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Abstract

Spatially and temporally controlled gene expression, including transcription, several mRNA processing steps, and the export
of mature mRNA to the cytoplasm, is essential for developmental processes. It is well known that RNA helicases of the
DExD/H-box protein family are involved in these gene expression processes, including transcription, pre-mRNA splicing, and
rRNA biogenesis. Although one DExD/H-box protein, Prp5, a homologue of vertebrate Ddx46, has been shown to play
important roles in pre-mRNA splicing in yeast, the in vivo function of Ddx46 remains to be fully elucidated in metazoans. In
this study, we isolated zebrafish morendo (mor), a mutant that shows developmental defects in the digestive organs and
brain, and found that it encodes Ddx46. The Ddx46 transcript is maternally supplied, and as development proceeds in
zebrafish larvae, its ubiquitous expression gradually becomes restricted to those organs. The results of whole-mount in situ
hybridization showed that the expression of various molecular markers in these organs is considerably reduced in the Ddx46
mutant. Furthermore, splicing status analysis with RT-PCR revealed unspliced forms of mRNAs in the digestive organ and
brain tissues of the Ddx46 mutant, suggesting that Ddx46 may be required for pre-mRNA splicing during zebrafish
development. Therefore, our results suggest a model in which zebrafish Ddx46 is required for the development of the
digestive organs and brain, possibly through the control of pre-mRNA splicing.
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Introduction

Precursor mRNA (pre-mRNA) splicing is essential for gene

expression in metazoan cells, and the splicing reaction proceeds

via a coordinated series of RNA-RNA, RNA-protein, and protein-

protein interactions, which lead to exon ligation and the release of

the intron lariat [1]–[4]. Pre-mRNA splicing is catalyzed by the

macromolecular machinery known as the spliceosome, which

consists of five small nuclear ribonucleoprotein particles (snRNPs:

U1, U2, U4, U5, and U6) and .150 proteins. Non-snRNP

proteins, which belong to a group of DExD/H-box RNA-

dependent ATPases/helicases, are required for the pre-mRNA

splicing process in yeast [1]–[4].

The DExD/H-box RNA helicase family is a large protein group

characterized by the presence of a helicase domain that is highly

conserved from bacteria to humans [5]–[8]. The DExD/H-box

helicases share nine conserved motifs; motifs Q, I, II, and VI are

required for NTP/ATP binding and catalyze its hydrolysis [5]–[8].

These proteins have been shown to play important roles in all

aspects of RNA metabolism, including the modulation of RNA

structures and association/dissociation of RNA-protein complexes,

such as pre-mRNA splicing, rRNA biogenesis, transcription, RNA

stability and turnover, RNA export, and translation [5]–[8]. In the

yeast Saccharomyces cerevisiae, eight DExD/H-box proteins-Sub2,

Prp5, Prp28, Brr2, Prp2, Prp16, Prp22, and Prp43-act in specific

steps of the splicing cycles to catalyze RNA-RNA rearrangements

and RNP remodeling [2]–[4]. Among them, Prp5 (a homologue of

vertebrate Ddx46) is necessary, along with ATP hydrolysis, for

stable association of U2 snRNP with pre-mRNA and pre-

spliceosome formation in S. cerevisiae and Schizosaccharomyces pombe

[9]–[11]. In addition, human DDX46 has been shown to play roles

in pre-mRNA splicing in vitro before or during prespliceosome

assembly [12]. The in vivo function of Ddx46 in metazoans remains

to be elucidated, however.

The zebrafish has emerged as an important model system for

the investigation of vertebrate development and other complex
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biological processes, including human disease [13], [14]. Analyses

of zebrafish mutants and knock-down embryos have provided

significant insights into the in vivo function of the genes responsible

for the mutants or the targeting genes [13], [14]. Here, we discuss

the function of Ddx46 in the development of the digestive organs

and brain using a newly identified zebrafish Ddx46 mutant, morendo

(mor). Ddx46 is expressed maternally and ubiquitously, and its

expression gradually becomes restricted to the digestive organs and

brain. Phenotypic analysis of the Ddx46 mutant and the

examination of various molecular marker expressions using

whole-mount in situ hybridization of the digestive organs and

brain showed that zebrafish Ddx46 is required for the develop-

ment of these organs. Based on RT-PCR analyses, we propose that

Ddx46 plays a role in pre-mRNA splicing in the digestive organs

and brain during zebrafish development.

Results

The morha4 mutant has defects in the development of
the digestive organs and brain

To elucidate the mechanisms that underlie the formation of the

intestinal epithelium during development, we took a forward

genetic approach. One mutant that we identified, morha4, had

defects in intestinal epithelium and retinal development, and

showed a recessive larval lethal phenotype. Phenotypic analyses of

the morha4 mutant revealed that the swim bladder failed to inflate

(Figure 1A–D), the intestine lacked folds (Figure 1C, D, G, and H),

and the retinae were smaller than normal (Figure 1E and F) at 5.5

days post fertilization (dpf). In addition, histochemical and

immunohistochemical analyses exhibited that the exocrine pan-

creas and liver in the morha4 mutant were smaller than those in

wild-type (WT) larvae (Figure 1I–L, Figure S1), whereas the size of

the endocrine pancreas was normal in this mutant (Figure 1I and

J). We also found that cell death was increased in the brain,

retinae, and intestine in the morha4 mutant but not in the WT at

3 dpf (brain and retinae) or 5 dpf (intestine) (Figure 1M–P).

Conversely, the formation of somite was apparently unaffected

(Figure 1A and B), and increased cell death was not detected in the

morha4 somite at 5 dpf (Figure 1O and P). These results suggest that

the morha4 mutant has defects in digestive organ and brain

development.

The mor locus encodes Ddx46
The morha4 mutation was meiotically mapped to a region of

chromosome 21 defined by two microsatellites, z10508 and

z15212_1, in the Zv6 ensemble assembly of the zebrafish genome

(Figure 2A). At this point, we learned that the Ddx46 mutation

(Ddx46hi2137), which was isolated using a large insertional screening

[15] and causes a similar phenotype in morha4 (http://web.mit.

edu/hopkins/group11.html), was also positioned on the same

region of chromosome 21 (see Figure 2A). Given the similarities

between Ddx46hi2137 and morha4, we attempted to position the

Ddx46 gene in relation to the mor locus. No recombination was

observed between the morha4 phenotype and a Ddx46 intronic

polymorphic marker, z12027_1 (see Figure 2A). Thus, both

mapping and the phenotype of the Ddx46hi2137 mutant suggested

that Ddx46 is a good candidate for the morha4 mutation. To see

whether morha4 is a mutation of the Ddx46 gene, Ddx46 cDNA was

cloned and sequenced from WT and mutant embryos. Sequencing

of the morha4 mutant revealed a T-to-G transversion, which

introduced a serine in place of an isoleucine at amino acid position

942 in the C-terminal region of the Ddx46 protein (Figures 2B and

S2). The sequence alignment of the human, mouse, chicken, and

zebrafish Ddx46 proteins showed a high level of conservation in

Figure 1. Phenotype of the morha4 mutant. (A–F) Lateral (A–D) and dorsal (E, F) views of live WT and morha4 larvae at 5.5 dpf. The swim bladder
failed to inflate (arrows in A, B), the intestine lacked folds (arrowheads in C, D), and the retinae were reduced in size (brackets in E, F) in the morha4

mutant. Conversely, somite formation in the morha4 mutant appeared normal (arrowheads in A, B). (G–L) Sagittal sections of 5.5-dpf larvae stained
with hematoxylin and eosin. The intestine lacked folds and was thin walled (arrowheads in G, H), and the exocrine pancreas (blue dotted lines in I, J)
and liver (blue dotted lines in K, L) were small in the morha4 mutant. In contrast, the endocrine pancreas (blue dotted lines in I, J) in WT larvae was
indistinguishable from that in morha4 larvae. Scale bars, 50 mm. (M–P) Dorsal views, anterior to the top (M, N). Lateral views, anterior to the left (O, P).
Apoptotic cells were detected using the TUNEL method. An increase in apoptotic cells was evident in the brain, retinae, and posterior intestine of the
morha4 larvae (white arrowheads in O, P) compared to WT larvae, but not in the morha4 somite (white arrows in O, P). en, endocrine pancreas; ex,
exocrine pancreas.
doi:10.1371/journal.pone.0033675.g001
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the C-terminal region among these vertebrates (see Figure S2). We

confirmed that this lesion segregated with the mutant phenotypes

in 200 meiotic events (data not shown).

Although the viral insertion site of the Ddx46hi2137 mutant was

identified in intron 1 of the Ddx46 gene (Figure 2C; http://web.

mit.edu/hopkins/group11.html), no Ddx46 transcript was detected

in the Ddx46hi2137/hi2137 mutants at 3.5 dpf (Figure 2D). These

data indicated that the viral insertion strongly abrogates the

transcription of Ddx46 or transcript stability, as observed

previously [16]. To confirm that the loss of Ddx46 function

accounted for the morha4 phenotype, we performed complementa-

tion analysis between the morha4 and Ddx46hi2137 alleles. In

transheterozygote (morha4/Ddx46hi2137) larvae, the swim bladder

failed to inflate, the intestine lacked folds, and the retinae were

smaller than normal-the same phenotype of the morha4 mutant (see

Figure S3).

We next performed rescue experiments using both alleles (morha4

and Ddx46hi2137). As observed with histological section data, the

size of the exocrine pancreas, which is detected through trypsin (try)

[17] expression, was markedly reduced in egfp mRNA-injected

morha4/ha4 mutants (17 of 18 egfp mRNA-injected morha4/ha4 mutants

reduced) compared to egfp mRNA-injected control larvae (0 of 22

egfp mRNA-injected control larvae reduced; Figure 3B and C). We

found that the expression of try in the morha4/ha4 mutant was

rescued by the overexpression of Ddx46 mRNA (12 of 12 Ddx46

mRNA-injected morha4/ha4 mutants rescued; Figure 3B–D). As in

morha4/ha4 mutants, the size of the exocrine pancreas was also

markedly reduced in egfp mRNA-injected Ddx46hi2137/hi2137

mutants (16 of 16 egfp mRNA-injected Ddx46hi2137/hi2137 mutants

reduced) compared to egfp mRNA-injected control larvae (0 of 20

egfp mRNA-injected control larvae reduced; Figure 3E and F).

We found that the overexpression of Ddx46 mRNA in the

Ddx46hi2137/hi2137 larvae rescued the size of the exocrine pancreas

(11 of 11 Ddx46 mRNA-injected Ddx46hi2137/hi2137 mutants

rescued; Figure 3E and G). Our results showed that the defects

of the pancreas in both morha4/ha4 and Ddx46hi2137/hi2137 larvae

were rescued by the overexpression of Ddx46 mRNA. Together,

genetic data, complimentation analysis, and rescue experiments

indicated that the mor gene corresponds to Ddx46.

Effect of the morha4 point mutation on Ddx46 function
To investigate the effect of the morha4 point mutation on Ddx46

function, we also performed rescue experiments using the morha4

mutant gene Ddx46-I942S (Figure 3A). The expression of try in the

Ddx46hi2137/hi2137 mutant was not rescued by the overexpression of

Ddx46-I942S mRNA (0 of 21 Ddx46-I942S mRNA-injected

Ddx46hi2137/hi2137 mutants rescued; Figure 3H). This result

suggested that the function of Ddx46 is abolished by the morha4

point mutation. Moreover, to investigate the importance of the

ATPase activity of Ddx46 to its function in zebrafish larvae, we

introduced a mutation into motif I of the DEAD box (see

Figure 3A; substitution from lysine to alanine at amino acid

position 402), which is known to disrupt ATPase activity in S.

pombe Prp5 [10]. Overexpression of Ddx46-K402A mRNA in the

mutant larvae failed to rescue the size of the exocrine pancreas (0

of 26 Ddx46-K402A mRNA-injected Ddx46hi2137/hi2137 mutants

rescued; Figure 3I), suggesting that the ATPase activity of Ddx46

is necessary for it to function in zebrafish development.

Figure 2. Identification of the mor gene and analysis of the hi2137 allele. (A) Meiotic and physical map schematic of the mor locus on
chromosome 21. The number of recombinants and larvae genotyped is shown for each microsatellite marker. (B) Sequencing cDNA from WT and
morha4 larvae revealed a nucleotide exchange from T to G, which resulted in an Ile-to-Ser transition at amino acid 942 in the morha4 mutant. (C)
Genomic structure of the Ddx46 gene showing the viral insertion site in the hi2137 allele (red). Exons are boxes, with coding and non-coding
sequences in blue and green, respectively. The viral insertion (red arrow) occurs in the first intron between exons 1 and 2. (D) Northern blot analysis of
Ddx46hi2137/hi2137 mutants and control larvae at 3.5 dpf. No Ddx46 transcript was found in the Ddx46hi2137/hi2137 mutants, whereas the level of actb1
transcript in the mutants was the same as that in control larvae. Control larvae were sibling WT or Ddx46hi2137/+ larvae and had normal phenotypes.
doi:10.1371/journal.pone.0033675.g002
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Ddx46 expression is restricted to developing digestive
organs and brain

To define the spatiotemporal expression of Ddx46 in developing

embryos and larvae, we performed whole-mount in situ hybrid-

ization. Ddx46 was found to be a maternally supplied transcript

that was expressed ubiquitously during early somitogenesis

(Figure 4A and B). Its expression became restricted to the head

region by 24 hours post-fertilization (hpf) (Figure 4C). By 2 dpf,

Ddx46 was expressed in the head, retina, digestive organs, and

pectoral fin bud (Figure 4D–G), and at 4 dpf, its expression was

even more confined to the retinae, telencephalon, midbrain,

midbrain-hindbrain boundary, branchial arches, esophagus, liver,

pancreas, and intestinal bulb (Figure 4H–K). Transverse section

data revealed the presence of the Ddx46 transcript in pancreatic

exocrine cells but not in pancreatic endocrine cells (Figure 4L and

M). Further, we found that Ddx46 transcripts were not present in

the somite after 4 dpf (see Figures 4H). These Ddx46 expression

patterns were consistent with nearly all aspects of the morha4 mutant

phenotype.

Gene expression in the digestive organs and brain is
down-regulated in the Ddx46hi2137/hi2137 mutants

We showed that the Ddx46 mutant displays defects in the

development of the digestive organs and brain. To explore these

defects during development, we examined the expression of

various molecular markers using whole-mount in situ hybridiza-

tion. At 2.5 dpf, the expression level and pattern of foxa3 [18] of

the control and Ddx46hi2137/hi2137 larvae were indistinguishable

(Figure S4), indicating that the budding of the digestive organs was

normal in the Ddx46hi2137/hi2137 mutants. The expressions of deltaA

(dla) [19], [20], and her6 [21] in the brain or retinae were markedly

reduced in the Ddx46hi2137/hi2137 larvae at 3 dpf, however

(Figure 5A–D). In addition, we found that the expressions of

intestinal epithelium marker fabp2 [22], liver marker fabp10a [23],

and exocrine pancratic marker pancreas specific transcription factor, 1a

(ptf1a) [24] were also markedly reduced in the Ddx46 mutants at

3.5 dpf (Figures 5E–5J). In contrast, expressions of endocrine

pancreatic marker preproinsulin (ins) [25] and a myogenesis marker

of the somite, myogenic differentiation 1 (myod1) [26], did not change in

the Ddx46hi2137/hi2137 mutant (Figure 5K and L; Figure S5).

Consistent with this result, Ddx46 was not expressed in pancreatic

endocrine tissues (Figure 4M) or the somite (Figure 4H). We also

examined the expression of various molecular markers in the

morha4/ha4 mutant. Downregulation of the expression levels of dla,

fabp2, fabp10a, and ptf1a in the morha4/ha4 mutant was less severe

than that in the Ddx46hi2137/hi2137 mutant (Figure 5, Figure S6),

suggesting that morha4 is a hypomorphic allele.

We next tested whether the down-regulation of these mRNAs is

due to the loss of tissues in the liver and exocrine pancreas in the

Ddx46hi2137/hi2137 mutant. Transverse section data of the

Ddx46hi2137/hi2137 mutant showed that although the size of the

Figure 3. Defects of exocrine pancreas formation in both morha4/ha4 and Ddx46hi2137/hi2137 mutants are rescued by the overexpression
of Ddx46 mRNA but not mutated Ddx46 mRNA. (A) Scheme of the Ddx46 protein structure. The yellow, red, and orange boxes indicate the N-
terminal, DEAD-box helicase, and C-terminal domain, respectively. Mutations were introduced into the Ddx46 protein; in Ddx46-I942S, an isoleucine
in the C-terminal domain of Ddx46 was changed to serine, which is the same mutation as that in the morha4 mutant; in Ddx46-K402A, GKT in motif I,
which is important for ATPase activity in Ddx46 homologues, was changed to GAT. (B–I) All dorsal views, anterior to the top. The expression of try, a
molecular marker for the exocrine pancreas, was examined using whole-mount in situ hybridization at 3.5 dpf. The try expression in the exocrine
pancreas was markedly reduced in egfp mRNA-injected morha4/ha4 (C) and Ddx46hi2137/hi2137 mutants (F) compared to egfp mRNA-injected control
larvae (B, E). The try expression was rescued in the Ddx46 mRNA-injected morha4/ha4 (D) and Ddx46hi2137/hi2137 mutants (G), whereas no rescue was
achieved by the overexpression of Ddx46-I942S (H) or Ddx46-K402A (I) mRNA into Ddx46hi2137/hi2137 mutants. Control larvae-sibling WT or morha4/+

larvae (B–D), sibling WT or Ddx46hi2137/+ larvae (E–I)-had normal phenotypes.
doi:10.1371/journal.pone.0033675.g003
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liver and exocrine pancreas is smaller than normal, the tissues of

these organs are still present at 3.5 dpf (Figure 5M–P). These

results suggested that the amount of mRNAs in these organs is

reduced specifically in this mutant.

We also examined the expressions of molecular markers such as

dla, fabp10a, ptf1a, and ins in transheterozygote (morha4/Ddx46hi2137)

larvae at 3 or 3.5 dpf, and found that, with the exception of ins,

they were markedly reduced (Figure S7), as observed in the

Ddx46hi2137/hi2137 mutants. These results further supported the

conclusion that the mor gene corresponds to Ddx46.

Furthermore, we found that the expressions of other molecular

markers for the digestive organs and brain- her4 (brain and retina)

[27], [28], neurogenin 1 (neurog1: brain) [29], neurod (brain and retina)

[29], homeo box HB9 like a (hlxb9la: exocrine pancreas) [30],

carboxypeptidase A5 (cpa5: exocrine pancreas) [31], gata6 (intestine,

liver, and exocrine pancreas) [32], and dehydrogenase/reductase member

9 (dhrs9: intestine and liver) [33]-were markedly reduced in the

Ddx46hi2137/hi2137 larvae from 3 to 3.5 dpf (Figure S8). These

results suggested that Ddx46 is required for gene expression in the

digestive organs and brain.

Ddx46hi2137/hi2137 mutant has defects in pre-mRNA
splicing in the digestive organs and brain

Because yeast Prp5 and human DDX46 are known to be

involved in pre-mRNA splicing, we tested whether the Ddx46

mutant had defects in this process. For the analyses of pre-mRNA

splicing in the Ddx46hi2137/hi2137 mutants, we examined the splicing

status of four genes (dla and her6 in the brain, and fabp10a and ptf1a

in the digestive organs) by performing an RT-PCR analysis that is

often used to detect unspliced forms of mRNAs [34]–[36]. The

analysis showed that the unspliced mRNAs were retained in the

Ddx46hi2137/hi2137 mutants at 3 or 4 dpf (Figure 6), suggesting that

the pre-mRNA splicing process is defective in this mutant, as

observed in yeast.

To test whether the effect on pre-mRNA splicing is restricted to

a subset of genes or general, we further examined the pre-mRNA

splicing of various genes, including housekeeping genes. Unspliced

mRNAs of a housekeeping gene, beta-2-microglobulin (b2m) [37],

were retained in the heads of Ddx46hi2137/hi2137 mutants (Figure

S9). In contrast, we found that the splicing of actb1 in the heads of

Ddx46hi2137/hi2137 mutants was normal compared to that in the

heads of control larvae (Figure S9). These results suggest that the

effect of pre-mRNA splicing may be specific to a certain set of

genes in the Ddx46hi2137/hi2137 mutants.

Discussion

Functional significance of the ATPase domain and C-
terminal region in Ddx46

All DExD/H-box proteins have nine conserved motifs, which

are required for ATP binding and hydrolysis, RNA binding, and

helicase activity [5]–[8]. It has been clearly shown that the ATP

Figure 4. Ddx46 expression in the developing zebrafish. (A–K) Ddx46 expression was examined using whole-mount in situ hybridization in WT
embryos or larvae at the 128-cell (A), 6-somite (B), 1-dpf (C), 2-dpf (D–G), and 4-dpf (H–K) stages. Lateral view, animal pole to the top (A). Lateral views,
anterior to the left (B, C, D, F, H, J). Dorsal views, anterior to the top (E, G, I, K). The Ddx46 transcript was maternally supplied and continued to be
expressed ubiquitously during the somitogenesis stages (A, B). By 1 dpf, Ddx46 expression became restricted to the head region (C). At 2 dpf, strong
Ddx46 expression was prominent in the head, pectoral fin bud, and digestive organs (D–G). At 4 dpf, Ddx46 expression was further restricted to the
retina, telencephalon, midbrain, midbrain-hindbrain boundary, branchial arch, esophagus, liver, pancreas, and intestinal bulb (H–K). No Ddx46
transcript was detected in the somite (arrowhead in H). (L, M) Ddx46 expression was examined using whole-mount in situ hybridization in WT larvae at
3 dpf. Dorsal views, anterior to the top (L). A transverse section was cut at the level indicated by the black dotted line in L. The section revealed Ddx46
expression in the intestine and exocrine pancreas, but not in the endocrine pancreas (M). b, branchial arches; e, esophagus; en, endocrine pancreas;
ex, exocrine pancreas; i, intestine; ib, intestinal bulb; L, liver; m, midbrain; mhb, midbrain-hindbrain boundary; p, pancreas; pf, pectoral fin bud; r,
retina; t, telencephalon.
doi:10.1371/journal.pone.0033675.g004
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hydrolysis of Prp5 is necessary for the stable association of U2

snRNP with pre-mRNA and pre-spliceosome formation in S.

cerevisiae and S. pombe [6], [7]. In this study, our rescue experiments

showed that the introduction of a point mutation into the ATPase

domain of Ddx46, which disrupts the ATPase activity of S. pombe

Prp5 (SpPrp5), leads to the loss of the rescue capability of Ddx46

for the Ddx46hi2137/hi2137 mutant phenotype (Figure 3). Therefore,

the ATP hydrolysis by the ATPase domain in Ddx46 may be

required for the Ddx46 to function during zebrafish development.

In addition to the involvement of the ATPase domain, the role

of the N-terminal region in Ddx46 has been reported in SpPrp5

and human DDX46 [10]. Both proteins physically associate with

the U1 and U2 snRNPs through their N-terminal regions [10],

when they function in pre-mRNA splicing. SpPrp5 contains

distinct U1- and U2-interacting domains in its N-terminal region

that are required for pre-spliceosome assembly [10]. In contrast to

N-terminal region functioning, the function of the C-terminal

region of Ddx46 proteins has not yet been analyzed. The

Figure 5. Expression of molecular markers for digestive organs and brain is reduced in the Ddx46hi2137/hi2137 mutant. (A–D) The
expression of dla and her6 was examined using whole-mount in situ hybridization at 3 dpf. All lateral views, anterior to the left. (E–L) The expression
of fabp2, fabp10a, ptf1a, and ins was examined using whole-mount in situ hybridization at 3.5 dpf. All dorsal views, anterior to the top. In the
Ddx46hi2137/hi2137 mutants, the intensity and area of dla, her6, fabp2, fabp10a, and ptf1a expression were markedly reduced at 3 or 3.5 dpf (A–J;
arrowheads in H, J). In contrast, the ins expression in the Ddx46hi2137/hi2137 mutant did not change at these developmental stages (K, L). (M–P)
Transverse sections of 3.5-dpf Ddx46hi2137/hi2137 mutant larvae stained with hematoxylin and eosin. The transverse sections were cut at the levels
indicated by black dotted lines in E–L. The tissues in the intestinal bulb, liver, and exocrine pancreas were still present in the Ddx46hi2137/hi2137 mutant
larvae at 3.5 dpf. Scale bars, 50 mm. en, endocrine pancreas; ex, exocrine pancreas; ib, intestinal bulb; L, liver. Control larvae were sibling WT or
Ddx46hi2137/+ larvae and had normal phenotypes.
doi:10.1371/journal.pone.0033675.g005
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alignment of the Ddx46 proteins of various vertebrates reveals

high homology in the C-terminal region (see Figure S2), but to

date, no specific motif has been reported in this region. Although

the phenotype of the morha4 mutant and our rescue experiments

using a morha4 mutant form of Ddx46 (Ddx46-I942S) indicated that

the C-terminal region of Ddx46 is critical for its function in

zebrafish development, further studies are needed to uncover the

role of the Ddx46 C-terminal region and the influence of the morha4

point mutation on Ddx46 function.

In vivo function of zebrafish Ddx46 during development
In this study, we showed that the unspliced mRNAs of dla, her6,

ptf1a, and fabp10a were retained in the Ddx46hi2137/hi2137 mutant

(Figure 6). We further showed that the splicing of the housekeep-

ing gene actb1, but not b2m, was normal in the heads of

Ddx46hi2137/hi2137 mutants (Figure S9). These results, combined

with functional analyses of yeast Prp5 and human DDX46, suggest

that zebrafish Ddx46 may be required for pre-mRNA splicing

during development, and that the effect of splicing may be specific

to a certain set of genes in the affected organs. Since four genes

(dla, her6, fabp10a, and ptf1a) were selected as simple markers for

organ development, it is possible that the defects in the pre-mRNA

splicing of genes other than these four lead to the phenotypes of

the Ddx46 mutant.

Assessment of pre-mRNA status by RT-PCR, which is not a

quantitative analysis, showed that the spliced mRNAs of the five

genes (dla, her6, fabp10a, ptf1a, and b2m) we tested were still present

in the Ddx46hi2137/hi2137 mutants (Figures 6 and S9). There are two

possible explanations for this finding. One is that Ddx46 protein

from the maternally inherited transcript may rescue pre-mRNA

Figure 6. Ddx46 deficiency affects pre-mRNA splicing in the digestive organs and brain. (A–H) Scheme of the dla, her6, ptf1a, and fabp10a
pre-mRNA regions analyzed for splicing (boxes, exons; lines, introns; arrows, primers) (A, C, E, G). The splicing status of dla, her6, ptf1a, and fabp10a
pre-mRNA was monitored using RT-PCR with the primers indicated in scheme A, C, E, and G, respectively. Unspliced dla, her6, ptf1a, and fabp10a
mRNAs were retained in the Ddx46hi2137/hi2137 mutant (mut) larvae compared to the control (con) larvae (arrowheads in B, D, F, H). Unspliced and
spliced PCR products were verified by sequencing. +RT refers to the validation reaction itself, and 2RT represents the respective control reaction
without reverse transcriptase. actb1 is a loading control by using primers designed in the exon 6. M, DNA size markers (sizes in bp); the asterisks point
to nonspecific PCR products. Control larvae were sibling WT or Ddx46hi2137/+ larvae and had normal phenotypes.
doi:10.1371/journal.pone.0033675.g006
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splicing. A previous study revealed that the maternally derived

minichromosome maintenance protein 5 persists beyond 3 dpf in

zebrafish larvae [38]. This indicates that a maternally derived

protein is very stable during early development. Alternatively, it is

possible that the five genes (dla, her6, fabp10a, ptf1a, and b2m)

require Ddx46 for their splicing in a subset of tissues, but not in

other tissues where splicing may occur in a Ddx46-independent

manner. Detailed biochemical analyses will be needed to elucidate

the in vivo function of Ddx46 during vertebrate development.

Organ-specific requirement of Ddx46 in zebrafish
development

Recent microarray profiling and expression cloning analyses have

revealed that some housekeeping genes are expressed in specific

tissues or organs, but others have shown ubiquitous expression

during development [39], [40]. In zebrafish, microarray profiles and

in situ analyses have shown that nucleolar genes, which are generally

thought to be ubiquitously expressed, are preferentially expressed in

the developing gastrointestinal tract [39]. Consistent with these

results, zebrafish mutations in RNA polymerase III [41] and

nucleolar protein RBM19 [42] showed specific defects in digestive

organ formation during development because these genes are

expressed in the digestive organs [41], [42].

Expression cloning screens in Xenopus laevis have revealed that

some pre-mRNA splicing genes demostrate the tissue- or organ-

specific expression and function analyzed using whole-mount in

situ hybridization and overexpression experiments during devel-

opment [40]. Moreover, analyses of zebrafish mutants and

knockdown experiments have revealed the tissue-specific function

of some splicing or splicing-related factors during vertebrate

development: sublethal knockdown of the pre-mRNA processing

factor 31 (Prpf31) predominantly affects retinal transcripts [43];

the splicing factor proline/glutamine rich (sfpq) gene, which is strongly

expressed in the developing brain, is required for cell survival and

neuronal development [44]; the ubiquitin specific peptide 39 (usp39)

gene is involved in embryonic pituitary homeostasis by regulating

the retinoblastoma 1 pre-mRNA splicing and E2F transcription factor 4

expression [35]; and a mutation of a p110 protein, which functions

in recycling of the U4/U6 snRNPs, leads to organ-specific defects

during development [45].

These reports, combined with our results, suggest that some

splicing genes may be specific to digestive organ and brain

development in X. laevis and zebrafish. It is possible that another

redundant DExD/H-box helicase functions in the pre-mRNA

splicing in other tissues or organs, where Ddx46 is not expressed.

An alternative possibility is that some transcriptional/post-

transcriptional genes, including splicing genes, are not specific to

digestive organ and brain development. As observed with Ddx46

expression during digestive organ and brain development, high

expression levels of some transcriptional/post-transcriptional

genes are needed to maintain a high number of cell cycles,

because these organs grow particularly fast during larval stages.

Further study will be necessary to elucidate the organ-specific

requirement of Ddx46 in zebrafish development.

In summary, we demonstrated that a mutation in Ddx46 is

responsible for defects in the digestive organs and brain of the

zebrafish mutant morha4. Consistent with the phenotype of morha4 or

Ddx46 mutant larvae, the expression of Ddx46 was gradually

restricted to these organs as development proceeded after 2 dpf.

Our rescue experiments revealed that both ATPase and the C-

terminal domains of Ddx46 are necessary for its function. Based

on our findings, we propose a model in which Ddx46 is specifically

expressed in the digestive organs and brain and is required for pre-

mRNA splicing in these organs. Future investigations of the

function of Ddx46 should lead to a better understanding of the

splicing processes during vertebrate development.

Materials and Methods

Ethics statement
At present no approval needs to be given for research on

zebrafish because in accordance with Ministry of Education,

Culture, Sports, Science and Technology, Notice No. 71 (June 1,

2006) there is no rule on fish use at Hiroshima University.

Zebrafish husbandry and N-ethyl-N-nitrosourea
mutagenesis

Zebrafish were obtained from the Zebrafish International

Resource Center (Oregon, USA). Adult zebrafish and zebrafish

embryos were maintained under a 14-h day/ 10-h night cycle at

28.5uC. Embryos were incubated in 1/3 Ringer’s solution (39 mM

NaCl, 0.97 mM KCl, 1.8 mM CaCl2, 1.7 mM HEPES, pH 7.2)

at 28.5uC and staged according to Kimmel et al. [46]. The Ddx46

allele hi2137 was isolated during an insertional mutagenesis

screening [15] (http://web.mit.edu/hopkins/group11.html), and

the Ddx46hi2137/+ fish was obtained from the Zebrafish Interna-

tional Resource Center.

A morha4 mutant was isolated during a mutagenesis screen

performed in our laboratory. G0 males (AB strain) were

mutagenized with N-ethyl-N-nitrosourea as described previously

[47]. F1 progeny were grown from G0 males crossed to AB strain

females. The F2 family was established by crossing F1 male and

female fish. F3 larvae obtained by crossing pairs of F2 fish were

fixed at 60 hpf and screened by whole-mount in situ hybridization

for the expression of foxa3 [18] (number of mutated genomes

screened, 269). Families of larvae that showed abnormal

expression of foxa3 were subjected to further analyses.

Positional cloning
The mor gene was mapped on a hybrid genetic background, AB/

India, via bulked segregant analysis between microsatellite markers

Z10508 and Z15212_1 on LG 21 [48]. Based on the Zv6 zebrafish

genome database (http://www.ensembl.org/Danio_rerio/Info/

Index), the closest marker, Z12027_1, was in the intron of the

Ddx46 gene The cDNA was prepared from pools of mutant or WT

sibling larvae using RT-PCR with the following primers: 59-

GGAATTCGCGACAACATGGGCCGAGAG-39 and 59-CCC-

AAGCTTAGCAGAGAGCCAGAGGAGCG-39, and was se-

quenced to find the mutation. To confirm that Ddx46 was tightly

linked to the morha4 mutation, DNA fragments were amplified with

the following PCR primers: 59-TGTGTTGGCCTGAACGCTTG-

39 and 59- AGACGTGACCTTCCACCTTG-39. The amplified

products were digested with MboI and resolved on 1% agarose gels.

The morha4 mutation abolished an MboI site.

Whole-mount in situ hybridization, histology,
genotyping, immunohistochemistry, and detection of
cell death

Whole-mount in situ hybridizations and histological analyses

were performed as described previously [49], [50], and riboprobes

were prepared according to published instructions. For histological

analysis, embryos were embedded in JB4 (Polysciences), and 7-mm

sections were cut with a microtome and stained with hematoxylin

and eosin. After whole-mount in situ hybridization and histological

analyses, the morha4 larvae were genotyped as described above.

Ddx46hi2137 mutants were confirmed with genotyping using two

pairs of primers: one pair derived from the LacZ gene (5-
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ATCCTCTAGACTGCCATGG-3 and 5-ATCGTAACCGTG-

CATCTG-3), which is harbored by the viral vector, and the other

derived from intron 1 of the Ddx46 genomic sequence (5-

GTGAGTTTACTGCTGCGACAAC-3 and 5-CTTGCGTT-

CTCTGGATCTGC-3), which flanks the viral vector insertion

site.

Whole-mount immunohistochemistry for carboxypeptidase A

was performed as described previously [32]. Rabbit anti-bovine

carboxypeptidase A antibody (Rockland) and Alexa FluorH 488

goat anti-rabbit IgG antibody (Invitrogen, Life Technologies

Corp.) were used for the primary and secondary antibody,

respectively. For detection of apoptotic cells, we performed

TUNEL staining using an in situ Cell Death Detection Kit (Roche

Diagnostics) according to the manufacturer’s instructions. The

stained embryos were embedded in 0.7% low-melting-temperature

agarose gel in 1/3 Ringer’s solution and imaged on an Olympus

FV1000-D confocal microscope.

mRNA injections
To introduce point mutations, we performed site-directed

mutagenesis using a QuickChange Site-Directed Mutagenesis

Kit (Stratagene), according to the manufacturer’s instructions. The

coding regions of Ddx46-K402A and Ddx46-I942S were verified by

sequencing both strands. The pCS2+ vector carrying the cDNA

fragment encoding Ddx46, Ddx46-K402A, Ddx46-I942S, or egfp was

used in this study. Capped mRNA was synthesized using a SP6

mMESSAGE mMACHINE (Invitrogen, Life Technologies

Corp.). For the overexpression experiments, Ddx46, Ddx46-

K402A, Ddx46-I942S, or egfp mRNA (160 pg each) was injected

at the one-cell stage.

Northern blotting and RT-PCR analysis of splicing
Total RNA was prepared using TRIzol (Invitrogen, Life

Technologies Corp.) from 40 or more pooled 3.5 dpf WT or

Ddx46hi2137/hi2137 mutant larvae that were identified morpholog-

ically or molecularly. Total RNA was separated using electropho-

resis on a 1.0% agarose gel containing 4-morpholinopropanesul-

phonic acid and 2% formaldehyde, and blotted onto a nylon

membrane (Amersham Hybond-N+, GE Healthcare). The RNA

was fixed to the membrane via UV irradiation and probed with a

DIG-labeled antisense RNA probe. Hybridization was performed

in DIG Easy Hyb (Roche) at 65uC for 12 hours or more, and the

signals were detected with CDP-Star (Roche), according to the

manufacturer’s instructions. The cDNA fragments for Ddx46 and

actb1 were used as templates for the antisense probes.

For RT-PCR analyses of dla, her6, fabp10a, and ptf1a, total RNA

was prepared from control and Ddx46hi2137/hi2137 mutant larvae at

3 dpf or 4 dpf, as described above. For RT-PCR analyses of actb1

(accession number, NM_131031) and b2m (transcript variant 1;

accession number, NM_131163) [37], total RNA was prepared

from the heads of 40 control and Ddx46hi2137/hi2137 mutant larvae

at 4 dpf. One microgram of DNase-treated RNA was reverse-

transcribed with oligo-d(T) (dla, her6, fabp10a, and ptf1a) or random

9mer (actb1 and b2m) priming, and Reverse transcriptase XL

(AMV) (TaKaRa). RT-PCR was performed to monitor splicing of

dla, her6, fabp10a, ptf1a, actb1, and b2m. The primer pairs and

detailed PCR conditions used to amplify each of these genes are

listed in Tables S1 and S2.

Supporting Information

Figure S1 The size of the exocrine pancreas is reduced
in the morha4 mutant. (A, B) High-power, lateral views of the

immunostained exocrine pancreas from 5.5 dpf WT and morha4

larvae. Both larvae were processed for carboxypeptidase A

immunohistochemistry. The size of the exocrine pancreas was

markedly reduced in the morha4 mutant compared to the WT larva.

Scale bars, 50 mm.

(TIF)

Figure S2 The C-terminus region of Ddx46 is highly
conserved among vertebrates. Amino acid sequence align-

ment of the Ddx46 proteins of different vertebrates. The yellow,

red, and orange boxes represent the N-terminal, DEAD-box

helicase, and C-terminal domains, respectively. The C-terminal

region of zebrafish Ddx46 was compared with those of human,

mouse, and chicken Ddx46 proteins. Conserved amino acids in at

least two species and similar amino acids are highlighted in black

and gray, respectively. The red arrowhead and box indicate the

mutated amino acid isoleucine found in the morha4 mutant.

(TIF)

Figure S3 Transheterozygote (morha4/Ddx46hi2137) of
morha4 and Ddx46hi2137 shows the phenocopy of the
morha4 mutant. (A–F) Lateral (A–D) and dorsal (E, F) views of

live control and morha4/Ddx46hi2137 larvae at 5 dpf. The swim

bladder failed to inflate (arrows in A, B), the intestine lacked folds

(arrowheads in C, D), and the retinae were reduced in size

(brackets in E, F) in the morha4/Ddx46hi2137 mutant. Conversely,

somite formation in the morha4/Ddx46hi2137 mutant appeared

normal (arrowheads in A, B). Control larvae were sibling WT,

morha4/+ or Ddx46hi2137/+ larvae and had normal phenotypes.

(TIF)

Figure S4 Expression of foxa3 is unaffected in the
Ddx46hi2137/hi2137 mutant at 2.5 dpf. (A, B) Expression of

foxa3 was examined using whole-mount in situ hybridization.

Dorsal views, anterior to the top. The foxa3 expression in control

larvae (A) was indistinguishable from that in the Ddx46hi2137/hi2137

mutant (B) at 2.5 dpf. Control larvae were sibling WT or

Ddx46hi2137/+ larvae and had normal phenotypes.

(TIF)

Figure S5 Expression of myod1 is normal in the
Ddx46hi2137/hi2137 mutant. (A, B) Expression of myod1 was

examined using whole-mount in situ hybridization. Lateral views,

anterior to the left. The myod1 expression in control larvae (A) was

indistinguishable from that in the Ddx46hi2137/hi2137 mutant (B) at

3.5 dpf. Control larvae were sibling WT or Ddx46hi2137/+ larvae

and had normal phenotypes.

(TIF)

Figure S6 Expression of molecular markers for diges-
tive organs and brain is reduced in the morha4/ha4

mutant. (A–B) The expression of dla was examined using whole-

mount in situ hybridization at 3 dpf. All lateral views, anterior to

the left. (C–J) The expression of fabp2, fabp10a, ptf1a, and ins was

examined using whole-mount in situ hybridization at 3.5 dpf. All

dorsal views, anterior to the top. Although the expression of dla,

fabp2, and fabp10a was slightly reduced, the ptf1a expression was

markdly reduced at 3 or 3.5 dpf in the morha4/ha4 mutants (A–H).

In contrast, the ins expression in the morha4/ha4 mutant did not

change at these developmental stages (I, J). Control larvae were

sibling WT or morha4/+ larvae and had normal phenotypes.

(TIF)

Figure S7 Expression of molecular markers for diges-
tive organs and brain is also reduced in the transheter-
ozygote morha4/Ddx46hi2137 mutant. (A, B) The expression

of dla was examined using whole-mount in situ hybridization at

3 dpf. All lateral views, anterior to the left. (C–H) The expression

Ddx46 for the Digestive Organ and Brain Formation
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of fabp10a, ptf1a, and ins was examined by whole-mount in situ

hybridization at 3.5 dpf. All dorsal views, anterior to the top. The

intensity and area of dla, fabp10a, and ptf1a expression were

markedly reduced at 3 or 3.5 dpf in the morha4/Ddx46hi2137

mutants. In contrast, ins expression in this transheterozygote was

unchanged at these developmental stages. These phenotypes are

the same as those of the Ddx46hi2137/hi2137 mutant. Control larvae

were sibling WT, morha4/+, or Ddx46hi2137/+ larvae and had normal

phenotypes.

(TIF)

Figure S8 Expression of various molecular markers for
digestive organs and brain is reduced in the Ddx46hi2137/

hi2137 mutant. (A–F) The expression of her4, neurog1, and neurod

for brain was examined using whole-mount in situ hybridization at

3 dpf. All lateral views, anterior to the left. (G–N) The expression

of hlxb9la, cpa5, gata6, and dhrs9 for digestive organs was examined

using whole-mount in situ hybridization at 3.5 dpf. All dorsal

views, anterior to the top. In the Ddx46hi2137/hi2137 mutants, the

intensity and area of all of these gene expressions were markedly

reduced at 3 or 3.5 dpf. Control larvae were sibling WT or

Ddx46hi2137/+ larvae and had normal phenotypes.

(TIF)

Figure S9 Pre-mRNA splicing of the housekeeping gene
actb1, but not b2m, is unaffected in the Ddx46hi2137/hi2137

mutant. (A–D) Scheme of the b2m and actb1 pre-mRNA regions

analyzed for splicing (boxes, exons; lines, introns; arrows, primers)

(A, C). The splicing status of b2m and actb1 pre-mRNA was

monitored using RT-PCR with the primers indicated in scheme A

and C, respectively. Total RNA was isolated from the heads of

Ddx46hi2137/hi2137 mutants (mut) and control (con) larvae. Un-

spliced b2m mRNAs were retained in the Ddx46hi2137/hi2137

mutants compared to the control larvae (arrowheads in B),

whereas the splicing of actb1 was unaffected in the Ddx46hi2137/

hi2137 mutants (arrowheads in D). Unspliced and spliced PCR

products were verified by sequencing. +RT refers to the validation

reaction itself, and 2RT represents the respective control reaction

without reverse transcriptase. 18S rRNA was used as a loading

control. M, DNA size markers (sizes in bp). Control larvae were

sibling WT or Ddx46hi2137/+ larvae and had normal phenotypes.

(TIF)

Table S1 The list and sequence of primers used for RT-PCR

analysis.

(XLS)

Table S2 PCR thermal cycler program for RT-PCR.

(XLS)
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36. Rösel TD, Hung LH, Medenbach J, Donde K, Starke S, et al. (2011) RNA-Seq

analysis in mutant zebrafish reveals role of U1C protein in alternative splicing

regulation. EMBO J 30: 1965–1976.
37. Ono H, Figueroa F, O’hUigin C, Klein J (1993) Cloning of the beta 2-

microglobulin gene in the zebrafish. Immunogenetics 38: 1–10.
38. Ryu S, Holzschuh J, Erhardt S, Ettl AK, Driever W (2005) Depletion of

minichromosome maintenance protein 5 in the zebrafish retina causes cell-cycle

defect and apoptosis. Proc Natl Acad Sci U S A 102: 18467–18472.
39. Stuckenholz C, Lu L, Thakur P, Kaminski N, Bahary N (2009) FACS-assisted

microarray profiling implicates novel genes and pathways in zebrafish
gastrointestinal tract development. Gastroenterology 137: 1321–1332.

40. Dichmann DS, Fletcher RB, Harland RM (2008) Expression cloning in
Xenopus identifies RNA-binding proteins as regulators of embryogenesis and

Rbmx as necessary for neural and muscle development. Dev Dyn 237:

1755–1766.
41. Yee NS, Gong W, Huang Y, Lorent K, Dolan AC, et al. (2007) Mutation of

RNA Pol III subunit rpc2/polr3b Leads to Deficiency of Subunit Rpc11 and

disrupts zebrafish digestive development. PLoS Biol 5: e312.
42. Mayer AN, Fishman MC (2003) Nil per os encodes a conserved RNA

recognition motif protein required for morphogenesis and cytodifferentiation of
digestive organs in zebrafish. Development 130: 3917–3928.

43. Linder B, Dill H, Hirmer A, Brocher J, Lee GP, et al. (2011) Systemic splicing

factor deficiency causes tissue-specific defects: a zebrafish model for retinitis
pigmentosa. Hum Mol Genet 20: 368–377.

44. Lowery LA, Rubin J, Sive H (2007) Whitesnake/sfpq is required for cell survival
and neuronal development in the zebrafish. Dev Dyn 236: 1347–1357.

45. Trede NS, Medenbach J, Damianov A, Hung LH, Weber GJ, et al. (2007)
Network of coregulated spliceosome components revealed by zebrafish mutant

in recycling factor p110. Proc Natl Acad Sci U S A 104: 6608–6613.

46. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF (1995) Stages
of embryonic development of the zebrafish. Dev Dyn 203: 253–310.

47. Solnica-Krezel L, Schier A, Driever W (1994) Efficient recovery of ENU-
induced mutations from the zebrafish germline. Genetics 136: 1401–1420.

48. Shimoda N, Knapik E, Ziniti J, Sim C, Yamada E, et al. (1999) Zebrafish

genetic map with 2000 microsatellite markers. Genomics 58: 219–232.
49. Westerfield M (1995) The zebrafish book. Eugene, OR: University of Oregon

Press.
50. Mizoguchi T, Verkade H, Heath JK, Kuroiwa A, Kikuchi Y (2008) Sdf1/Cxcr4

signaling controls the dorsal migration of endodermal cells during zebrafish
gastrulation. Development 135: 2521–2529.

Ddx46 for the Digestive Organ and Brain Formation

PLoS ONE | www.plosone.org 11 March 2012 | Volume 7 | Issue 3 | e33675


