellular barrier on days 2–4
post-transfection. (C) Immunofluorescence labeling shows formation of normal b-catenin-based AJs and occludin/claudin-4-based TJs (arrows) in
control SK-CO15 cell monolayers. In contrast, p120 catenin-depleted cells display a defective AJ/TJ assembly and intracellular localization of junctional
proteins (arrowheads) on day 4 post-transfection; *p,0.01 compared to the control siRNA-treated group (n = 4). Scale bar, 20 mm.
doi:10.1371/journal.pone.0034320.g005
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(p,0.001; n = 10). Importantly, the observed Golgi and ERGIC

fragmentation represented an early effect of aSNAP knockdown

already detectable on day 2 post-transfection, and did not reflect

late morphological changes observed in apoptotic cells (data not

shown). Since dispersion of the Golgi ribbon does not always result

in inhibition of its functions [57], we next sought to analyze

functional consequences of Golgi fragmentation in aSNAP-

depleted cells. We analyzed postranslational modification of b1

integrin, the adhesion protein that requires Golgi-dependent

glycosylation for its normal processing and delivery to the cell

surface [58,59]. In control SK-CO15 cells, immunoblotting

revealed a characteristic b1 integrin doublet (Figure S3A), in

which the upper and the lower bands represented the mature and

precursor (non-glycosylated) protein, respectively [58,59]. Deple-

tion of aSNAP caused a dramatic increase of the intensity of the

lower band, thereby indicating accumulation of non-glycosylated

b1 integrin (Figure S3A). Consistently, immunofluorescence

labeling revealed a prominent cell-cell contact labeling of b1

integrin in control cells (Figure S3B, arrows) that was transformed

into intracellular staining following aSNAP knockdown (Figure

S3B, arrowheads). These data demonstrate that loss of aSNAP

results in the disrupted architecture and impaired functional

activity of the Golgi.

To establish a possible causal link between Golgi dysfunctions

and disassembly of epithelial junctions, we used Brefeldin A (BFA,

2 mM) and Golgicide A (GA, 50 mM), two ‘Golgi toxins’ that are

known to impair structure and functions of this organelle [60,61].

Exposure of confluent SK-CO15 cell monolayers to either BFA or

GA for 24 h reproduced all the observed effects of aSNAP

depletion, such as disruption of the paracellular barrier (Figure 8A),

AJ and TJ disassembly (Figure 8B, arrows), and Golgi fragmen-

tation (Figure 8B, arrowheads). Together, these findings suggest

that loss of aSNAP may impair the integrity of epithelial junctions

by disrupting Golgi structure and functions, although additional

data are required to establish a causal link between these

orchestrated events.

Decreased expression of GBF1 can mediate Golgi
fragmentation and junctional disassembly in aSNAP-
depleted cells

Given the striking similarity between the effects of aSNAP

knockdown and ‘Golgi toxins’ on the structure and permeability

of epithelial junctions, we sought to explore if these effects are

mediated by similar mechanisms. BFA is known to inhibit three

different proteins, namely, Golgi brefeldin-sensitive factor 1

(GBF1), BIG1 and BIG2, [62,63,64] whereas GA is a selective

inhibitor of only GBF1 [61]. All three proteins serve as guanine

nucleotide exchange factors (GEFs) for ARF small GTPases that

regulate vesicle trafficking between the ER and the Golgi and

within the Golgi compartment. Therefore, we asked whether

aSNAP knockdown alters expression of the Golgi-associated

GEFs. Immunoblotting analysis demonstrated that two different

aSNAP-specific siRNAs significantly (by 50–70%) decreased

expression of GBF1, BIG1, and BIG2 in SK-CO15 cells at 48 h

and 72 h post-transfection (Figure 9A). To examine if dimin-

ished expression of these GEFs affects epithelial permeability

and organization of AJs and TJs, we individually depleted

GBF1, BIG1 and BIG2 using gene-specific siRNAs (Figure 9B).

Interestingly, GBF1 knockdown resulted in gross disruption of

the epithelial barrier that manifested as a substantially lower

TEER (Figure 9C) and loss of normal AJ and TJ labeling

(Figure 10, arrowheads). Furthermore, loss of GBF1 decreased

expression of p120 catenin and induced apoptosis (Figure 9B),

thereby phenocopying all effects observed in aSNAP-depleted

epithelium. By contrast, BIG2 knockdown, while slightly

decreasing TEER, did not affect junctional architecture and

BIG1 depletion did not significantly alter AJ/TJ structure and

permeability (Figures 9 & S4). These results highlight the

selective role for GBF1 in regulating epithelial junctions and

suggest that down-regulation of this Golgi-associated factor

may contribute to AJ/TJ disassembly induced by aSNAP

knockdown.

Figure 6. Downregulation of NSF does not phenocopy the
major effects of aSNAP knockdown on epithelial junctions. (A)
Immunoblotting analysis shows that NSF-specific siRNA efficiently
decreases expression of the targeted protein without affecting aSNAP
and p120 catenin protein levels. (B) TEER measurements demonstrate
that NSF-depletion significantly attenuates formation of the paracellular
barrier in SK-CO15 cell monolayers; *p,0.05 compared to the control
siRNA-treated group (n = 3). (C) Immunofluorescence labeling shows
normal AJ and TJ structure (arrows) in NSF-deficient SK-CO15 cells on
day 4 post-transfection; *p,0.05, #p,0.01 compared to the control
siRNA-treated group (n = 3). Scale bar, 20 mm.
doi:10.1371/journal.pone.0034320.g006
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Discussion

aSNAP regulates AJ and TJ integrity and establishment of
the epithelial barrier
aSNAP is a ubiquitously expressed regulator of intracellular

vesicle fusion that plays a major role in the disassembly and

recycling of various SNARE complexes [37,39]. Since several

SNARE proteins have been previously implicated in the formation

of epithelial junctions and the establishment of apico-basal cell

polarity [27,36], it is important to understand if aSNAP is also

required for these key events of epithelial differentiation. Our

study, for the first time, highlights aSNAP as an indispensible

regulator of structure and barrier function of epithelial AJs and

TJs. This conclusion is supported by two lines of evidence. One is

the enrichment of aSNAP at mature AJs and TJs (Figure 1A) and

its cycling between the plasma membrane and cytosolic compart-

ments during formation and disassembly of intercellular contacts

(Figure 1B). Interestingly, such junctional accumulation of aSNAP

reinforces the old view of TJs as a ‘hot spot’ of vesicle fusion

[65,66]. The other evidence is the loss of barrier function and

profound defects in AJ/TJ morphology in aSNAP-depleted

epithelial cell monolayers (Figures 2 & 4). This phenotype

represents one of the most severe disruptions of apical junctions

caused by depletion of a single protein in model mammalian

epithelia. Indeed previous studies involving selective downregula-

tion of important structural and regulatory constituents of apical

junctions such as occludin, ZO-1, JAM-A, E-cadherin, Scribble, or

myosin IIA failed to prevent the ultimate assembly of AJs and TJs

and affected only junction remodeling [53,67,68,69,70]. Never-

theless, our results are consistent with two published reports, which

demonstrated disruption of VE-cadherin-based AJs in aSNAP-

depleted vascular endothelial cells [46] and described abnormal

Figure 7. aSNAP depletion induces fragmentation of the Golgi and ERGIC. Control and aSNAP-depleted SK-CO15 cells were
immunofluorescence labeled for b-catenin (green) with either Golgi marker GM130, or ERGIC marker ERGIC53 (red) on day 3 post-transfection.
Control cells show perinuclear tubular Golgi complexes and well-organized compact ERGIC (arrows). By contrast, aSNAP depletion results in a
dramatic dispersion of both perinuclear Golgi and ERGIC structures (arrowheads). Scale bar, 10 mm.
doi:10.1371/journal.pone.0034320.g007
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localization of basolateral plasma membrane proteins in the

ventricular neuroepithelium of the mutant hyh mice with partial

loss of aSNAP expression [47].

aSNAP controls expression of different junctional
proteins

Dramatic effects of aSNAP depletion on the organization of the

two major junctional complexes can be determined by multiple

mechanisms that disturb several steps of AJ/TJ trafficking and

biogenesis. One such mechanism is likely to involve significant

imbalance of different junctional components in aSNAP-depleted

cells, manifested by expressional downregulation of key AJ

constituents and increased levels of TJ proteins (Figure 2D). The

latter effect can reflect either compensatory acceleration of

synthesis or impaired degradation of TJ proteins and per se cannot

be responsible for defective cell-cell adhesion. By contrast, the

observed loss of p120 catenin and E-cadherin expression is likely

to contribute to AJ and TJ disassembly triggered by loss of

aSNAP. This notion is supported by the results of p120 catenin

knockdown in SK-CO15 cells that mimicked all the effects of

aSNAP depletion on epithelial junctions including the lack of

paracellular barrier, AJ and TJ disassembly and decreased

expression of E-cadherin (Figure 4). Furthermore, our results are

in line with previous studies that analyzed effects of genetic

depletion of p120 catenin in different cell types in vitro and in vivo

and showed a consistent decrease in protein levels of E-, P-, and N-

cadherins and disruption of cell-cell junctions in p120-deficient

cells [49,50,51,52,71]. Surprisingly, overexpression of p120

catenin failed to restore the defects of AJ and TJ structure and

barrier function in aSNAP knockdown (Figure S2). However,

these negative results do not disprove a possible role for p120

catenin downregulation in aSNAP-dependent junction disassem-

Figure 8. Pharmacological fragmentation of the Golgi induces disruption of the epithelial barrier and disassembly of apical
junctions. Immunofluorescence labeling shows that 24 h incubation of SK-CO15 cells with either Brefeldin A (2 mM) or Golgicide A (50 mM) causes a
significant increase in paracellular permeability (A), dramatic disassembly of AJs and TJs (B, arrows), and fragmentation of the Golgi (B,
arrowheads); #p,0.01 compared to the vehicle-treated group (n = 3). Scale bar, 20 mm.
doi:10.1371/journal.pone.0034320.g008
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bly, but rather suggest the existence of parallel mechanisms that

cannot be overcome by high p120 expression. These mechanisms

are not related to induction of cell death in aSNAP-deficient

epithelium (Figures 3 & S1), and may involve defective fusion of

vesicular AJ/TJ carrier along the exocytic pathways to the plasma

membrane or loss of cell-matrix adhesions. The latter idea is

supported by the profound defects in b1 integrin processing and

localization (Figure S3) and significant detachment of aSNAP-

depleted SK-CO15 cells (data not shown) as well as by published

studies that implicates cell-matrix adhesions in regulation of

epithelial junctions [72,73].

A surprising finding of this study is that aSNAP-mediated

regulation of epithelial apical junctions appears to be independent

of its major functional/binding partner, NSF. Indeed, our RNA

interference experiments indicate that these proteins do not

control each other’s stability in intestinal epithelial cells (Figures 2A

& 6A). Furthermore, NSF knock-down did not mimic the major

effects of aSNAP depletion, such as AJ/TJ disassembly and

decreased expression of p120 catenin (Figure 6). These NSF-

independent functions of aSNAP, although unusual and poorly-

characterized, have been observed previously. For example,

transport of resident apical plasma membrane proteins in

polarized kidney epithelial cells was shown to be mediated by

aSNAP independently of NSF [74]. NSF belongs to a large family

of oligomeric ATPases, and other members of this family are

known to mediate membrane fusion within different intracellular

compartments [55,75,76]. It is reasonable to suggest that aSNAP

may interact with some NSF homologues to control exocytic

trafficking and assembly of epithelial junctions.

aSNAP regulates integrity of the Golgi complex and
expression of Golgi GEFs

Our study suggests that disruption of the Golgi complex may

represent a key mechanism that mediates AJ and TJ disassembly in

aSNAP-depleted cells. Golgi fragmentation appeared to be one of

the most vivid morphological effects of aSNAP knockdown in SK-

CO15 cells (Figure 7) and other types of model epithelia (data not

shown). Furthermore, dispersion of the Golgi by BFA or GA

reproduced the AJ/TJ disassembly and disruption of the

paracellular barrier observed with aSNAP depletion (Figure 9).

Loss of aSNAP did not simply disperse the Golgi ribbon, but also

impaired the functional activity of this organelle that was revealed

by defective glycosylation of plasma membrane adhesive proteins

(Figure S3). We believe that effects of aSNAP knockdown are not

limited to the Golgi architecture, but also involve alterations in the

ER structure and functions. A diffuse patternless staining of

canonical ER markers calnexin and calreticulin in control SK-

CO15 cells did not allow direct examination of the effects of

aSNAP depletion on the ER structure. However, the Golgi and

the ER are known to be interconnected by the constant vesicle

fluxes going either from the ER to Golgi (anterograde transport) or

in the opposite direction (retrograde transport) [77,78]. Because of

this bidirectional vesicle flux, disruption of the Golgi should affect

ER structure and vice versa. In support of this notion, we found that

aSNAP knockdown dispersed the ERGIC (Figure 7), which can be

explained by the decreased vesicle flow from the disordered and

dysfunctional ER. It is expected that the observed alterations of

the Golgi-ER dynamics can prevent assembly of junctional

complexes at the plasma membrane via multiple mechanisms.

These mechanisms may involve misfolding and abnormal

posttranslational processing of AJ/TJ proteins and/or their

defective sorting into vesicular carriers at the ER exit sites or in

the trans-Golgi network.

Given our results suggesting that aSNAP depletion interrupts

AJ/TJ biogenesis at the Golgi level, it is important to understand

how loss of this membrane fusion protein disrupts Golgi

architecture. Previous biochemical studies demonstrated a direct

association of aSNAP with two distinct SNARE complexes

involving either syntaxin-5 [43,55] or syntaxin-18 [42,45] that

respectively control the anterograde or retrograde vesicle traffick-

ing between the ER and Golgi [33]. Furthermore, aSNAP was

shown to mediate fusion of ER-derived vesicles with Golgi

membranes in a cell-free vesicle fusion reconstruction assay [56].

Therefore, one can predict that loss of aSNAP would inhibit

disassembly/recycling of both the anterograde and the retrograde

Figure 9. GBF1, but not other Golgi GEFs, regulates barrier
functions of the intestinal epithelial junctions. (A) Immunoblot-
ting analysis demonstrates that two different aSNAP-specific siRNA
duplexes significantly decrease expression of Golgi GEFs, GBF1, BIG1
and BIG2 in SK-CO15 cells on days 2 and 3 post-transfection. (B,C) SK-
CO15 cells were transfected with either control GBF1, BIG1, or BIG2,
siRNAs and examined on day 4 post-transfection. Immunoblotting
analysis demonstrates selective down regulation of individual GEFs by
their gene-specific siRNAs. Depletion of GBF1, but not BIG1 or BIG2,
decreased p120 catenin expression (B), dramatically inhibited develop-
ment of the paracellular barrier (C) and induced apoptosis (B); *p,0.05,
#p,0.01 compared to control siRNA-transfected cells.
doi:10.1371/journal.pone.0034320.g009
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SNARE complexes at the ER and the Golgi. This would stop

vesicle cycling between two organelles leading to their structural

disintegration and functional deficiency. However, our results add

another level of complexity to the mechanisms of aSNAP-

dependent regulation of the Golgi by revealing expressional

downregulation of Golgi-associated GEFs in aSNAP-depleted

epithelial cells (Figure 9A). These GEFs, namely GBF1, BIG1 and

BIG2 are known to activate ARF GTPases, which are essential for

the assembly of coated vesicles in different regions of the Golgi and

the ERGIC [79,80]. Therefore, loss of aSNAP can simultaneously

interfere with two critical trafficking steps at the Golgi such as

ARF-dependent assembly of coated vesicles and SNARE-mediat-

ed vesicle fusion. Downregulation of Golgi GEFs can also

contribute to the disruption of AJs and TJs in aSNAP-depleted

cells. Although inhibition of all three Golgi GEFs by BFA was

previously shown to induce AJ disassembly [81], we observed for

the first time a unique role for GBF1 in maintaining normal AJ

and TJ architecture and epithelial permeability (Figures 9, 10 &

S4). These findings are consistent with reported non-redundant

functions of the Golgi resident GEFs. For example, a specific pro-

survival activity of GBF1, but not BIG1 or BIG2, was observed in

human hepatoma cells [82]. This may reflect a unique role for

GBF1 in vesicle delivery from the ERGIC to the cis-side of the

Golgi, which is a key stage in Golgi ciscernae biogenesis [62].

Another important finding of this study is a role for aSNAP as a

positive regulator of protein expression. Indeed, loss of aSNAP

decreased expression of such functionally-diverse proteins as p120

catenin (Figure 3C), Golgi GEFs (Figure 9) and anti-apoptotic Bcl-

2 (data not shown). At least for p120 catenin and Bcl-2, such

expressional down-regulation cannot be explained by decreased

mRNA transcription or increased protein degradation (data not

shown), thereby suggesting defects in protein translation. Although

mechanistic links between vesicle trafficking and protein transla-

tion have not been firmly established, the functional interplay

between these two processes has been documented by previous

studies. For example, enhancement of exocytic vesicle flux in cells

overexpressing some SNARE and exocyst proteins resulted in the

increased protein translation [83,84]. On the other hand, BFA

treatment that interrupts the ER-Golgi vesicle cycling was shown

to inhibit protein synthesis [85]. Since vesicle trafficking can

regulate several steps of polypeptide chain processing including

ribosomal attachments to the ER membrane, translation initiation,

and polypeptide translocation into the ER lumen [83,84], it would

be interesting to elucidate which steps of protein translation are

impaired by aSNAP depletion.

In conclusion, our study reveals novel roles for a canonical

membrane fusion protein aSNAP in the regulation of the structure

and barrier function of epithelial apical junctions. aSNAP-

dependent assembly of epithelial AJs and TJs appears to be

mediated by previously unanticipated mechanisms that involve

control of AJ protein expression and Golgi integrity and functions.

Given the profound effects of aSNAP depletion on various cellular

structures and processes, it would be important to investigate

whether expression of this protein is affected in different diseases

and if aSNAP dysfunction is involved in disassembly of epithelial

junctions during mucosal inflammation and tumor metastasis.

Materials and Methods

Antibodies and other reagents
The following primary polyclonal (pAb) and monoclonal (mAb)

antibodies were used to detect junctional, signaling and vesicle

trafficking proteins: anti-aSNAP mAb (Abcam) anti-occludin, ZO-

1, claudin-1, claudin-4, and JAM-A mAbs and pAbs (Invitrogen,

Carlsbad, CA); anti-cleaved PARP, active caspase-3, active

caspase-7 and GAPDH pAbs (Cell Signaling); anti-E-cadherin,

b-catenin, GM-130 and NSF mAbs (BD Biosciences, San Jose,

CA); anti-ERGIC53 mAb (Enzo Life Sciences, Plymouth

Meetings, PA); anti-BIG1 and Giantin pAbs (Covance, Princeton,

NJ); anti-b-catenin pAb (Sigma-Aldrich, St. Louis, MO); anti-a-

catenin mAb (Epitomics, Burlingame, CA). Anti b1 integrin rat

and rabbit mAbs were obtained from the University of Iowa

Hybridoma Bank and Novus Biologicals (Littleton, CO) respec-

tively. Polyclonal and monoclonal antibodies against p120 catenin

were described previously [86,87]. Anti-BIG2 pAb was provided

by Dr. Martha Vaughan (National Heart, Lung and Blood

Institute, NIH, Bethesda, MD). Alexa-488 or Alexa-568 dye

conjugated donkey anti-rabbit and goat anti-mouse secondary

antibodies, as well as Alexa-dye conjugated phalloidin were

obtained from Invitrogen. Horseradish peroxidase-conjugated

goat anti-rabbit and anti-mouse secondary antibodies were

purchased from Jackson Immunoresearch Laboratories (West

Figure 10. Downregulation of GBF1 expression phenocopies the effects of aSNAP depletion on epithelial junctions.
Immunofluorescence labeling shows formation of normal b-catenin-based AJs, occludin/claudin-4-based TJs and well-organized perinuclear Golgi
ribbon (arrows) in control SK-CO15 cell monolayers. In contrast, GBF1-depleted cells display a defective AJ/TJ assembly, intracellular localization of
junctional proteins and dispersed Golgi (arrowheads) on day 4 post-transfection. Scale bar, 20 mm.
doi:10.1371/journal.pone.0034320.g010
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Grove, PA). Z-VAD-fmk was purchased from MP Biomedicals

(Solon, OH). All other reagents were obtained from Sigma-

Aldrich.

Cell culture and calcium switch model
SK-CO15 (a gift from Dr. Enrique Rodriguez-Boulan, Weill

Medical College of Cornell University, NY) and T84 (ATCC,

Manassas, VI) human colonic epithelial cells (ATCC) were cultured

as previously described [67,88,89,90]. Cells were grown in standard

T75 flasks, and for immunolabeling experiments, were plated on

either collagen-coated, permeable polycarbonate filters 0.4 mm pore

size (Costar, Cambridge, MA) or on collagen-coated coverslips. For

biochemical experiments, the cells were cultured in 6-well plastic

plates. To study AJ/TJ reassembly, confluent SK-CO15 cells were

subjected to ‘calcium switch’ as previously described [67,90].

Immunofluorescence labeling and image analysis
Epithelial cell monolayers were fixed/permeabilized in 100%

methanol for 20 min at 220uC. Fixed cells were blocked in

HEPES-buffered Hanks balanced salt solution (HBSS+) containing

1% bovine serum albumin (blocking buffer) for 60 min at room

temperature and incubated for another 60 min with primary

antibodies diluted in the blocking buffer. Cells were then washed,

incubated for 60 min with Alexa dye-conjugated secondary

antibodies, rinsed with blocking buffer and mounted on slides

with ProLong Antifade medium (Invitrogen). Immunofluores-

cently-labeled cell monolayers were examined using either an

Olympus FluoView 1000 confocal microscope (Olympus America,

Center Valley, PA) or a Zeiss LSM510 laser scanning confocal

microscope (Zeiss Microimaging Inc., Thornwood, NY). The

Alexa Fluor 488 and 568 signals were imaged sequentially in

frame-interlace mode to eliminate cross talk between channels.

The images were processed using either the Olympus FV10-ASW

2.0 Viewer, or Zeiss LSM5 Image Browser software and Adobe

Photoshop. Images shown are representative of at least 3

experiments, with multiple images taken per slide. Quantification

of Golgi disruption was performed by visually examining Golgi

morphology in ten 1006 fields per each experimental group (,43

cells per field), that were acquired in three independent

experiments.

Immunoblotting
Cells were homogenized in RIPA lysis buffer (20 mM Tris,

50 mM NaCl, 2 mM EDTA, 2 mM EGTA, 1% sodium

deoxycholate, 1% Triton X-100 (TX-100), and 0.1% SDS,

pH 7.4), containing a protease inhibitor cocktail (1:100, Sigma)

and phosphatase inhibitor cocktails 1 and 2 (both at 1:200, Sigma).

Lysates were cleared by centrifugation (20 min at 14,0006 g),

diluted with 2xSDS sample buffer and boiled. SDS-polyacryl-

amide gel electrophoresis and immunoblotting were conducted by

standard protocols with an equal amount of total protein (10 or

20 mg) per lane. Protein expression was quantified by densitometry

of three immunoblot images, each representing an independent

experiment, with a Kodak Image Station 2000R and Kodak

Molecular Imaging software V 4.0 (Eastman Kodak, Rochester,

NY). Data are presented as normalized values assuming the

expression levels in control siRNA-treated groups were at 100%.

Statistical analyses were performed with row densitometric data

using the Microsoft Excel program.

RNA interference
siRNA-mediated knockdown of aSNAP, NSF, p120 catenin,

GBF1, BIG1 and BIG2 was carried out as previously described

[67,68,90]. Individual siRNA duplexes (Dharmacon, Lafayette,

CO) were used to downregulate aSNAP expression, whereas

knockdown of other targets was performed by using specific

siRNA SmartPools (Dharmacon). A non-coding siRNA duplex-2

or cyclophilin B SmartPool (Dharmacon) was used as a control.

SK-CO15 cells were transfected using the DharmaFect 1 reagent

(Dharmacon) in Opti-MEM I medium (Invitrogen) according to

the manufacturer’s protocol with a final siRNA concentration of

50 nM. Cells were utilized in experiments on days 3 and 4 post-

transfection.

Preparation of aSNAP- and p120-overexpressing
epithelial cells

For the rescue experiments, the coding sequence of aSNAP (gift

from Dr. Reinhard Jahn, Max Planck Institute for Biophysical

Chemistry, Gottingen, Germany) was cloned in pLXSN retroviral

vector (Clontech) as a BamH1, EcoR1 fragment. The bovine

aSNAP transcript has 4 nucleotide mismatches in the correspond-

ing sequences and is not targeted by the siRNA duplexes 1 and 2

used to deplete human aSNAP in our experiments. For retroviral

particle production, ProPak-A cells (ATCC) were transfected with

either empty control vector or bovine aSNAP-containing vector

using a Trans-IT 293 transfection reagent (MirusBio, Madison,

WI). p120 catenin isoforms were cloned into the LZRS retroviral

system as described at length in a previous publication [91]. For

production of retroviruses, Phoenix 293 cells were transfected by

calcium phosphate with LZRS-IRES-neo empty retroviral vector

or vectors bearing mp120-1A or mp120-3A and transfected cells

were selected with 1 mg/ml G418. In both cases in order to harvest

the viruses, infected cells growing at 75% confluence were

incubated for 16 h at 37uC. Collected media was passed through

a 0.45-mm syringe filter and stored at 280uC. SK-CO15 cells

plated at 30–40% confluence were exposed overnight to viruses

preincubated with 4 mg/ml polybrene. Stable cell lines expressing

either bovine aSNAP, or p120 catenin isoforms along with their

appropriate controls (SK-neo) were selected with 1.2 mg/ml G418.

Epithelial barrier permeability measurements
TEER was measured with an EVOMX voltohmmeter (World

Precision Instruments, Sarasota, FL). The resistance of cell-free

collagen-coated filters was subtracted from each experimental

point.

Statistics
Numerical values from individual experiments were pooled and

expressed as mean 6 standard error of the mean (S.E.)

throughout. Obtained numbers were compared by two-tailed

Student’s t-test, with statistical significance assumed at p,0.05.

Supporting Information

Figure S1 Junctional disassembly in aSNAP-depleted
cells is independent of cell death. To exclude a possible role

of two major cell death pathways in junction disassembly, SK-

CO15 cells were transfected with either control or aSNAP-specific

siRNA (duplex 1), and one day later, were exposed to either

vehicle or a combination of apoptosis inhibitor Z-VAD-fmk

(50 mM) and necroptosis inhibitor necrostatin (Nst)-1 for 72 h. A

dual inhibition of apoptosis and necroptosis did not affect structure

of normal AJs and TJs (arrows) but failed to prevent junctional

disassembly in aSNAP-depleted SK-CO15 cells (arrowheads).

Scale bar, 20 mm.

(TIF)
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Figure S2 Overexpression of p120 catenin does not
prevent junctional disassembly in aSNAP-depleted cells.
(A) Immunoblotting analysis shows preserved p120 catenin level

in p120-3 overexpressing SK-CO15 cells after aSNAP depletion.

However, such p120-3 overexpression does not prevent disrup-

tion of the paracellular barrier (B) and disassembly of AJs and TJs

(C, arrows) in aSNAP-depleted epithelial cells; #p,0.01

compared to the control siRNA-treated group (n = 3). Scale

bar, 20 mm.

(TIF)

Figure S3 Downregulation of aSNAP impairs glycosyla-
tion and plasma membrane delivery of b1 integrin. (A)

SK-CO15 cells were transfected with either control or two

different aSNAP duplexes (D1 and D2). Immunoblotting analysis

shows the increased intensity of the lower band of b1 integrin in

aSNAP-depleted cells that corresponds to its nonglycosylated

form. (B) Immunofluorescence labeling shows plasma membrane

localization of b1 integrin in control cells (arrows) and intracellular

accumulation of this protein on day 4 of aSNAP knockdown

(arrowheads). The lower panel of images presenting a dual

immunolabeling with rat b1 integrin antibody and control rabbit

IgG, confirms the specificity of b1 integrin staining. Scale bar,

20 mm.

(TIF)

Figure S4 Downregulation of BIG1 and BIG2 expression
does not affect the integrity of epithelial apical junc-
tions. Immunofluorescence labeling shows normal architecture of

b-catenin-based AJs and occludin/ZO-1-based TJs in either BIG1

or BIG2-depleted SK-CO15 cells on day 4 post-transfection. Scale

bar, 20 mm.

(TIF)
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