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Abstract

The large amount of information contained in bibliographic databases has recently boosted the use of citations, and other
indicators based on citation numbers, as tools for the quantitative assessment of scientific research. Citations counts are
often interpreted as proxies for the scientific influence of papers, journals, scholars, and institutions. However, a rigorous
and scientifically grounded methodology for a correct use of citation counts is still missing. In particular, cross-disciplinary
comparisons in terms of raw citation counts systematically favors scientific disciplines with higher citation and publication
rates. Here we perform an exhaustive study of the citation patterns of millions of papers, and derive a simple transformation
of citation counts able to suppress the disproportionate citation counts among scientific domains. We find that the
transformation is well described by a power-law function, and that the parameter values of the transformation are typical
features of each scientific discipline. Universal properties of citation patterns descend therefore from the fact that citation
distributions for papers in a specific field are all part of the same family of univariate distributions.
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Introduction

The use of bibliographic databases plays a practical, and crucial,

role in modern science. Citations between scientific publications

are in fact commonly used as quantitative indicators for the

importance of scientific papers, as proxies for the influence of

publications in the scientific community. General criticisms to the

use of citation counts have been made [1–3], and the real meaning

of a citation between papers can be very different and context

dependent [4]. Nevertheless, a citation can be viewed as a tangible

acknowledgment of the citing paper to the cited one. Thus, the

more citations a paper has accumulated, the more influential the

paper can be considered for its own scientific community of

reference. The same unit of measure (i.e., a citation) is commonly

used as the basis for the quantitative evaluation of individual

scholars [5,6], journals [7], departments [8], universities and

institutions [9], and even entire countries [10]. Especially at the

level of individual scientists, numerical indicators based on citation

counts are evaluation tools of fundamental importance for

decisions about hiring [11] and/or grant awards [12].

As a matter of fact, citation practice is widespread, still basic

properties of citation patterns are not completely clear. For

example, we know that citations are broadly distributed, but, we

do not know the exact functional form of citation distributions. In

his seminal paper, de Solla Price proposed a power-law model for

explaining how papers accumulate citations [13]. However, more

recent studies indicate several, sometimes very different, possibil-

ities: power-laws [14,15], stretched exponentials [16,17], log-

normals [18–20], and modified Bessel functions [21].

At the same time, it is common practice to attribute the same

value to each citation, in spite of the fact that citation counts

strongly depend on the field [22]. For example, a paper in

mathematics typically gets less citations than a paper in molecular

biology. There are in fact large variations among scientific

communities, mostly related to the different citation habits of

each community. Such disproportions show up in the typical

values of the most common bibliometric indicators based on raw

citation counts. The most influential journal in mathematics,

Annals of Mathematics, has impact factor [7] roughly equal to 4
according to the 2009 edition of the Journal Citation Reports

(JCR) database [23], while its counterpart in molecular biology,

Cell, has impact factor 32, eight times larger. Similarly, there are

several chemists with h-index [5] larger than 150 [24], while for a

computer scientist it is very hard to have an h-index larger than

100 [25]. Notice that the values of the h-index for chemists have

been calculated in 2007, while those for computer scientists in

2011. For the same year of reference, we should expect that the

difference is even larger than what reported here. Such

disproportions in citation counts make the use of raw citation

numbers very precarious in many cases and call for alternative,

more fair, measures. It is important to stress that in this paper we

denote as ‘‘bias’’ the the systematic error that is introduced when

using raw citation numbers to compare papers belonging to

different fields. With this term we do not indicate any prejudice,
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nor we make any claim about the causes of the field dependence

empirically observed.

Although methods based on percentile ranks have been recently

considered [26,27], the traditional approach to the suppression of

field-dependence in citation counts is based on normalized

indicators. The raw number of citations is divided by a discipline

dependent factor, and the aim of this linear transformation is to

suppress eventual disproportions among the citation patterns of

different research fields. Various methods have been proposed

using this kind of approach [28–32]. In this context, particularly

relevant is the study performed in [19] (based on the the relative

indicator originally developed in [33]), where citation distributions

of different scientific disciplines are shown to have the same

functional form, differing only for a single scaling factor (the

average number of citations received by papers within each

scientific discipline). The study is, however, limited to a small

number of papers and scientific disciplines, and therefore not

conclusive. The same approach of [19] has also been used for

more refined classification of publications in physics [34] and

chemistry [35], showing in general a good agreement with the

previous claim of [19]. More recently, Albarrán et al. [36] and

Waltman et al. [37] have analyzed much larger datasets of scientific

publications, and showed that the result of [19] holds for many but

not for all scientific disciplines. These studies cast some doubts on

the validity of the results in [19], but, on the other hand, do not

propose any alternative method for bias suppression.

Here, we perform an exhaustive analysis of about 3 millions of

papers published in six different years (spanning almost 30 years of

scientific production) and in more than 8,000 journals listed in the

Web Of Science (WOS) [38] database. We use the classification of

journals in subject-categories (172 in total) as defined in the 2009
edition of the Journal Citation Reports (JCR) database [23], and

systematically study the patterns of citations received by papers

within single subject-categories. Despite some journals cover a

rather broad range of topics, a subject-category is a relatively

accurate classification of the general content of a journal.

Examples of JCR subject-categories are ‘‘Mathematics’’, ‘‘Repro-

ductive Biology’’ and ‘‘Physics, Condensed Matter’’. Subject-

categories can be considered as good approximations for scientific

disciplines.

We propose a transformation of raw citations numbers such that

the distributions of transformed citation counts are the same for all

subject-categories. We study the properties of this transformation

and find strong regularities among scientific disciplines. The

transformation is almost linear for the majority of the subject-

categories. Exceptions to this rule are present, but, in general, we

find that all citation distributions are part the same family of

univariate distributions. In particular, the rescaling considered in

[19], despite not strictly correct, is a very good approximation of

the transformation able to make citation counts not depending on

the scientific domain.

Results

Modeling citation distributions
For the same year of publication, the raw citation patterns of

single subject-categories may be very different. Variations are a

consequence of different publication and citation habits among

scientific disciplines. In Fig. 1 for example, we plot the cumulative

distributions of citations received by papers published in journals

belonging to three different subject-categories. The shape of the

three cumulative distributions is not exactly the same, and the

difference is not accounted for by a single scaling factor [19].

Dividing raw citation counts by a scaling factor (e.g., the average

number of citations of the subject-category) would in fact

correspond, in the logarithmic scale, to a horizontal rigid

translation of the cumulative distribution. However, as Fig. 1

shows, this linear transformation is not sufficient to make all

cumulative distributions coincide. By looking at the figure, the

cumulative distributions of the raw citation counts for papers

published in journals within the subject-categories ‘‘Computer

science, software engineering’’ and ‘‘Genetics & heredity’’ have a

pretty similar shape, and thus the possibility to obtain a good

collapse of the curves by simply rescaling citation counts seems

reasonable. Conversely, the cumulative distribution of the citations

received by papers published in journals of the subject-category

‘‘Agronomy’’ has a different shape. The curve bends down faster

than the curves corresponding to the other two subject-categories.

In this case, a linear transformation of citation counts would

hardly help to make this curve coincide with the others. Making

citation counts independent of the subject-categories seems

therefore not possible with the use of linear transformations,

because the difference between citation distributions of different

subject-categories is not only due to a single scaling factor.

In order to make further progress, here we invert the approach

to the problem. We know that citation patterns of single subject-

categories may be different, but we do not know how to transform

citation counts in order to make them similar. We implement

therefore a mapping able to make all cumulative distributions

coincide, and study the properties of this transformation. We use a

sort of ‘‘reverse engineering’’ approach: instead of introducing a

transformation and checking whether it works, here we impose

that the transformation must work and from this assumption we

derive its precise form.

The idea is pretty simple and straightforward. We use as curve

of reference the cumulative distribution P §cð Þ of raw citation

counts c obtained by aggregating together all subject-categories

(see Fig. 1). The choice of the curve of reference is in principle

arbitrary, and affects the explicit form of the transformation. The

use of the aggregated dataset as reference seems, however, a very

reasonable choice because it does not require the introduction of

any parameter. In general, other choices for the reference curve

are possible, but the only important constraints are (i) using the

same system of reference for all subject-categories and (ii)

producing a mapping that preserves the natural order of citation

counts within the same subject-category. We then focus on a

specific subject-category g, and consider the cumulative distribu-

tion Pg §c’ð Þ of the raw citations c’ received by papers published

in journals within subject-category g. To each value of c’, we

associate a single value of c in the system of reference, where c is

determined as the value for which Pg §c’ð Þ~P §cð Þ. In practice,

we implement the mapping by sorting in ascending order all

citation counts of the N papers present in the aggregated dataset,

and then by associating to each different value of c’, in the dataset

of subject-category g, the value of c that appears in the n-th

position of the sorted list, with n equal to the integer value closest

to N Pg §c’ð Þ. In this procedure, different values of c’ may

correspond to the same value of c. Such event is more likely to

happen for low values of c’, while, for large values of c’, the

mapping is always unique (see Fig. 2).

The plot c’ vs. c is equivalent to a quantile-quantile (Q{Q) plot,

a graphical non-parametric method generally used for comparing

two probability distributions [39]. If the comparison is made

between two samples of randomly and identically distributed

variates, all points in the corresponding Q{Q plot, should

approximately lay on the line y~x. If the difference between the

two samples is just a scaling factor a, then all points in the Q{Q
plot should instead lay on the line y~ax. Very interestingly in the
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Figure 1. Cumulative distribution of raw citation counts for papers published in 1999. The blue curve is calculated by aggregating all
papers of all subject-categories (average number of citations ScT~21:97). The red curve, the orange curve and the green curve are calculated by
considering only papers within the subject-categories ‘‘Agronomy’’ (Sc’T~15:62), ‘‘Computer science, software engineering’’ (Sc’T~11:57) and
‘‘Genetics & heredity’’ (Sc’T~38:87), respectively. The figure illustrates the mapping of c’ into c. Citation counts c’ of single subject-categories are
matched with the value of c which corresponds to same value of the cumulative distributions.
doi:10.1371/journal.pone.0033833.g001

Figure 2. Transformation of citation counts. Citations within single subject-categories. c’ are plotted against citation counts of the aggregated
data c. The quantities c’ and c are related by a power-law relation (Eq. 1). Different subject-categories have different values of the transformation
factor a and the transformation exponent a. The best estimates of a and a for the subject-categories considered in this figure (the same subject-
categories as those appearing in Fig. 1) are: a~1:78+0:02 and a~0:77+0:01 for ‘‘Agronomy’’, a~0:26+0:01 and a~1:19+0:01 for ‘‘Computer
science, software engineering’’, a~2:39+0:04 and a~0:93+0:01 for ‘‘Genetics & heredity’’. The results of the complete analysis for all subject-
categories and years of publication are reported in the Supporting Information S2, S3, S4, S5, S6, and S7.
doi:10.1371/journal.pone.0033833.g002
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case of citation distributions, we empirically find that the relation

between c’ and c can be described by a power-law function

c’~aca, ð1Þ

where a and a are respectively the pre-factor and the exponent of

the mapping (see Fig. 2). The functional form of Eq. 1 holds for

virtually all subject-categories and all publication years considered

in this study (see Supporting Information S2, S3, S4, S5, S6, and

S7). Few exceptions are present, the most noticeable represented

by the hybrid subject-category ‘‘Multidisciplinary sciences’’.

The citation distributions of the subject-categories for which Eq.

1 holds are univariate distributions belonging to the same log-

location-scale family [40]. A log-location-scale family of distribu-

tions is a class of distributions p log x; h,dð Þ of continuous variables

x that can be rewritten in terms of the same reference distribution

r :ð Þ as p log x; h,dð Þ~d{1 r log x{hð Þ=dð Þ, for any choice of the

location parameter {?vhv? and the scale parameter dw0
[41]. Citation distributions are defined for discrete variables, but

still according to Eq. 1 we can write Pg §c’ð Þ~P §acað Þ, where a
and a respectively represent the log-location and the log-scale

parameters. In few words, our empirical finding tells us that

citation distributions are part of the same log-location-scale family

of discrete distributions. Weibull and log-normal distributions are

well known log-location-scale families.

Cumulative distribution of transformed citations
By definition, the transformation c’?c maps the cumulative

distribution on top of the cumulative distribution of reference (i.e.,

the one calculated for the aggregated data). Therefore, if the same

transformation is applied to the citation numbers of all subject-

categories, all cumulative distributions concide, providing a

systematic deletion of differences present in the citation patterns.

Eq. 1 tells us that the mapping c’?c is simple. The citations c’
received by papers published in journals within a specific subject-

category can be simply transformed as

c’?c~
c’
a

� �1
a

, ð2Þ

if we want to make all citation distributions of single subject-

categories coincide with the cumulative distribution of reference.

Fig. 3 shows the cumulative distributions resulting after the

application of Eq. 2. The cumulative distributions of the

transformed citation counts are very similar. Small deviations

are still visible at low values of the transformed citation counts,

when the discreteness of citation numbers become more

important.

Quantitative test of bias suppression
The fact that all cumulative distributions of transformed citation

counts coincide seems able to place all subject-categories on the

same footing: when raw citations are transformed according to Eq.

2, the fraction of papers with a given value of the transformed

citation counts is almost the same for all subject-categories. To

quantitatively assess such a qualitative result, we perform an

additional test. The aim of the transformation of Eq. 2 is to

suppress inevitable biases in raw citation counts among subject-

categories, and thus we compare our results with the outcome

expected in the absence of biases.

The situation can be modeled in the following terms. We

aggregate all papers of all subject-categories together, and extract

the top v% of publications according to the value of their

transformed citations. We then compute the proportion of papers

in each subject-category that are part of the top v% Assuming all

cumulative distributions to be the same, we expect these

proportions to have values close to v=100. However, since the

number of papers in each subject-category is finite, the proportions

of papers belonging to the top v% are affected by fluctuations,

which can be precisely computed (see the Methods section for

details). By checking if the outcome of our selection process is

compatible with the results expected assuming a random and

unbiased selection process, we test whether we have effectively

removed citation biases.

The results of this analysis are reported in Fig. 4 for papers

published in 1999, and in the Supporting Information S1, S2, S3,

S4, S5, S6, and S7 for other publication years. In general, the

transformation of Eq. 2 produces, for all years of publication,

results that are consistent with an unbiased selection process, if

vƒ10 (see Fig. 5). For the most relevant part of the curve (i.e.,

highly cited papers), the simple transformation of Eq. 2 effectively

removes systematic differences in citation patterns among subject-

categories. Conversely, for higher values of v, the discreteness of

citation numbers becomes more relevant, the power-law mapping

of Eq. 1 becomes less descriptive, and the distribution of the

proportion of top v% papers measured for real data, despite still

centered around the expected value, is wider than expected. The

results are even better for papers published before year 1995
because the comparison between observed and expected propor-

tions of papers in the top v% is very good up to v~30. The reason

could be due to a higher stability of citation patterns for all subject-

categories, since all papers have had more than 15 years to

accumulate citations [18].

Values of the transformation parameters
The values of the transformation factor a and the transforma-

tion exponent a for the same subject-category are pretty stable

when measured over different years of publication. In particular,

the value of a is very robust, suggesting that the shape of the

cumulative distribution of single subject-categories does not vary

with time. For example, over a span of almost 30 years, the values

a for the subject-category ‘‘Agronomy’’ range in the interval

0:74,0:82½ �, for ‘‘Computer science, software engineering’’ range

in the interval 1:04,1:32½ �, and for ‘‘Genetics & heredity’’ range in

the interval 0:86,0:93½ �. Tables reporting the complete results for

all subject-categories and publication years can be found in the

Supporting Information S2, S3, S4, S5, S6, and S7. The density

distribution of the transformation exponents is peaked around 0:85
which means that the shape of the distributions is in the majority

of the cases the same and the only difference is a scaling factor (see

inset of Fig. 6 and Supporting Information S8).

Moreover, the transformation factor a and the transformation

exponent a are related. Let us consider what happens for log-

normal distributions. A log-normal distribution is given by

P xð Þ~ 1ffiffiffiffiffiffi
2p
p

sx
e{ log xð Þ{z½ �2= 2s2

� �
, where z and s are the

parameters of the distribution. The parameters z and s are related

to the mean SxT and variance s of the distribution:

z~log SxTð Þ{s2=2 and s2~log s=SxTð Þ2z1
h i

. A Q{Q plot

between two log-normal distributions with parameters z’ and s’,
and z and s, respectively, shows a perfect power-law scaling as the

one given by Eq. 1. In this case, a and a are related to the

parameters of the distributions by

a~ez’{za and a~
s’
s
: ð3Þ
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We checked whether Eq. 3 is valid also in the case of the citation

distributions considered here. In Fig. 6, we show the results

obtained for publication year 1999, while the plots for the other

publication years are reported in Supporting Information S8. In

general for citation distributions, Eq. 3 should be generalized to

a~erzt z’{zað Þ, with small but non vanishing values of r and values

of t slightly different from one. We conclude that the citations for

single subject-categories are distributed almost log-normally and

this reflects in the values of transformation parameters.

Figure 3. Cumulative distribution of the transformed citation counts. When raw citation numbers are transformed according to Eq. 2, the
cumulative distributions of different subject-categories become very similar. All citation distributions are mapped on top of the cumulative
distribution obtained by aggregating all subject-categories together (the common reference curve in the transformation). We consider here the same
subject-categories as those considered in Figs. 1 and 2. The complete analysis of all subject-categories and years of publication is reported in the
Supporting Information S2, S3, S4, S5, S6, and S7.
doi:10.1371/journal.pone.0033833.g003

Figure 4. Comparison between expected and observed proportions of top cited papers. Probability density function of the proportion of
papers belonging to a particular subject-category and that are part of the top v% of papers in the aggregated dataset. Red boxes are computed on
real data, while blue curves represent the density distributions valid for unbiased selection processes. We consider different values of v: 1, 5, 10 and
20. These results refer to papers published in 1999.
doi:10.1371/journal.pone.0033833.g004
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The Q{Q plot between two log-normal distributions helps also

understanding why the typical values of a are generally smaller

than one (inset of Fig. 6 and Supporting Information S8).

According to our choice, the reference distribution is given by

the aggregation of all subject-categories, and this means that the

variance of the resulting distribution is mainly determined by those

of the subject-categories with higher variances. For the majority of

the subject-categories we have s’vs, that is av1.

Discussion

The practical importance of citation counts in modern science is

substantial, and growing. Citation numbers (or numerical

Figure 5. Effectiveness of the proposed normalization technique. Percentage of subject-categories whose proportion values, after
normalization, fall into the 95% confidence interval of values predicted in our null model. Percentage values are plotted as functions of the
percentage v% of top papers considered in the analysis. We plot separate curves for different publication years.
doi:10.1371/journal.pone.0033833.g005

Figure 6. Properties of the transformation parameters. In the inset, we report the density distribution of the transformation exponents a
calculated for all subject-categories. In the main plot, we show the relation between the transformation exponent a, the transformation factor a, and
the parameters z’ and z for the same data points as those appearing in the inset. The relation between the various quantities is fitted by the function
a~erzt z’{zað Þ , with r~0:04+0:01 and t~0:98+0:01 (blue line). Both plots have been obtained by analyzing papers published in 1999, but the same
results are valid also for different years of publications as shown in Figs. S115 and S116.
doi:10.1371/journal.pone.0033833.g006
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indicators derived from them) are commonly used as basic units of

measure for the scientific relevance not only of papers, but also of

scientists [5,6], journals [7], departments [8], universities and

institutions [9], and even entire countries [10]. Citations are direct

measures of popularity and influence, and the use of citation

numbers is a common evaluation tool for awarding institutional

positions [11] and grants [12]. Unfortunately, the direct use of raw

citations is in most of the cases misleading, especially when applied

to cross-disciplinary comparisons [22]. Citations have different

weights depending on the context where they are used, and proper

scales of measurements are required for the formulation of

objective quantitative criteria of assessment. Saying that a paper in

biology is more influential than a paper in mathematics, only

because the former has received a number of citations three times

larger than the latter, is incorrect. Differences in publication and

citation habits among scientific disciplines are reflected in citation

and publication counts, and generally cause disproportions that

favor disciplines with higher publication and citation rates with

respect to those disciplines where publications and citations are

created at slower rates. In a certain sense, the situation is similar to

the comparison of the length of two streets, one long three and the

other two, but without knowing that the length of the first is

measured in kilometers while the other in miles.

Differences in citation patterns among scientific domains have

been known for a long time [22] and several attempts to the

suppression of discipline dependent factors in raw citation counts

have been already proposed in the past [19,28–32]. The most

common methodology consists in dividing citation counts by a

constant factor, and thus replacing raw with normalized citation

numbers. Each normalization procedure is, however, based on

some assumption. Scientific disciplines differ not only in citation

numbers, but also in publication numbers, length of references and

author lists, etc. A universal criterion for the complete suppression

of differences among scientific domains probably does not exist.

There are too many factors to account for, and consequently the

‘‘philosophy’’ at the basis of a ‘‘fair’’ normalization procedure is

subjective. The formulation of the so-called fractional citation

count is, for example, based on a particular idea of fairness [32].

Citations are normalized by assigning to each citation originated

by a paper a weight equal to the inverse of the total number of

cited references in that paper. According to this procedure, the

weight of each published paper equals one, but disciplines with

higher publication rates are still favored when compared with

disciplines with lower publication rates.

In this paper, we consider a different notion of fairness, based on

the reasonable but strong assumption that each discipline or field

of research has the same importance for the development of

scientific knowledge. A fair numerical indicator, based on citation

numbers, must then assume values that do not depend on the

particular scientific domain under consideration. Under this

assumption, the probability to find a paper with a given value of

the fair indicator must not depend on the discipline of the paper,

or equivalently, the distribution of normalized indicators must be

the same for all disciplines. It is clear that our notion of fairness

strongly depends on the classification of papers into categories

(disciplines, fields, topics). Also, it is important to remark that other

possible definitions of fairness could be stated, without relying on

the assumption that each discipline or research field has the same

importance for scientific development.

We have then proposed a simple but rigorous method for the

implementation of our notion of fairness. We have studied the

citation patterns of papers published in more than 8,000 scientific

journals. Our analysis covers six different years of publication,

spanning over almost 30 years of scientific production, and

includes three millions of papers. We have found strong

regularities in how citations are attributed to papers dealing with

similar scientific topics of research (i.e., subject-categories). In

particular, we have introduced a simple mapping able to transform

the citation distribution of papers published within specific subject-

categories into the same distribution. Very interestingly, the

transformation turns out to be described by a power-law function,

which depends on two parameters (pre-factor and exponent). Each

specific subject-category is characterized by its parameters, which

are stable over different publication years. For the vast majority of

the subject-categories, the power-law exponent assumes approx-

imately the same value suggesting that the main difference

between the citation distribution of different subject-categories is

given only by a scaling factor. There are, however, subject-

categories for which the transformation is not a power-law

function. In general, these are hybrid subject-categories, as for

example ‘‘Multidisciplinary sciences’’, or not so well defined

subject-categories, as for example ‘‘Engineering, petroleum’’ or

‘‘Biodiversity conservation’’. In the latter cases, the subject-

categories are not well defined because papers within these

subject-categories are also part of other broader subject-categories.

Since the classification of JCR is made at journal level, papers

published in multi-category journals are automatically attributed

to more subject-categories. In this way for example, 100% of

papers published in 1999 in journals within the subject-category

‘‘Biodiversity conservation’’ are also part of ‘‘Ecology’’, and 90%
of papers published in 1999 within ‘‘Engineering, petroleum’’ are

also part of ‘‘Energy & fuels’’. These observations cast some doubts

regarding the classification of JCR, which probably requires

serious revisions, especially because it seems that the classification

places on the same footing very broad subject-categories and more

specific ones. Despite that, the results reported in this paper

support the claim that citation distributions are universal, in the

sense that they are all part of the same family of univariate

distributions (i.e., a log-location-scale family [40,41]). Each citation

distribution can be obtained from the same reference distribution

with the only prescription of transforming the logarithm of its

argument with suitably chosen location and scale parameters. The

transformation generalizes therefore the rescaling of [19], that can

be considered a good approximation of the full transformation

able to suppress field-dependent differences in citation patterns.

In general, all results obtained in this paper could seem to be

explained by assuming that the citations received by papers in

each subject-category are continuous variables obeying log-normal

distributions. However, this is only approximately true. First,

citations are, by definition, non negative discrete numbers.

Secondly, even assuming their discreteness, the distribution of

citations received by papers within the same subject-category is not

statistically consistent with a discrete log-normal distribution. We

systematically tested this hypothesis for all subject-categories and

publication years, and found that the log-normality of citation

distributions cannot be rejected only for a very limited number of

subject-categories (see Tables in Supporting Information S9). For

papers published in 1980, 37% of the subject-categories have

distributions consistent with log-normals (at 5% significance level).

This proportion, however, decreases for more recent years of

publication: 28% in 1985, 20% in 1990, 10% in 1995, 5% in 1999
and 4% in 2004. While the number of citations received by papers

published in the same year and journal are log-normally

distributed [18,20], we should not expect the same for subject-

categories. Subject-categories are given by the aggregation of more

journals, and the convolution of many log-normals with different

averages and variances is not necessarily a log-normal distribution.
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We believe that the methods and results reported in this paper

can be of great relevance for the entire scientific community.

Citation counts and measures based on citations are powerful tools

for the quantitative assessment of science, especially in our modern

era in which millions of individuals are involved in research but

decisions (i.e., allocation of funds) need to be quickly taken. The

use of citations is already a common practice, and in the near

future will become a necessity. As individuals directly involved in

this business, we should therefore develop the best methodologies

able to avoid the misuse of citation numbers.

Materials and Methods

Datasets
We considered papers published in six distinct years: 1980,

1985, 1990, 1995, 1999 and 2004. We downloaded from the WOS

database [38] a total of 3,964,670 documents published in 8,304
scientific journals. Journal titles have been obtained from [23], and

correspond to all journals classified in at least one subject-category

by the 2009 edition of JCR. According to the JCR classification, a

journal may be classified in more than one subject-category. For

example, the journal Physical Review D is classified in the subject-

categories ‘‘Astronomy & astrophysics’’ and ‘‘Physics, particles &

fields’’. It is also important to stress that JCR classification is made

at journal level, and thus does not allow a proper distinction of

papers in research topics, whenever papers are published in multi-

category journals. In this respect, we adopted, for simplicity, a

multiplicative strategy, in which papers published in multi-

category journals are simultaneously associated with all corre-

sponding subject-categories. We considered only documents

written in ‘‘English’’, and classified as ‘‘Article’’, ‘‘Letter’’, ‘‘Note’’

or ‘‘Proceedings Paper’’. We obtained a total of 2,906,615
publications on which we based our study. More in detail, we

considered in our study 249,848 documents published in 1980,

323,296 in 1985, 416,378 in 1990, 545,954 in 1995, 622,891 in

1999 and 748,248 in 2004. Summary tables regarding the

proportion of documents written in different languages and about

the types of published material can be found in the Supporting

Information S1. We included in our analysis both cited and

uncited publications. The information about the number of cites

received by each publication was obtained from the WOS

database (field ‘‘time cited’’) between May 23 and May 31, 2011.

Test of bias suppression
The statistical test proposed here is very similar to the one

introduced in [42]. The unbiased selection of papers is equivalent

to a simple urn model [43], where papers (marbles) of different

subject-categories (colors) are randomly extracted, one by one,

without replacement. The total number of papers in the urn is N,

each subject-category g is represented by Ng papers, and the total

number of extracted papers is q~tNv=100s. The number mg of

papers of subject-category g, extracted in the unbiased selection

process, is a random variate obeying a univariate hypergeometric

distribution. The proportion of papers of subject-category g is still

distributed in the same way, with the only difference of the change

of variable mg?mg=Ng [if P mg N,q,Ng

��� �
indicates the hypergeo-

metric distribution, the fraction mg=Ng obeys the distribution

Ng P mg=Ng N,q,Ng

��� �
]. Similarly, the joint distribution of the

number of papers m1, m2, …, mG , belonging respectively to

subject-categories 1, 2, …, G and that have been extracted in the

unbiased selection, obey a multivariate hypergeometric distribu-

tion. In principle, one could calculate the expected distribution for

the proportions of papers belonging to each subject-category and

that are part of the top v%, namely xv by considering all possible

extractions fm1,m2, . . . ,mGg, weighting each extraction with the

multivariate hypergeometric distribution, and counting how many

times in each extraction the quantity mg=Ng (for all subject-

categories g) equals xv. In practice, it is much simpler to simulate

many times (104 times in our analysis) the process of unbiased

selection, and obtain a good approximation of the probability

density of the proportions of papers present in the top v%. This

probability density represents the correct term of comparison for

what observed in real data, and furnishes a quantitative criterion

for the assessment of whether the transformation of Eq. 2 is able to

suppress subject-category biases in citation counts or not.
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