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Abstract

The regulation of the 100-fold dynamic range of mitochondrial ATP synthesis flux in skeletal muscle was investigated.
Hypotheses of key control mechanisms were included in a biophysical model of oxidative phosphorylation and tested
against metabolite dynamics recorded by 31P nuclear magnetic resonance spectroscopy (31P MRS). Simulations of the initial
model featuring only ADP and Pi feedback control of flux failed in reproducing the experimentally sampled relation
between myoplasmic free energy of ATP hydrolysis (DGp =DGp

o9+RT ln ([ADP][Pi]/[ATP]) and the rate of mitochondrial ATP
synthesis at low fluxes (,0.2 mM/s). Model analyses including Monte Carlo simulation approaches and metabolic control
analysis (MCA) showed that this problem could not be amended by model re-parameterization, but instead required
reformulation of ADP and Pi feedback control or introduction of additional control mechanisms (feed forward activation),
specifically at respiratory Complex III. Both hypotheses were implemented and tested against time course data of
phosphocreatine (PCr), Pi and ATP dynamics during post-exercise recovery and validation data obtained by 31P MRS of
sedentary subjects and track athletes. The results rejected the hypothesis of regulation by feed forward activation. Instead, it
was concluded that feedback control of respiratory chain complexes by inorganic phosphate is essential to explain the
regulation of mitochondrial ATP synthesis flux in skeletal muscle throughout its full dynamic range.
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Introduction

The means by which oxidative ATP synthesis is controlled has

remained an intensively studied topic during the past decades [1].

The first control scheme that was proposed involved a feedback

signal of cellular ATP hydrolysis products, i.e. ADP and Pi [2].

More recently, a second control mechanism was proposed: i.e.

parallel activation of cellular ATP demand and production (feed

forward activation). It was hypothesized that parallel activation

(feed forward regulation) of cellular ATP demand and production

was essential to explain energy homeostasis [1,3]. Since then,

several sites of Ca2+ stimulation present in the mitochondrial

network as well as a vast protein phosphorylation network

controlled by Ca2+ signaling have been discovered [4]. These

data provided further support of the parallel activation hypothesis

However, although both control mechanisms have a firm basis in

literature, it is still unclear to which extent each of these

mechanisms contributes to the cellular energy homeostasis of the

intact system (see e.g. [5,6] vs. [1] and [7]). In addition, related

questions, like e.g., the role of these control mechanisms in the

development and progression of metabolic diseases, are considered

important topics for future research [8].

Answering these questions requires a thorough understanding of

the integrated system [9,10]. Computational modeling has been

proposed as an important research tool for keeping track of

biological complexity and developing such ‘systems – level’

understanding [11,12]. Although most models are constructed

by integration of information obtained under in vitro experimental

conditions, the goal of these models remains to represent in vivo

conditions. It is therefore essential to test and improve them with in

vivo data.
31P magnetic resonance spectroscopy (MRS) provides a non-

invasive method for measuring metabolite dynamics (PCr, Pi,

ATP) during rest, exercise and recovery conditions in human

skeletal muscle [13]. Previously, 31P MRS was used to sample the

transduction functions between regulatory metabolites (ADP, Pi)

or thermodynamic potential (DGp =DGp
o9+RT ln [ADP][Pi]/

[ATP]) and the oxidative ATP synthesis flux (JP) [14]. These
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transduction functions capture important characteristics of the

regulation of oxidative phosphorylation in vivo and can therefore be

applied for testing and validation of computational models of

oxidative ATP metabolism.

The computational model of oxidative energy metabolism

developed by Beard and coworkers [15] is among the most

advanced models currently available. At first, it was developed to

describe oxidative ATP metabolism in cardiac myocytes. At the

moment, it has excellent performance in reproducing 31P MRS

observed metabolite dynamics in cardiac cells [5,6]. In addition,

we showed that the model reproduced the transduction function

between ADP and Jp recorded in skeletal muscle fairly well [14].

However, it has also been reported that at low respiration rates

and corresponding ATPase fluxes (ATPase ,0.2 mM/s) the

model systematically underestimates ADP and Pi concentrations

[14,16,17], which is most evident in predictions of the DGp - Jp

relation. These limitations are probably not a severe shortcoming

for modeling of cardiac energetics. The normal physiological

ATPase range of cardiac myocytes does not include these low

fluxes. However, in case of skeletal muscle, or other excitable cell

types, like neurons, the problem is considerably more significant,

as these cells often experience low flux conditions.

It was studied if the observed model limitations are a result of

inadequate parameterization; or alternatively, if the model is

lacking essential control mechanisms. The latter will also have

important physiological implications. Specifically, three hypothe-

ses were tested: i, the model is not missing control mechanisms, but

merely requires parameter optimization; ii, the missing control can

be explained by addition of a substrate feedback mechanisms (by

e.g. Pi) acting on a subset of model components; or iii, the missing

control can be explained by addition of feed forward regulation (by

e.g. Ca2+ signaling and protein phosphorylation) acting on a subset

of model components.

To test these hypotheses, first, the relation between DGp and Jp

was obtained from high time resolution 31P MRS recordings of

metabolite dynamics (PCr, Pi, ATP, ADP, pH) during recovery

from exercise. The DGp - Jp relation was favored for model testing

above the PCr, Pi, ATP metabolite recovery dynamics for several

reasons. PCr and Pi recovery dynamics are sensitive to cellular pH

whereas DGp - Jp is rather insensitive. Consequently, it is possible

to analyze the DGp - Jp relation without considering the effects of

muscle acidosis. In addition, the transduction function provides a

direct measure of the model error at a certain flux. Moreover, it

was previously shown that failure of model predictions was

observed best in predictions of DGp [16,17]. The relation was

determined for healthy human subjects (control group) and two

other populations, i.e., subjects with sedentary lifestyle and track

athletes (validation datasets). Next, numerical analysis and model

simulations were applied to test which of the three hypotheses

could explain both control and validation datasets. The results

rejected the solution of model re-parameterization or addition of

regulation by a feed forward control mechanism. Instead, our

findings provide new evidence in support of a substrate feedback

related control mechanism that acts on the respiratory chain

complexes, and at Complex III in particular, which regulates DGp

at low respiration rates in skeletal muscle.

Results

Model testing: analysis of model parameterization
Model predictions of the DGp - Jp relation were employed to test

the hypothesis that the model harbors all essential control

mechanisms, but requires parameter optimization. The experi-

mentally sampled DGp - Jp relation was obtained from a previous

study [14], making use of 31P MRS during post exercise recovery

in M. vastus lateralis of healthy human subjects. It was investigated

which part of this dataset could be reproduced by the models’

original parameterization. Predictions according to the model are

shown in Figure 1A (red lines). While for ATPase .0.2 mM/s,

model predictions and experimental data match well, for ATPase

,0.2 mM/s the results show a clear discrepancy between

predictions and data. These results confirmed that the original

model fails to adequately describe rest and low exercise conditions.

Next, it was investigated if adjusting the model parameterization

could improve model predictions. To this end, two different

methods were applied. The first involved application of a parameter

estimation algorithm (Levenberg – Marquardt minimization). In

Figure 1. Testing model parameterization. Model predictions of
the nGp - Jp relation according to the initial model parameterization
(red line) and after parameter optimization (blue line) (A). (B) shows the
results of sampling of the model solution space by a Monte Carlo
simulation approach. The 10 simulations with the best fit to all
experimental data (blue lines), to high flux data points (ATPase
.0.4 mM/s, red lines) and to low flux data points (ATPase ,0.1 mM/
s, green lines) are shown. Experimental data points are indicated by n.
Data were taken from [14].
doi:10.1371/journal.pone.0034118.g001
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total 27 parameters were re-estimated. A list of these parameters

and their original and re-estimated values is available in the

supporting information (Table S1, columns: value original model;

value optimized model). The mean squared error between model

predictions and experimental data was used as objective function.

For more details the reader is referred to the ‘Methods Section’.

Figure 1A (blue line) shows model predictions vs. experimental

data after optimization of parameter values. Although from a

purely mathematical point of view these model predictions

represent an improved fit of the model (the sum of squared errors

decreased from 4396.5 kJ2/mol2 to 530.3 kJ2/mol2), additional

simulations with the re-parameterized model predicted non –

physiological behavior. Specifically, the predicted DGp - Jp

relation is expected to follow a sigmoidal relation in which the

upper asymptote reflects maximal mitochondrial ATP synthetic

flux (Vmax) [18,19]. Model predictions show that the reparame-

terized model (Figure 1A, blue line) did not approach an

asymptote in the high flux domain, but instead continued to rise.

Consequently, the predicted Vmax (,2.5 mM/s) significantly

overestimated previously reported values, which ranged between

0.62 and 0.83 mM/s [14]. Furthermore, the model failed in

predictions of the experimentally observed ADP – Jp transduction

function (simulation results provided in supporting information,

Figure S2). For example, the predicted [ADP] at half maximal

flux (K50ADP), was ,0.2 mM, which is about tenfold larger than

calculated from the experimentally sampled ADP – Jp relation

[14]. It was also tested if including both the DGp - Jp and ADP –

Jp data in the parameter optimization procedure could improve

the performance of the model. However, in this case, the

transduction function of the reparameterized model became very

similar to the initial model and was rejected because it failed to

describe rest and low exercise conditions (simulation results

provided in supporting information, Figure S3). In the previous

approach large changes of model parameter values were allowed,

resulting in up to 20 fold changes of estimated parameter values

(see supporting information Table 1). Many of the optimized

parameters were originally derived from other computational

studies and consequently have no firm experimental basis.

Therefore, at itself, the required changes in parameter values

provide no basis to reject the possible solution of model

reparameterization. However as a result of these large changes

in parameter values non – physiological model behavior was

observed, which, did provide evidence to reject the model. In an

attempt to study model predictions which were more constrained

to the physiological domain, model behavior was sampled for a

large number of parameter sets around the initial parameteriza-

tion. In this approach the parameter values were more strongly

constrained with the aim of keeping the model in the

physiological relevant domain. Next, a Monte Carlo simulation

approach (10,000 simulations) was applied to randomly select

parameter values within the range of 0.1–2 times the values of the

initial model parameterization (uniform distribution). Figure 1B,

shows the 10 simulations with the best fit to all experimental data

(blue lines), to the high flux data points (ATPase .0.4 mM/s, red

lines) and to the low flux data points (ATPase ,0.1 mM/s, green

lines). These results indicated that the model can either fit the

high flux domain experimental data (red lines) or the low flux

domain experimental data (green lines), but cannot reproduce all

data points with a single set of parameters (blue lines).

On the basis of the results above it was concluded that

reparameterization of the model did not suffice to reproduce the

experimental data. An alternative explanation would be that the

model was lacking essential regulatory control mechanisms. This

possibility was investigated in the remainder of the study.

Mathematical analysis of model control points: metabolic
control analysis

A first essential step in testing hypotheses of additional control

was to identify the subset of model components that were most

likely involved. Metabolic control analysis (MCA) was applied to

identify components influencing nGp at low flux conditions. MCA

has been described in multiple review papers (see e.g. [20]). In

brief, MCA is a quantitative framework for relating steady state

fluxes or concentrations in a biochemical network to properties

(control coefficients) of the networks individual components. The

control coefficients reflect the sensitivity of model predictions

(steady state flux or concentrations) to a change in the activity

(Vmax) of an individual network component. The model

parameters that were included in the MCA are listed in Table 1.

The list was constructed by selecting all model parameters

representing enzyme activities (Vmax). Enzyme activity parameters

of creatine kinase, adenylate kinase, the mitochondrial K+/H+

exchanger and magnesium binding fluxes were excluded from the

analysis since at steady state the fluxes through these enzymes were

zero and consequently, control coefficients could not be calculated.

The control coefficients were calculated for resting skeletal muscle

(ATP demand: 0.01 mM/s [21]) because for this condition model

predictions failed most dramatically (Figure 1). In this section only

the results relevant for the present investigation are described; the

entire matrix of flux and concentration control coefficients is

available in the supporting information (Tables S2 and S3).

According to the theory of metabolic control analysis, the

concentration control coefficients sum to 0 [20]. Normalized

concentration control coefficients were calculated for nGp,

Figure 2. The concentration control coefficients were normalized

by scaling the sum of positive control coefficients to 1.

Consequently, the sum of negative concentration control coeffi-

cients summed to 21. The positive concentration control of nGp

was for 60% located at complex III, whereas the remaining part of

the positive control was distributed among the other components

of the network. The negative control was shared between proton

leak (control coefficient 20.35) and cellular ATP demand (control

coefficient 20.65). Complex III, the proton leak and cellular ATP

demand were therefore proposed as possible candidates for

additional regulation. Additional simulations revealed that indeed

by adjusting the proton leak flux it was possible to predict the

experimentally observed nGp at rest. However, it required

Table 1. Overview of mitochondrial model parameters
included in the metabolic control analysis.

Parameter name Description

XDH Dehydrogenase activity

XC1 Complex I activity

XC3 Complex III activity

XC4 Complex IV activity

XF1 FoF1-ATPase activity

XANT ANT activity

XPiHt H+/Pi2 cotransporter activity

XHle H+ leak activity

MitoAdn Mito. outer membrane permeability to nucleotides

MitoPi Mito. outer membrane permeability to Pi

XAtC Cytoplasm ATPase activity

doi:10.1371/journal.pone.0034118.t001
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increasing the proton leak flux until over 99 percent of all protons

entered the matrix through the leak. The physiological range of

the proton leak in skeletal muscle is between 35 and 50% [22].

Since the proton leak at rest accounted already for 50% of the

proton flux into the mitochondrial matrix, this network compo-

nent was ruled out as a potential site of additional regulation.

Simulations also confirmed that by increasing cellular ATP

demand it was possible to reproduce the experimentally observed

nGp at rest (264 kJ/mol). However, this could only be achieved

when the cellular ATP demand at rest was increased 15-fold, from

0.01 mM/s to 0.15 mM/s. The cellular ATP demand flux in

human skeletal muscle at rest has however been measured

accurately by a variety of experimental methods [23]. The

reported values range from 0.002 to 0.02 mM/s, median value:

0.01 mM/s. Increasing basal ATP demand to 0.15 mM/s

corresponded to non-physiological conditions. It was therefore

chosen to set the basal ATP consumption flux to the experimen-

tally observed value (0.01 mM/s). Consequently, in addition to the

proton leak flux, also basal ATP demand flux was ruled out as

possible solution for improving model predictions. It was therefore

chosen to focus on complex III as the primary site of additional

control.

Hypotheses of additional regulation
The original model provided insufficient control to capture the

regulation present in skeletal muscle in vivo. In this section two

alternative model configurations are defined, according to the two

currently leading hypotheses: i.e. 1.) substrate feedback regulation

[6], and 2.) feed forward activation (parallel activation) mediated

by protein phosphorylation [1]. For both configurations, complex

III was selected as the site of the additional control.

Substrate feedback regulation. The original model already

included substrate feedback regulation of the dehydrogenases and

complex III, which was described by a phenomenological

hyperbolic activation term as a function of matrix Pi con-

centration. In the new model this term was substituted by a Hill

equation which can describe both a hyperbolic relation (nH = 1) as

well as a sigmoidal relation (nH.1). The Hill equation captured a

wider range of regulatory functions and thus a wider range of

potential control mechanisms. The new flux equation for complex

III was defined as follows:

FC3~XC3(
½Pi�x

nH

K50Pi
nHz½Pi�x

nH
)(e

{DG0,c3{4DGHz2FDy

2RT

½cytC(ox)3z�i½QH2�
1
2{½cytC(red)2z�i½Q�

1
2)

ð1Þ

Feed forward activation (parallel activation). In the feed

forward activation model two states of complex III were defined; a

phosphorylated active state (Xphos) and dephosphorylated inactive

state (Xdephos). The flux through these model components (complex

III, Eqn 2) was calculated as the weighted sum of the fluxes

through the phosphorylated active (weighting parameter FA) and

the dephosphorylated inactive states (weighting parameter FIA) of

complex III. kineticEqC3 denotes the kinetic description of the flux

through complex III according to the original model.

FC3~FAXphoskineticEqC3zFIAXdephoskineticEqC3, ð2Þ

where

KineticEqC3~XC3(

1z
½Pi�x
kPi,3

1z
½Pi�x
kPi,4

)(e
{DG0,c3{4DGH z2FDy

2RT

½cytC(ox)3z�i½QH2�
1
2{½cytC(red)2z�i½Q�

1
2)

The activity of the regulatory kinase-phosphatase system

controlling the fraction of complex III in the phosphorylated

and the dephosphorylated state was modeled with parameters Kon

and Koff yielding differential equations Eqn 3 and Eqn 4. According

to the parallel activation hypothesis, the equilibrium between the

phosphorylated and dephosphorylated states (Kon/Koff) was mod-

eled as a function of cell energy demand. Hereto Koff was described

by Eqn 5, in which the energy demand of the cell was expressed by

the cytoplasmic ATPase flux JAtC

dFA

dt
~{FAKonzFIAKoff ð3Þ

dFIA

dt
~FAKon{FIAKoff ð4Þ

Koff ~K ’off

JAtC
nH

K50AtC
nHzJAtC

nH
ð5Þ

Both model configurations are summarized in Table 2. Newly

introduced model parameters were estimated based upon the

experimental data of the DGp - Jp transduction function recorded in

healthy, normally active human subjects (Table 3 and 4). Full details of

the parameterization procedure are provided in the ‘Methods’ section.

It was tested if the two model configurations could reproduce

the nGp - Jp relation after parameter optimization. These

simulations were run in a Monte Carlo simulation approach to

Figure 2. Normalized concentration control coefficients for
cellular phosphate potential (nGp). Concentration control coeffi-
cients were calculated for cellular ATPase rate 0.01 mM/s.
doi:10.1371/journal.pone.0034118.g002
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probe the effect of the uncertainty in the newly introduced model

parameter values on model predictions. 1000 simulations were run

and parameter values were randomly selected from the 95.4%

confidence interval (mean+/22*SD) of normal distributions with

mean and SD as reported in Tables 3 and 4. The selected

parameters were limited to +/226SD to ensure no negative

parameter values were drawn. The calculations were performed

for both model configurations and results are shown in

Figure 3A,B. The solution space of the model was represented

by the mean (solid blue line) and standard deviation (dashed blue

line) of the 1000 simulations obtained in the Monte Carlo

approach. In each sub-figure the simulation of the original model

lacking additional regulation is indicated in red. The solution

space of the substrate feedback model (configuration i ) was more

constraint compared to the parallel activation model (configura-

tion ii ), which is probably a result of the smaller number of

parameters included in the substrate feedback model configura-

tion. Nevertheless, the mean of the solution space was for both

model configurations consistent with the experimentally observed

nGp - Jp relation.

Mitochondrial redox state, inner membrane potential
and mitochondrial ADP sensitivity

Because both model configurations could reproduce the control

dataset, it was next investigated if model predictions of important

mitochondrial state variables were within physiological range.

Figures 4A–D show model predictions of the mitochondrial redox

state (Jp - NADH/NAD) and membrane potential (Jp - nY) at

different cellular ATP demand fluxes. These simulations were also

run in a Monte Carlo approach to probe the effect of uncertainty

in model parameterization (SD reported in Table 3, 4). Results of

the original model lacking any additional regulation are indicated

in red (Figure 4). Compared to the original model, the newly

added regulatory elements decreased the inner membrane

potential (nY) at low flux conditions. For both model configu-

rations predictions of nY and NADH/NAD remained within

their physiological range (150–200 mV, 0.3–100 respectively).

Model predictions of Jp - NADH/NAD were very similar for both

model configurations (blue) as well as the original model (red). This

result is explained by the calculated concentration control

coefficients. The positive control is dominated by the dehydroge-

nase flux (XDH). The negative control is primarily provided by

cellular ATP demand and proton leak flux. The flux equations of

these model components are left unchanged compared to the

original model. As a result, only minor differences in predictions of

the Jp - NADH/NAD relation were observed. In addition, model

predictions of Jp - NADH/NAD relation are in good correspon-

dence with experimental observations in isolated mitochondria

[24]. The experimental data indicate an NADH/NAD ratio at

State 3 respiration of about 1. NADH/NAD ratio was found to

increase at lower ATP turnover fluxes eventually approaching a

value of 100 at State 4 respiration. In addition, it was tested if

predictions according to the two model configurations reproduced

a sigmoidal nGp - Jp relation, physiological Vmax value and

experimentally observed ADP - Jp relation. It was concluded that

both model configurations successfully reproduced these physio-

logical characteristics and data (results provided in supplementary

materials, Figure 2).

Model testing against independent data
Based on predictions of physiological end-points (NADH/NAD,

nY) it was not possible to discriminate between the model

configurations. Furthermore, steady state model predictions of

both configurations were consistent with the experimentally

observed nGp - Jp relation (Figure 3). The experimental data

was however recorded during post exercise recovery period. It was

therefore also tested if model predictions derived from simulations

of post exercise recovery were consistent with the data. The data of

normally active subjects was already used for parameter estimation

and cannot be considered an independent dataset. Therefore, in

addition, also independent data of athletes and obese sedentary

subjects was used. A well known difference in phenotype between

these groups is the mitochondrial density in skeletal muscle; the

athletes having more mitochondria, the sedentary subjects having

less. Model predictions according to both configurations are

dependent on settings for the mitochondrial volume density. It was

tested if the model could reproduce the data for all these

phenotypes by adjusting only the mitochondrial volume density.

All other parameters, included the ones of the newly introduced

regulatory mechanisms were left unchanged. The results of these

simulations are shown in Figure 5A–C. The substrate feedback

model (red lines) could reproduce the experimental data for all

three phenotypes. In contrast, the parallel activation model (blue

lines) could only reproduce the experimental data of the healthy,

normally active human subjects and failed in reproducing any of

the two independent datasets.

In addition, it was also investigated if the parallel activation

model could reproduce the two independent datasets by adjusting

its parameterization. In fact, this was indeed possible, but only in

the specific cases that parameters Kon and Koff were tuned to make

the time constant of deactivation of the mitochondria (transition of

Table 2. Summary of model configurations.

Model configuration Regulatory site Regulatory mechanism

i Complex III Substrate feedback

ii Complex III Parallel activation

doi:10.1371/journal.pone.0034118.t002

Table 3. Parameter values model configuration i, substrate
feedback at complex III.

Parameter name Value (mean+/2SD) Unit

XCIII 54.24+/24.28 mol s21 M23/2 (L mito)21

nH 4.02+/20.35 unitless

K50Pi 6.43+/20.52 mM

doi:10.1371/journal.pone.0034118.t003

Table 4. Parameter values model configuration ii, parallel
activation at complex III.

Parameter name Value (mean+/2SD) Unit

XA 1.46+/20.21 unitless

XIA 0.030+/20.010 unitless

nH 1.35+/20.11 unitless

K50AtC 0.094+/20.015 mmol (L cell water)21 s21

Kon 0.033+/20.006 s21

K9
off 52.64+/217.4 s21

doi:10.1371/journal.pone.0034118.t004

Regulation of Oxidative Phosphorylation in Muscle
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phosphorylated, activated complex III into the non-phosphorylat-

ed inactive state, ARIA) similar to the time constant of metabolic

recovery (PCr, Pi recovery). The experimentally observed time

constant of metabolic recovery was quantified by a mono-

exponential fit to the PCr recovery data. The corresponding time

constant was 82+/26.4 s, 15+/26.5 s and 28+/25.4 s for the

sedentary, athletes and healthy control subjects, respectively

(mean+/2SD). The predicted time constant of mitochondrial

deactivation (ARIA) was 29.5 s (mono-exponential fit), which

matches the experimentally observed time constant of metabolic

recovery of the healthy control subjects well (28+/25.4 s). After

adjusting the values Kon and Koff to fit the data of sedentary subjects

or athletes, the predicted time constant of deactivation was 91.6 s

and 14.7 s, respectively. These values are again similar to the time

constant of metabolic recovery measured for these subjects (82+/2

6.4 s and 15+/26.5 s, respectively). It was concluded that the

model could only reproduce the nGp - Jp relation of a dataset if the

time constant of metabolic recovery matched the time constant of

deactivation of the mitochondria. However, in these cases, the

model failed in reproducing the other two datasets. The substrate

feedback model could predict all datasets without re-parameteriza-

tion of the regulatory mechanism. The substrate feedback model

was therefore defined as the most robust and selected as best model

configuration and thus the most likely hypothesis.

Model testing against 31P MRS observed metabolite
recovery dynamics

Model simulations were tested against 31P MRS observed

recovery dynamics (PCr, Pi, ATP, pH). For each population

(control subjects, atheletes, subjects with sedentary lifestyle) an

individual dataset was selected. It was necessary to test model

simulations against an individual data instead of the mean+/2SD

of all recorded data, because these datasets were characterized by

differences in end-exercise pH and level of PCr depletion. In

Figure 6, model simulations for the original model (red lines),

model configuration i (blue lines) and model configuration ii (green

lines) are compared to PCr (open circles), Pi (grey triangles), ATP

(closed diamonds), and pH (open diamonds) recovery dynamics.

Full details of the simulation protocol are provided in the

‘Methods’ section. Model predictions according to the original

model failed in predicting the correct PCr and Pi levels at fully

recovered state for the control subject and the athlete dataset. The

parallel activation model (model configuration ii ) could not

reproduce metabolite dynamics for the control subject and the

subject with sedentary lifestyle. Remarkably, model configuration

ii reproduced the nGp - Jp relation of the control data well

(Figure 5), but it failed in reproducing the metabolite (PCr, Pi)

dynamics of the same dataset (Figure 6). This result is explained by

the effect of end - exercise pH. The calculations for the nGp - Jp

relation were performed for resting pH (7.05) because the relation

was insensitive to changes in pH. The calculations of the

metabolite dynamics (PCr and Pi recovery) are however sensitive

for end – exercise pH, which was therefore taken into account in

the simulations. The substrate feedback model (model configura-

tion i ) could reproduce the dynamics of all datasets. The results

show this model configuration can also reproduce the time

constant of metabolic (PCr, Pi) recovery for the different datasets.

These simulations therefore provide again further evidence that

the substrate feedback model is the best model configuration.

Discussion

The main result of this investigation was twofold. First, it was

identified that the control mechanisms captured by a detailed

biophysical model of oxidative phoshporylation in human skeletal

muscle could not explain the empirically observed nGp - Jp

relation, even not after parameter optimization. Second, the

results support the hypothesis that substrate feedback control of

the respiratory protein complexes plays an important role in the

regulation of mitochondrial ATP synthesis in skeletal muscle by

controlling DGp at low ATPase rates in muscle. These main results

as well as several methodological considerations are discussed.

Methodological considerations
The computational model that was used as a basis for this

investigation builds upon on a series of previously published

models [14,15,17]. A possible concern for applying this model

could be the use of a homogenous unit to represent skeletal muscle

tissue. It is well known that skeletal muscle is a heterogeneous

tissue in which distinct cell types are present [25]. These cell types

Figure 3. Model predictions of the nGp - Jp relation. Model
predictions of the relation between cellular phosphate potential (nGp)
and mitochondrial ATP synthetic flux (ATPase) according to model
configuration i (metabolic feedback regulation) (A), model configura-
tion ii (regulation by parallel activation) (B). Model predictions are
indicated as the mean (solid blue line) and STD (dotted blue line) of the
1000 simulations that were run in a Monte Carlo approach. Predictions
of the original model are shown in red. Experimental data points are
indicated by n. Data points were obtained from [14].
doi:10.1371/journal.pone.0034118.g003
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differ in size, force generating capacity, but also mitochondrial

density. In the current model this was not taken into account;

skeletal muscle tissue was modeled by a single cell in which an

averaged mitochondrial density was represented. It was therefore

investigated in more detail if this choice affected the study

outcome. Three different cells were defined, each with a different

mitochondrial density. The mean density was equal to the value

used in the single cell model. Predictions of the DGp – Jp relation

were identical when comparing the average of the three cells and

the single cell model. From these results it was concluded that this

specific model assumption did not affect the overall outcome of

this study.

Another important model assumption was that ATP was

produced purely through oxidative processes. This choice was

justified by limiting the analyses to data recorded during post

exercise recovery period. For this period it is well established that

the PCr dynamics reflect almost purely oxidative ATP synthesis

[21,26–28].

The current analysis was conducted under the assumption that

changes in cellular pH as a result of e.g. lactate acidosis did not

significantly affect the DGp – Jp relation. This assumption was

verified by analysis of the experimental data. The data of healthy

normally active subjects was obtained during multiple exercise

bouts of varying length and intensity. As a result, the DGp – Jp

relation was sampled for varying conditions of end – exercise pH.

It was investigated if varying conditions of cellular pH influenced

the observed DGp – Jp relation (results provided in supporting

information, Figure S1). The results indicated that the DGp – Jp

relation was insensitive to cellular pH, which validated the model

assumption.

The model of oxidative phosphorylation that was chosen as a

basis for the analysis was previously derived from a model

parameterized based upon data of cardiac mitochondria [15]. The

conversion to a skeletal muscle model mainly comprised adjusting

metabolite pool sizes and structural parameters (e.g., mitochon-

drial volume percentage). In contrast, the kinetic parameters of

oxidative phosphorylation remained unchanged. An assumption

underlying these studies therefore is that the parameterization

derived from the cardiac mitochondria is also representative for

skeletal muscle. The experimental data used to parameterize the

original model were taken from Bose et al. [29]. Bose et al. also

reported that they conducted the experiments with mitochondria

collected from skeletal muscle. It was reported that the results of

the skeletal muscle mitochondria were very similar to that of

cardiac mitochondria. In addition, the assumption is further

supported by proteomics studies, which show that cardiac and

skeletal muscle mitochondria are very similar [30]. Furthermore, it

was tested if failure of model predictions at low ATP turnover rates

could be a result of one or more of the parameter values to be

incorrect for skeletal muscle. Optimizing model parameters could

Figure 4. Model predictions of mitochondrial redox state (NADH/NAD) and membrane potential (nY). Model predictions of
mitochondrial redox state (NADH/NAD) and membrane potential (nY) at different cellular ATP demand fluxes according to model configuration i
(A–B) and model configuration ii (C–D). Model predictions are indicated as the mean (solid blue line) and SD (dotted blue line) of the 1000
simulations that were run in a Monte Carlo approach. Predictions of the original model are shown in red.
doi:10.1371/journal.pone.0034118.g004
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however not solve the problem. Next, the results of the metabolic

control analysis were used to investigate which model parameters

influenced predictions of DGp. These results showed that the

majority of the concentration control was located at complex III.

Conversely, they indicated that model predictions were insensitive

to changes in other parameters. It was therefore concluded that

possible small deviations in parameter values as a result of the

cardiac origin of the model did not affect the overall outcome of

the study. Nevertheless, these results do not rule out the possibility

that in future studies other model predictions actually are sensitive

to multiple (other) kinetic parameters. Analysis of the differences in

behavior of skeletal muscle and cardiac mitochondria and

translation of these differences to models’ parameterization may

therefore become an important topic of future research.

Some physiological parameters that were not modeled in detail

were taken into account in the analysis implicitly. For example,

nutrient supply was captured by the lumped dehydrogenase flux

(XDH) and oxygen availability will affect mitochondrial dynamics

through complex IV flux (XC4). The control coefficients

determined for XDH and XC4 therefore also implicitly reflect

control of these physiological parameters.

The two models used to describe the additional regulation are of

phenomenological nature. For testing and evaluating of these

concepts the models were found very insightful. However, one

should remain careful with the deduction of statements related to

the molecular mechanisms of the regulation. For example,

although the results clearly indicate the signal modulating

respiratory chain activity to be related to cellular substrate levels,

it cannot be ruled out that molecular implementation of this

regulation involves e.g. protein (de)phosphorylations or other post

translational modifications. The results of this study therefore do

not contradict with recent evidence of the vast mitochondrial

protein phosphorylation network [1].

Regulation of oxidative ATP production in skeletal
muscle

It was concluded that a substrate feedback related control signal

provided the best explanation for the additional regulation. The

evidence supporting this conclusion was twofold: the model

configuration representing the substrate feedback control mech-

anism could reproduce both the control dataset (healthy

volunteers) and the validation datasets (subjects with sedentary

lifestyle and track athletes) without re-parameterization, whereas

the parallel activation model could not. Secondly, the parallel

activation model could reproduce the data of humans with a

sedentary lifestyle or track athletes if re-parameterized. However,

this occurred only in the specific case that parameter settings

caused the time constant of deactivation (transition of phosphor-

ylated, activated complex III into the non-phosphorylated inactive

state) to match the time constant of metabolic recovery. This result

indicated that the regulatory mechanisms could still involve post

translational modifications (e.g. protein phosphorylation) but that

the key control signal is probably closely linked to substrate levels

(e.g. Pi, ADP, ADP/ATP). In a previous study we proposed that

the order of the ADP sensitivity provides a tractable validation

criterion for evaluation of computational models of oxidative ATP

metabolism [14]. Experimentally a second order Hill - coefficient

was observed (1.9+/20.2) [14]. Analysis of the computational

Figure 5. Model predictions for phenotypes with different
mitochondrial densities. Model predictions of the nGp - Jp relation
during post exercise recovery. Results are shown for normally active
healthy subjects (A), sedentary subjects (B), athletes (C). Experimental

data are indicated by n. Model predictions according to the substrate
feedback model (model configuration i) are indicated by a red line.
Model predictions according to the parallel activation model (model
configuration ii) are indicated by a blue line.
doi:10.1371/journal.pone.0034118.g005
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model revealed that the mitochondrial ultra-sensitivity to ADP was

primarily controlled by the kinetic parameters of the adenine

nucleotide transporter (ANT). Reformulation of the ANT kinetics

increased the Hill - coefficient of the model from 1 to 1.5.

Although this was an important step forward, the computational

model still underestimated the experimentally observed Hill -

coefficient (1.5 vs. 1.9, respectively). It was concluded that the

kinetic mechanisms required for the remainder of the difference in

Hill - coefficient were not yet included in the model and remained

to be identified. Specifically, multisite Pi activation of the

mitochondrial network was ruled out as mechanism because it

was already explicitly incorporated in the model. However, in the

new model, the Pi activation term of the Complex III flux

description was updated. The modification of the Pi activation

term could also affect the models corresponding Hill – coefficient.

In fact, model simulations revealed that the changes applied in the

new model increased the Hill - coefficient to 1.8, which is close to

the experimental observations (1.9+/20.2). On this basis, it was

concluded that in addition to the kinetic parameters of ANT, Pi

modulation of respiratory chain activity contributes to the model

predictions of second order kinetics of mitochondrial sensitivity to

ADP.

The regulation of skeletal muscle oxidative ATP metabolism has

also been investigated extensively by Korzeniewski and colleagues

(see e.g. [31–33]). The model that was developed and updated in

these studies overlaps in part with the model used in the current

investigation: i.e., part of the models topology and some flux

equations and parameter values are identical. Interestingly, the

studies by Korzeniewski and colleagues point towards a principal

role for parallel activation in the regulation of oxidative

phosphorylation in skeletal muscle [33]. Although, at first, this

result seems conflicting, Korzeniewski and colleagues evaluated

many other quantitative but also qualitative characteristics of

skeletal muscle energy metabolism (like e.g., PCr overshoot

behavior or asymmetry between PCr on - off kinetics). In the

present study we focused on 31P MRS observed metabolite

dynamics, and, in particular the DGp – Jp relation. Our results

however do not rule out the possibility that regulation by parallel

activation is essential to explain other characteristics of energy

metabolism in muscle. At the moment, these models share the

same ANT flux equation. Previously, we concluded that this

particular component has a dominant role in controlling the

model sensitivity to ADP [14]. Moreover, it was concluded that

the K50ADP (i.e., [ADP] at half maximal velocity) derived from

predictions of the ADP – Jp relation should be increased tenfold by

adjusting ANT parameter h to match the experimentally observed

ADP – Jp relation. Adjusting the ADP sensing of the model also

amplified the models’ sensitivity to control by substrate feedback

regulation (ADP, Pi). This step in model development provides an

explanation for why the current model did not require multi step

parallel activation for reproducing the experimentally observed

DGp – Jp relation.

The physiological implications of the added regulation on e.g.

membrane potential and mitochondrial redox state were also

explored. The model predicted a decreased inner membrane

potential at low flux conditions. For instance, under resting

conditions, the membrane potential dropped by 25 mV as a result

of the added regulation. These predictions may provide a clue

about the functionality of the regulation. A high mitochondrial

membrane potential is believed to be a major source of cellular

Figure 6. Model predictions versus 31P MRS observed metabolite dynamics during post exercise recovery period. Experimental data
and model simulations of a healthy control subject (A,D), athlete (B,E) and subject with a sedentary lifestyle (C,F) are shown. Model simulations
according to the original model, model configuration i and model configuration ii are indicated by red, blue and green lines respectively.
Experimental data of PCr, Pi, ATP and pH are indicated by open circles, grey triangles, closed diamonds and open diamonds respectively.
doi:10.1371/journal.pone.0034118.g006
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ROS production [34] and corresponding cellular damage. There

is an increasing amount of evidence that mitochondria regulate

membrane potential by e.g. the concentration of uncoupling

proteins in the inner membrane [35,36]. We speculate that the

proposed Pi regulation of respiratory chain activity has a similar

function: it prevents high membrane potentials under low flux

conditions protecting the cells against excessive ROS production.

Significance and future prospective
It is concluded that explaining the experimentally observed

relation between DGp and Jp in skeletal muscle in vivo requires

increasing the control of the Pi activation term of complex III in a

detailed model of oxidative ATP metabolism. The significance of

this result is twofold. First, it provides new evidence supporting a

dominant role for substrate feedback regulation in the control of

mitochondrial ATP synthesis in skeletal muscle. Second, the

proposed adaptations provide an important step towards devel-

oping a computational model of ATP metabolism in skeletal

muscle representing in vivo conditions. The updated model was

shown to reproduce 31P MRS observed metabolite dynamics

throughout the entire dynamical range of ATPase fluxes in skeletal

muscle in vivo. To the best of our knowledge, this is the first detailed

computational model that is quantitatively consistent with 31P

observed metabolite dynamics throughout this full range. Hence, it

provides an improved basis for future studies of energy metabolism

in muscle. From this viewpoint, application of the model may not

remain limited to healthy subjects, but may also include analysis of

for example mitochondrial (dys)function related to obesity, type 2

diabetes or aging. Specifically, model simulations can quantify the

contribution of changes in specific physiological parameters (e.g.

mitochondrial content, enzyme activities) observed in these

patients to 31P MRS recordings of mitochondrial function in vivo

(time constant of post exercise PCr recovery). This study can test

the relevance of the current model for the analysis of metabolic

diseases in humans.

Methods

Ethics statement
The experimental data recorded in healthy human control

subjects and subjects with sedentary lifestyle were obtained from

previous investigations [14,37]. The data recorded in athletes has

not been published before. For all experiments, the nature and

risks of the experimental procedures were explained to the subject.

All gave their written informed consent to participate to the study,

which conformed the standards set by the Declaration of Helsinki

and was approved by the local Medical Ethics Committee of the

Máxima Medical Centre, Veldhoven, The Netherlands.

Experimental data
Healthy, normally active control subjects. The experi-

mentally sampled nGp – Jp, relation was obtained from human

quadriceps muscle of healthy, normally active subjects using in vivo
31P NMR spectroscopy. Full details regarding the methods of these

experiments are described elsewhere [14]. In brief, subjects (n = 6)

performed single-leg knee extension every 1.5 s in supine position.

The experimental protocol consisted out of 2 min rest followed by

incremental ramp exercise protocol of different duration, followed

by a recovery period. 31P MRS recordings of PCr, Pi ATP and pH

levels were conducted at 6 seconds time resolution (repetition

time: 3 s, no. of averages: 2, spectral width: 2000 Hz, no. of data

points in the FID: 1024). Spectra were fitted in time domain by

using a non-linear least square algorithm in the jMRUI software

package. Absolute concentrations of the metabolites were

determined after correction for partial saturation and using the

ATP concentration as internal standard (assuming that [ATP] is

8.2 mM at rest [38,39]). Intracellular pH was calculated from the

chemical shift difference between the Pi and PCr resonance [40].

The free cytosolic ADP concentration was calculated from pH and

[PCr] using creatine kinase equilibrium constant (Keq) of

1.666109 M21 [41] and assuming that 15% of the total creatine

is unphosphorylated at rest [42], using Eqn. 6:

½ADP�~ ½ATP�½Cr�
½PCr�½Hz�Keq

ð6Þ

The molar free energy of cytosolic ATP hydrolysis was

calculated according to Eqn. 7, where DGo0

p is 231.8 kJ/mol at

37uC. [ADP] and [ATP] represent the magnesium-free concen-

trations of these metabolites.

DGp~DGo0
p zRT ln(½ADP�½Pi�=½ATP�) ð7Þ

The PCr recovery time course was fitted to a mono-exponential

function. The PCr resynthesis rate was calculated from the derivative

of the fitted PCr recovery time course. During recovery from exercise

PCr is resynthesized purely oxidatively [21,26–28]. Because the

creatine kinase reaction is much faster than oxidative ATP

production [43] the derivative of the fitted PCr recovery time course

reflects mitochondrial oxidative phosphorylation flux (Jp). The

experimental data (nGp – Jp) used for testing of the computational

model were obtained from the post exercise recovery dynamics.

Subjects with sedentary lifestyle. The data of sedentary

humans used for model validation were obtained from de Feyter

et al. [37]. This dataset was recorded using the same methodology

as described above The inter – subject difference in mitochondrial

capacity in the study by de Feyter et al. was rather large (range:

0.31–0.82 mM/s). It was chosen to select the data of 2 subjects

with the lowest mitochondrial capacity. As a result the scatter of

data points decreased, making the dataset more appropriate for

rigorous model testing, while the nGp – Jp, relation was still

sufficiently sampled (.300 samples). Analysis of muscle biopsy

samples taken from the same subjects [44] showed that the

decreased mitochondrial capacity correlated well with in vitro

measures of mitochondrial content (CS and SDH activity). These

results provided additional verification that the selected sedentary

subjects had a decreased mitochondrial content.

Athletes. The data recorded in athletes has not been

published before. The applied methodology was identical to the

two other datasets (normally active, sedentary) [14], with the only

exception being that for this study a bicycle ergometer was used

and the sample time of the measurements was decreased from 6 to

3 s. Details of the ergometer can be found elsewhere [45]. The

track athletes (age: 22+/22 mean+/2SD, n = 3) participated in

national and international level competition and trained for more

than 8 hours a week.

Model description
A detailed biophysical model of mitochondrial oxidative ADP

phosphorylation previously described by Wu et al. [17] was used

as the basis for the present computational study. The model

distinguished three cellular compartments: mitochondrial matrix,

mitochondrial inter membrane space and cell cytoplasm. A

schematic representation of the model is provided in Figure 7.

Model parameterization was updated according to the results of

a previous study [14]: dehydrogenase activity (X_DH), ANT
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activity (X_ANT) and ANT parameter (h) were set to 0.269 mol

s21 M21 (L mito)21, 0.041 mol s21 (L mito)21 and 1, respectively.

In addition, proton leak activity (X_Hle) was adjusted from

200 mol s21 M21 mV21 (L mito)21 to 33 mol s21 M21 mV21 (L

mito)21. The rationale behind this adjustment was to decrease the

fraction of protons entering the matrix through the leak in resting

skeletal muscle (ATPase = 0.01 mM/s) to values within the range

observed experimentally (35–50%) [22]. Adjusting the value of

X_Hle decreased this fraction from 92% in the original

parameterization to 50% according to the new parameterization.

Ordinary differential equations were implemented in Matlab

(version 7.5.0; Mathworks, Natick, MA) and numerically solved

using ODE15s with relative and absolute tolerance set to 1028 and

1028 respectively. A copy of the model will be made available at

the Biomodels repository.

Simulation and parameter estimation protocols
Testing of initial model, Figure 1A. The nGp – Jp relation

was calculated from a series of steady state simulations, hereto the

ATP consumption in the cytoplasm was incrementally increased

(starting value: 0.01 mM/s, step size: 0.01 mM/s) until the steady

state cytoplasmic ADP concentration exceeded a level of 0.1 mM.

Simulations were run for 108 s to ensure a steady state was

reached. Next, ATP consumption was decreased to 0.01 mM/s in

order to simulate post exercise recovery conditions.

A list of the adjustable model parameters, their initial and

optimized values is provided in the supplementary materials.

Parameter h represents a fraction; therefore the value of this

parameter was constrained between 0 and 1. Parameter estimation

was performed using Matlab routine lsqnonlin (Levenberg -

Marquardt algorithm) with option DiffminChange set to 1026. All

other options were set to default values. The error between

experimental data and model predictions of steady state behavior as

well as post exercise recovery conditions were used to objective

function. The parameter estimation procedure was run 100 times,

every time randomly perturbing the initial parameter values by +/2

10 percent. The model fit with the overall lowest mean squared

error was selected as final parameter set.

Testing of initial model, Figure 1B. The nGp – Jp relation

was calculated as described in ‘Testing of initial model, Figure 1A’.

10 000 simulations were performed in a Monte Carlo simulation

approach randomly selecting parameter values within the range of

0.1–2 times the values of the initial model parameterization.

Parameter h represents a fraction; therefore the value of this

Figure 7. Schematic representation of the computational model of skeletal muscle energetics. Abbreviations denote: dehydrogenases
(DH), complex I (C1), complex III (C3), complex IV (C4), F1F0ATPase (F1F0), proton leak (H+leak), adenine nucleotide transporter (ANT), Pi-H+

transporter (PiHt), K+ - H+ transport (KHt), adenylate kinase (AK), creatine kinase (CK), lumped cellular ATPase fluxes (ATPase), ubiquinone (Q),
ubiquinol (QH2), oxidized cytochrome C (cytC Oxid), reduced cytochrome C (cytC Red), adenosine diphosphate (ADP), inorganic phosphate (Pi),
adenosine triphosphate (ATP), nicotinamide adenine dinucleotide (NAD), reduced nicotinamide adenine dinucleotide (NADH), adenosine
monophosphate (AMP).
doi:10.1371/journal.pone.0034118.g007
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parameter was constrained between 0 and 1. A list of initial model

parameters is provided in the supporting information materials

(Table S1, column: value original model). A few parameter sets

caused numerical problems when solving the ODE system. These

were automatically stopped by the algorithm, excluded from

further analyses and substituted by a new simulation. Overall less

than 5 percent of the simulations required such substitution. The

goodness of fit was quantified by calculating the mean squared

error between model simulations and experimental data.

Metabolic control analysis, Figure 2. The model para-

meters included in the metabolic control analysis are listed in

Table 1. This list was constructed by selecting all parameters

representing enzyme activities (Vmax). Enzyme activity parameters

of creatine kinase, adenylate kinase, the mitochondrial K+/H+

exchanger and magnesium binding fluxes were excluded from the

analysis since at steady state the fluxes through these enzymes were

zero and consequently, control coefficients could not be calculated.

The flux and concentration control coefficients were calculated for

an increase in enzyme activity of one percent.

Flux control coefficients were calculated according to Eqn 8

[20]. C
Jydh

Exase
, Jydh and Exase, denote the flux control coefficient, a

flux through a particular reaction (ydh), and an enzyme

concentration (xase), respectively.

C
Jydh
Exase

~
L ln Jydh

�
�

�
�

L ln Exase

ð8Þ

Concentration control coefficients were calculated according to

Eqn 9 [20]. CS
Exase

, S and Exase, denote the concentration control

coefficient, the concentration of a particular metabolite, and an

enzyme concentration (xase), respectively.

CS
Exase

~
L ln S

L ln Exase

ð9Þ

It has been verified that all flux control coefficients summed to 1

and all concentration control coefficients summed to 0.

Parameter estimation substrate feedback and parallel

activation models. Model parameters were estimated in a two

step approach. The first step was selection of initial model

parameter values. A wide range of parameter values was explored

in a Monte Carlo simulation approach randomly drawing

parameter values within selected ranges. The width of the range

set for each individual parameter of the substrate feedback model

(model conf. i) are listed in supporting information Table S4 and

parameter ranges explored for the parallel activation model

(model conf. ii) are listed supporting information Table S5. For

each model configurations, in total, 50 000 simulations were run.

The nGp – Jp relation was calculated as described in ‘Testing of

initial model, Figure 1A’. The set of parameters that yielded the best

fit to the experimental nGp – Jp relation, quantified by the mean

least square error was then selected as starting point for the second

step in the parameter estimation procedure. In this next step,

model parameter values were optimized by applying a non linear

least square optimization algorithm: i.e., Matlab routine lsqnonlin

(Levenberg - Marquardt algorithm) with option DiffminChange set

to 1026. All other options were set to default values. The error

between experimental data and model predictions of steady state

behavior as well as post exercise recovery conditions were used to

objective function. The optimization algorithm was started 100

times, every time adding +/225% of random noise to the

parameter values obtained in step one. The optimal parameter

values obtained in this second step are listed in Tables 3 and 4 as

the mean and standard deviation of the 100 optimization runs.

Model testing, Figure 3. The nGp – Jp relation was

calculated as described in ‘Testing of initial model, Figure 1A’. 1000

simulations were run and parameter values were randomly

selected from the 95% confidence interval (mean+/22*SD) of a

normal distributions with mean and SD as reported in Tables 3

and 4. The selected parameters were limited to +/226SD, to

ensure no negative parameter values were drawn. The solution

space of the model was represented by the mean and standard

deviation of the 1000 simulations. It was verified that 1000

simulations were enough to obtain a stable solution.

Predictions of mitochondrial redox state and membrane

potential, Figure 4. The relations between mitochondrial

redox potential and ATPase rate and membrane potential and

ATPase rate were calculated for steady state conditions. Different

steady states were obtained by incrementally increasing the

cytoplasmic ATPase rate (starting value: 0.01 mM/s, step size:

0.01 mM/s). Simulations were run for 108 s to ensure a steady

state was reached. The simulations were run in a Monte Carlo

simulation approach as described in ‘Model testing, Figure 3’.

Model testing, Figure 5. The nGp – Jp relation was

calculated for post exercise recovery conditions. The ATP

consumption in the cytoplasm was incrementally increased

(starting value: 0.01 mM/s, step size: 0.01 mM/s) until the

steady state cytoplasmic ADP concentration exceeded a level of

0.065 mM. Simulations were run for 108 s to ensure a steady state

was reached. Next, ATP consumption was decreased to

0.01 mM/s in order to simulate post exercise recovery conditions.

The mitochondrial density for simulations of sedentary subjects

was set to 0.0235 percent and 0.030 percent for model

configuration i and ii, respectively. The mitochondrial density

for simulations of athletes was set to 0.085 percent and 0.080

percent for model configuration i and ii, respectively.

Prediction of 31P observed metabolite dynamics during

post – exercise recovery period, Figure 6. PCr and Pi

recovery are sensitive to cellular pH. Simulations of these

metabolite dynamics therefore required to take pH dynamics

into account. pH was modeled as described by Kemp et al.

[46,47], Eqn 10.

dpH

dt
~

1

b
(l:(7:05{pH)z(mzQ):JCK )), ð10Þ

where

m~
0:16

1z106:1{pH
,Q~

1

1z10pH{6:75
,

b~buffCapz2:3:½Pi�:Q:(1{Q)

in which l denotes the apparent proton efflux rate parameter, JCK

the flux through creatine kinase and buffCap the cytosolic buffer

capacity (20 slykes (i.e. mmol?L21?pH21)).

The simulations comprised two parts: i.e., initialization and

recovery. The mitochondrial volume percent was set to the values

also used to determine the nGp – Jp in Figure 5. During the

initialization of the model the pH was clamped at the

experimentally observed end – exercise pH. ATPase demand flux

was adjusted to obtain steady state predictions of [PCr] and [Pi]

which matched the experimentally observed end – exercise

conditions. The steady state values were used as initial conditions

of the recovery simulations. During recovery ATPase demand flux

was set to resting values (0.01 mM/s). pH dynamics were modeled
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by Eqn 10. The proton efflux parameter, l, was adjusted to

reproduce the experimentally observed pH dynamics. Simulations

were performed for the original model and model configuration i

and ii and compared to an individual dataset of a control subject,

athlete and subject with sedentary lifestyle. The total creatine

concentration was calculated from experimentally observed resting

PCr concentration assuming that 15% of the total creatine is

unphosphorylated at rest [42]. The parameter settings (ATPase,

mitochondrial density, l and total creatine concentration) for all

these simulations is listed in the supporting information (Table S6)

Supporting Information

Figure S1 Effect of variation in end – exercise pH on observed

nGp – Jp relation.

(PDF)

Figure S2 nGp – Jp and ADP – Jp relation according to the

initial reparameterized model and model configuration i and ii.

(PDF)

Figure S3 Predictions of nGp – Jp and ADP – Jp according to

the initial model after optimization of model parameters on both

the nGp – Jp and ADP – Jp experimental data.

(PDF)

Table S1 Adjustable model parameters.

(PDF)

Table S2 Flux control coefficients.

(PDF)

Table S3 Concentration control coefficients.

(PDF)

Table S4 Range of parameter values explored in Monte Carlo
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