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Abstract

Background: We introduce a promising methodology to identify new therapeutic targets in cancer. Proteins bind to
nanoparticles to form a protein corona. We modulate this corona by using surface-engineered nanoparticles, and identify
protein composition to provide insight into disease development.

Methods/Principal Findings: Using a family of structurally homologous nanoparticles we have investigated the changes in
the protein corona around surface-functionalized gold nanoparticles (AuNPs) from normal and malignant ovarian cell
lysates. Proteomics analysis using mass spectrometry identified hepatoma-derived growth factor (HDGF) that is found
exclusively on positively charged AuNPs (+AuNPs) after incubation with the lysates. We confirmed expression of HDGF in
various ovarian cancer cells and validated binding selectivity to +AuNPs by Western blot analysis. Silencing of HDGF by
siRNA resulted s inhibition in proliferation of ovarian cancer cells.

Conclusion: We investigated the modulation of protein corona around surface-functionalized gold nanoparticles as a
promising approach to identify new therapeutic targets. The potential of our method for identifying therapeutic targets was
demonstrated through silencing of HDGF by siRNA, which inhibited proliferation of ovarian cancer cells. This integrated
proteomics, bioinformatics, and nanotechnology strategy demonstrates that protein corona identification can be used to
discover novel therapeutic targets in cancer.
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Introduction

Gold nanoparticles (AuNPs) have been widely studied for their

potential in disease therapeutics as targeting agents, drug delivery

vehicles, and as therapeutic agents themselves [1,2]. When

nanoparticles are exposed to biological fluids via systemic

administration or ex vivo incubation, they interact with proteins

to form a biological coating on the AuNP to form a protein coating

or corona. This corona dictates the biological response, as well as

many physical properties, of the AuNP [3]. Identifying the

contents of the protein corona can provide unique insight into the

biological function of the AuNPs, including their biodistribution,

clearance, and potential toxicity [4,5],[6–9]. In addition to

affecting nanoparticle behavior, the process of corona formation

provides a tool for probing the local proteome [10]. As such,

protein-covered nanoparticles may also provide insight into

disease states and thereby help to identify new therapeutic targets.

Formation of the protein corona will depend on the nature of

the interaction between the nanoparticles/conjugates and the

biological fluids chosen [11], as dictated by the surface properties

of the nanoparticles [12]. The nature of the interaction will

depend mainly on i) the charge of the nanoconjugate, i.e., positive,

negative, zwitterionic, or neutral and ii) the hydrophobicity/

hydrophilicity of the conjugate. In this manuscript, we examine

the nature of the protein corona captured by surface-functiona-

lized AuNPs when exposed to clinically relevant biological fluids,

and reveal that tuning the nanoparticle surface charge can

preferentially enrich and therefore enable detection of otherwise

undetected low-abundance proteins as possible therapeutic targets.

We used a combination of UV-Visible spectroscopy (UV-Vis),

dynamic light scattering (DLS), zeta potential measurement, and

Bradford protein assay to characterize the protein corona.

Proteomics/bioinformatics analysis was used to identify low-

abundance proteins only found when enriched on the nanoparticle

surface. We incubated AuNPs with normal and malignant ovarian

cell lysates using positively and negatively charged AuNPs

(+AuNPs and 2AuNPs, respectively). In this study, we established
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HDGF as a possible therapeutic target for ovarian cancer by use of

proteomic analysis and expression levels in cancer cells. This

approach was validated through inhibition of cell proliferation

upon silencing this factor by siRNA. Taken together, we show that

this technique can be used to identify and validate new therapeutic

targets for ovarian cancer, providing a generalized strategy for

potential use in other diseases.

Results

Characterization of protein corona around surface-
modified AuNPs from the lysates of normal OSE (Ovarian
Surface Epithelial) and malignant serous ovarian cells
(OV167)

Lysates were collected from ovarian cell lines, OV167

(malignant) [13] and OSE (non-cancerous) [14] were incubated

with +AuNPs and 2AuNPs to form protein coronas. By subtracting

the amount of protein in the supernatants from the amount of

protein in the non-gold control (equal to the molar amount of

lysate in the buffer solution) the amount of protein adsorbed onto

the AuNP surface was determined (Figure 1A). In these studies,

137 mg protein from the OV 167 cell lysate per 50 mL

nanoparticle adsorbed onto the 2AuNP surface as opposed to

106 mg from the OSE lysate nanoparticle (Figure 1B). Similar

amounts of protein also adsorbed onto +AuNP (124 mg and 97 mg

from OV 167 and OSE lysates, respectively). The size of the

particles was examined by DLS before and after incubation with

cell lysates (Figure 1C and 1D). The hydrodynamic diameter (dH)

of +AuNP, increased from 10 nm (Z-average) for the two

nanoparticles prior to incubation(+AuNP and 2AuNP) with a

Gaussian distribution (Table 1) to 32 and 24 nm after incubation

with OV167 and OSE lysates, respectively (Figure 1C). For
2AuNP, dH increased from 10 nm to 28 and 43 nm after

incubation with OV167 and OSE lysates, respectively (Figure 1D).

Upon formation of the protein corona, the zeta potential of
2AuNPs decreased from 244 mV to 225 mV (OV167) and

230 mV (OSE), respectively. Similarly, incubation with OV167

and OSE lysates decreased the zeta potential of +AuNP from

+25 mV to +5 mV and 23 mV, respectively (see Table 2). These

data indicate that +AuNPs and 2AuNPs both form different

protein coronas from malignant and normal cell lysates and both

lead to increased hydrodynamic diameter and a change in overall

charge.

Validating reproducibility of corona formation around
surface-modified AuNPs

The protein coronas formed with +AuNP and 2AuNP

nanoparticles and the OV167 and OSE lysates were analyzed

and identified by means of mass spectrometry. The relationship of

the proteins identified from the lysate-formed coronas of +AuNP

Figure 1. Characterization of the AuNP and protein corona made from cell lysates of OSE and OV167. a) A cartoon showing
functionalization of 5 nm gold nanoparticle to create positively charged (+AuNP) or negatively charged (2AuNP) gold nanoparticles. b) Amount of
protein bound on the nanoparticle as determined by Bradford assay. The binding of protein is evident from the increase in surface size via DLS on c)
+AuNP and d) 2AuNP.
doi:10.1371/journal.pone.0033650.g001
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and 2AuNP is shown in Figure 2 (see also Figure S1, Figure S2,

Figure S3 and Tables S1, S2, S3, S4, S5, S6, S7, S8, S9, S10).

Bioinformatics analysis of the proteins identified by proteomics

studies from OSE lysates revealed a number of proteins that were

uniquely found in the coronas of 2AuNP (47) and +AuNP (33),

(Figure 2A and Table S1). Similar analysis of the corona proteins

from OV167 lysates showed that unique proteins were in the

formed coronas of +AuNPs (18) and 2AuNPs (72), respectively

(Figure 2B and Table S2). It is important to note that the unique

proteins are exclusive to +AuNP and 2AuNP and not found at

detectable levels in the corresponding cell lysates. These data

clearly demonstrate the concentrating effect of protein corona

formation upon low-abundance proteins. The identification of all

the proteins is provided in the Supplementary material (see Tables

S1, S2, S3, S4, S5, S6, S7, S8, S9, S10).

Identification of new molecular targets from the protein
corona formed on surface-modified AuNPs

We next compared the selectivity of each nanoparticle in

discerning different proteins from OSE and OV167 cell lysates,

as shown in Figure 3. A closer examination of our results showed

that there was neither a distinct functional class nor a particular

range of pIs in which the proteins bound to the nanoparticles

(data not shown), which is consistent with prior findings [15].

Based on the selectivity, we investigated whether modulation of

protein-corona formation by surface-functionalized nanoparticles

could be applied to discover new therapeutic targets for cancer.

Proteomics/bioinformatics analysis revealed hepatoma-derived

growth factor (HDGF) to be a component of the +AuNP protein

corona from the malignant OV167 cells; thus, this was selected as

a possible target. HDGF has recently been implicated in the

pathogenesis of several other cancers but its role in ovarian

cancer remains unknown so far. To further validate the specificity

of +AuNP and 2AuNP towards preferential enrichment of low

abundance proteins, we selected Hsp70, Hsp90 and HDGF. As

mentioned earlier HDGF and Hsp90 were only present in
+AuNP and 2AuNP corona of OV167 proteome, respectively.

Hsp70 was used as a control due to its commonality between

OSE and OV 167 lysates as well as to the protein corona formed

on both +AuNP and 2AuNP. Western blot analysis shows that

HDGF is indeed preferentially enriched on the +AuNPs, whereas

it is not detected either in the lysates or on 2AuNPs, confirming

the results from tandem MS. Similarly, Hsp90 is preferentially

detected on 2AuNPs, whereas Hsp70 is detected in all the

fractions (Figure 4A).

We then investigated the functional consequences of the

presence of HDGF in ovarian cancer. We first determined the

expression levels of HDGF in various ovarian cancer cell lines. As

seen in the Western blot, HDGF is expressed across various

ovarian cancer cell lines, with the highest expression in A2780 cell

line [16] and the lowest in normal OSE (Figure 4B). To

demonstrate functional effects we knocked down HDGF in

A2780 cells, by using siRNA (KD-siRNA) and looked at the

proliferation of the ovarian cancer cells. We chose A2780 cells

because they expressed the highest level of HDGF of the cells

tested. The silencing of HDGF was confirmed by Western blot

analysis, and there was a convincing level of significant knockdown

as compared to the scrambled control (Figure 4C). In addition,

silencing of HDGF results in significant inhibition of proliferation

of ovarian cancer cells (,70%) as compared to the scrambled

siRNA (sc-siRNA) control (Figure 4D). These results verify that

HDGF is a potential therapeutic target in ovarian cancer.

Discussion

Ovarian cancer is the most common malignancy of the female

genital tract and one of the most lethal [17],[18], essentially

because there are currently no early screening or diagnostic tests

for this disease. As a result, the cancer often remains clinically

undetected until the later stages of the disease [19]. Even though

patients respond initially to chemotherapy after surgical debulking,

most of them develop terminal drug-resistant relapse [20]. Hence,

new therapeutic strategies, and thus new targets, are urgently

needed to combat ovarian cancer. Identifying constituents of the

protein corona that is formed when metal nanoparticles are

incubated with cell lysates by using a combination of proteomics,

bioinformatics, and nanotechnology could provide useful infor-

mation regarding the development of the disease and allow us to

discover new therapeutic targets in ovarian cancer, as well as

potentially for other cancers in the future.

Quantitative proteomics has allowed researchers to study

protein populations found in tissues or biofluids [21] [22] [23].

One technique used to study these protein sets is mass

spectrometry, a detection tool with the ability to screen for myriad

of proteins [24]. In general, mass spectrometry-based proteomics is

used to interpret the information encoded from genomes [25].

Protein analysis by mass spectrometry has been fairly reliable

when applied to small sets of protein samples [26] [27]. However,

low-abundance proteins may escape detection using these general

methodologies due to the Vroman effect, in which highly mobile

proteins that adsorb onto surfaces are replaced by less mobile

proteins [28],[29,30]. In the present study, we were able to

differentially detect proteins not observed in the cell lysates using

conventional methods. In our strategy, these low abundance

proteins were enriched by selective interaction with the modified

surface of gold nanoparticles. The different proteins that adsorb

onto the surface of the nanoparticle are reflected in protein corona

light-scattering behavior, charge, and proteomics. These results

clearly suggest that tuning the surface charge of engineered

nanoparticles can modulate the formation of protein corona

around them. Such modulation is important to detect low-

abundance proteins in order to identify new therapeutic targets.

Table 1. Dynamic Light Scattering (DLS) to determine
hydrodynamic diameter (dH) of AuNPs before and after
incubation with OV167 and OSE lysates.

+AuNP (dH) 2AuNP (dH)

Particle only 10 nm 10 nm

OV167 32 23 nm

OSE 24 43 nm

doi:10.1371/journal.pone.0033650.t001

Table 2. Zeta Potential in mV of +AuNP and 2AuNP before
and after incubation with the lysates of OV167 and OSE,
respectively.

+AuNP 2AuNP

Particle only +2565 245610

OV167 +563 22568

OSE 2362 230611

doi:10.1371/journal.pone.0033650.t002
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Recently there has been substantial interest in understanding

the interactions between proteins and nanoparticles in various bio-

fluids and their biophysical properties with respect to drug delivery

and therapeutics. To this end, research groups have intently

focused on determining the composition of the nanoparticle

corona with human plasma [3,7,12,15,31,32], demonstrating that

nanoparticle surface size and properties play a critical role in

protein adsorption [33–35]. Subsequent work also suggests that

the protein corona is important for how the cell perceives and

transports the nanoparticles [36]. In parallel to gaining knowledge

in the selective affinity of nanoparticles for proteins, research has

also focused on coating the surface of nanoparticles to detect

specific antigens and protein sequences [34,37–39]. The study

presented here uses nanoparticles as useful tools for enrichment

and detection of low abundance proteins as a unique approach to

discover new therapeutic targets. Using bioinformatics, we were

able to further distinguish proteins that are uniquely adsorbed to

either +AuNPs or 2AuNPs; these were validated via Western blot

analysis. One of the proteins we chose to examine more closely is

HDGF, which was identified as a possible ovarian-cancer-specific

mitogen because it was found only with the lysates of the

malignant cells, and only on the +AuNPs. To date, it has not been

established if HDGF has a role in ovarian cancer. However, it has

been implicated in other cancers, such as melanoma, pancreatic,

and lung [40–42]. From our studies, we showed that in

comparison to OSE, HDGF is greatly over expressed in OV

167 and A2780 cell lines. Upon knockdown of HDGF expression,

we observed that the proliferation of ovarian cancer cells was

vastly reduced. These results correlate strongly with previous

studies which showed that HDGF is co-expressed with prolifer-

ating cell nuclear antigen (PCNA) in smooth muscle cells [43].

These results demonstrate, for the first time, a possible role of

HDGF in ovarian cancer pathogenesis and present it as a potential

therapeutic target. They also introduce a new methodology of

exploiting nanoparticle corona content to identify potential

therapeutics.

In summary, this paper employs a unique combination of tools:

proteomics, bioinformatics, and nanotechnology, to open up a

new avenue for identifying and validating new therapeutic targets

in cancer. Using surface-modified gold nanoparticles, we success-

fully enriched low-abundance proteins from lysates of normal and

malignant ovarian cancer cells and identified them using a

combination of proteomics and bioinformatics analysis. Although

we focused on HDGF in this study, extension of similar methods to

other protein targets to target other diseases would be valid. Future

studies will focus on the evolution, modulation, and identification

of protein coronas over time and also on testing this unique system

with human patient samples (blood, serum, plasma). This study

Figure 2. Selectivity of the proteins bound to positively charged (+AuNP) vs negatively charged (2AuNP) particles. Venn diagrams
show proteins identified in the protein corona around +AuNP and 2AuNP from a) normal OSE cell lysates and b) malignant OV167 cell lysates. The
figure clearly depicts the preferential enrichment of low abundance proteins by engineered nanoparticles that were not detectable in the lysates by
proteomics analysis. These proteins, which were otherwise undetected, could potentially be new therapeutic targets.
doi:10.1371/journal.pone.0033650.g002

Figure 3. Venn diagram demonstrating the difference between
the proteins that make up the corona for a) +AuNP, b) 2AuNP
from the cell lysates and c) the different between proteins in
the OV167 and OSE cell lysates. These differences in the
composition of the lysates could be exploited to identify new
therapeutic targets in ovarian cancer.
doi:10.1371/journal.pone.0033650.g003
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opens up a new area of research to unravel new signaling

networks, not only for cancer but also for other diseases, by

detecting low-abundance undetectable proteins using enrichment

induced by surface-engineered nanoparticles.

Materials and Methods

Gold salt was purchased from Strem Chemicals (Newburyport,

MA). PBS,RPMI and DMEM was purchased from Mediatech,

(Manassas, VA). HDGF antibody was purchased from Santa Cruz

Biotechnologies (Santa Cruz, CA) and tubulin was purchased from

AbCam (Cambridge, MA). Secondary antibodies were purchased

from Santa Cruz. Antibodies to HSP70 and HSP90 were a gift

from Dr. Scott Kaufmann.

Particle synthesis
Gold nanoparticles were synthesized according to methods

reported by You et al [44]. In brief, AuNPs were synthesized via

the one-pot protocol developed by Schiffrin et al [45]. Further

functionalization was performed using the Murray place-exchange

method [46], with our thiolated ligands bearing an amine or

carboxylate end group [47].

Cell Lysates
Cells were grown using standard conditions. A2780 cells were

grown using RPMI media with 10% FBS and 1% antibiotic/

antimycotic. OSE cells grown in were medium 199 with Earle’s salts

(Sigma, St. Louis, USA) and MCDB 202 (Sigma), 1:1 ratio, with

15% Fetal Bovine Serum (FBS). OV167, OVCAR5, and SKOV

IP3 were grown in DMEM (10% FBS and 1% antibiotic/

antimycotic). For each cell line, 26150 mm dishes were grown to

confluence (,90%). Prior to lysing, the plates were rinsed five times

with 16phosphate-buffered saline (PBS) buffer to help reduce the

amount of fetal bovine serum. Cells were then lysed using Ripa

buffer (1 mL) with protein inhibitor cocktail (10 mL added) on ice

for 30 minutes. The lysates were scraped off the plate and collected

into a mini-centrifuge tube. The tubes were centrifuged at

14,000 rpm for 12 minutes at 4uC (twice) and the supernatants

were collected. Cell lysates were kept at 220uC until needed.

Corona Formation
Gold nanoparticles (1.2 mM) were incubated for 1 hour with

0.2 mg/mL of cell lysates at room temperature. The lysate/

nanoparticle mixture was subjected to centrifugation (100,0006g/

45 min/10uC) and the supernatant collected. The nanoparticle-

corona pellet was washed with 1 mL of water and resuspended

and re-centrifuged (100,0006 g/45 min/10uC) and the resulting

supernatant and pellets collected. The supernatants were mea-

sured for protein content via Bradford assay. The pellets were

further analyzed for protein identification using MS-MS.

DLS and Zeta Potential Analysis
A Malvern Zetasizer Nano ZS instrument was used to measure

zeta potential at 25uC for all nanoparticles. Samples were

prepared as mentioned above. Samples were loaded into a pre-

rinsed folded capillary cell for the zeta potential and DLS

measurements. The principle employed was ELS (Smoluchowski

methodology for aqueous media) in a Zetasizer Nano ZS

instrument. A maximum of 100 sub runs was performed until a

constant value was obtained.

Western Blot Analysis
Nanoparticle-protein corona was centrifuged as described

above. The supernatant was separated from the pellet. The pellet

Figure 4. Enrichment and functional consequence of HDGF. a) Western blot confirming the presence of HDGF on +AuNP- corona whereas
Hsp90 on 2AuNP- corona. Also shown is Hsp70 (known to be present in all NP coronas via MS). b) Expression of HDGF in ovarian cell lines. c)
Knockdown of HDGF in A2780 cell line using HDGF-siRNAs (KD-siRNA) and compared with the scrambled control (scRNA); d) Effect of silencing HDGF
on proliferation of ovarian cancer cells analyzed by [3H]-thymidine incorporation assay.
doi:10.1371/journal.pone.0033650.g004
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was resuspended in 30 ml of double distilled H20 along with 25%

Laemmeli’s solution and 2.5% 2-bmercaptoethanol. The mixture

was boiled at 95uC for 15 minutes and centrifuged at 4uC at

16500 rpm for 15 minutes. The supernatant is separated from the

resulting pellet and 30 ml loaded on to gels. As for the control,

30 ml of the cell lysate was aliquoted from 200 mg/mL of lysate

solution and boiled with 25% Laemmeli’s solution at 95uC for

5 minutes. The proteins were run on a 10% gel and transferred to

a PVDF membrane at 100V for 40 minutes. The membrane was

blocked with 4% milk and incubated with primary antibodies

overnight.

siRNA Knockdown
A2780 cells were plated in 60-mm dishes with 3 mL cell culture

media. Cells were transfected with 20 mL of 20 mM siRNA

purchased from Qiagen (Valencia, CA) along with 20 mL of

HiPerfect (Valencia, CA) and 500 mL of OPTI-MEM (Invitrogen,

Carlsbad, CA). Scrambled siRNA from Qiagen was used as a

control. After 48 hours, cells were counted and plated on 24-well

plates (36104 cells/mL) containing 1 mL media. Cell lysate was

also collected for Western blot analysis. 20 mg of whole-cell lysates

were used to detect the knockdown efficiency of the siRNA.

3H-Thymidine incorporation assay for cellular
proliferation

Cells transfected with siRNA were seeded (26104) in 24-well

plates. After overnight incubation under standard conditions,

1 mCi/ml [3H]-thymidine was added to fresh media, and 4 h

later, cells were washed with ice-cold PBS, fixed with 100% cold

methanol followed by washing and lysing with 250 ml 0.1N

NaOH. [3H]-thymidine incorporation in the cells was measured

in a scintillation counter.

Mass Spectrometry; Protein identification via trypsin
digest R nanoLC-MS/MS with hybrid orbitrap/linear ion
trap mass spectrometry

The nanoparticle solutions were prepared for mass spectrom-

etry analysis using the following procedures. The solutions were

dried on a SpeedVac spinning concentrator (Savant Instruments,

Holbrook NY), then solubilized in 50 mM Tris/0.25% Protease

Max (Promega Corporation, Madison, WI). The proteins were

reduced and alkylated with tris(2-carboxyethyl)phosphine (TCEP)

at 55uC for 40 minutes and iodoacetamide at room temperature

for 40 min in the dark, then digested with trypsin (Promega

Corporation, Madison WI) in 50 mM Tris pH 8.1/0.0002%

Zwittergent 3–16, at 37uC overnight. The digest was terminated

with 2% trifluoroacetic acid, and acetonitrile was added, then

centrifuged to pellet the particles. The supernatant was removed

and concentrated to less than 5 mL on a SpeedVac spinning

concentrator (Savant Intruments, Holbrook NY). The digest

mixture was brought up in 0.2% trifluoroacetic acid for protein

identification by nano-flow liquid chromatography electrospray

tandem mass spectrometry (nanoLC-ESI-MS/MS) using a

ThermoFinnigan LTQ Orbitrap Hybrid Mass Spectrometer

(Thermo Fisher Scientific, Bremen, Germany) coupled to an

Eksigent nanoLC-2D HPLC system (Eksigent, Dublin, CA). The

peptide digest mixture was loaded onto a 250 nL OPTI-PAK trap

(Optimize Technologies, Oregon City, OR) custom-packed with

Michrom Magic C8 solid phase (Michrom Bioresources, Auburn,

CA). Chromatography was performed using 0.2% formic acid in

both the A solvent (98% water/2% acetonitrile) and B solvent

(80% acetonitrile/10% isopropanol/10% water), and a 5%B to

40%B gradient over 100 minutes at 325 nL/min through a hand-

packed PicoFrit (New Objective, Woburn, MA) 75 mm6200 mm

column (Michrom Magic C18, 3 mm). The LTQ Orbitrap mass

spectrometer experiment was set to perform a Fourier-transformed

full scan from 375–1600 m/z with resolution set at 60,000 (at

400 m/z), followed by linear ion trap MS/MS scans on the five

most abundant ions. Dynamic exclusion was set to 1 and selected

ions were placed on an exclusion list for 30 seconds. The lock-

mass option was enabled for the FT full scans using the ambient

air polydimethylcyclosiloxane (PCM) ion of m/z = 445.120024 or

a common phthalate ion m/z = 391.284286 for real-time internal

calibration [48].

Mass Spectrometry; Protein and Peptide Identification
Tandem mass spectra were extracted by using BioWorks version

3.2. All MS/MS samples were analyzed using Mascot (Matrix

Science, London, UK; version 2.2.04), Sequest (ThermoFinnigan,

San Jose, CA; version 27, rev. 12) and X! Tandem (www.thegpm.

org; version 2006.09.15.3). All the three applications identify

peptides by comparing the experimental spectra to predicted

spectra of peptide derived from the protein sequence available in

the Swissprot database (699052 entries), assuming trypsin

digestion. For the three applications the fragment ion mass

tolerance was set to 0.80 Da. Parent ion tolerance was respectively

set to 10.0 PPM for Mascot and X! Tandem and 0.0084 Da for

Sequest. Oxidation of methionine and iodoacetamide derivative of

cysteine were specified as variable modifications in Mascot,

Sequest and X! Tandem. The applications returned the list of

identified peptides, associated proteins, and confidence score.

Scaffold (version Scaffold_2_00_06, Proteome Software Inc.,

Portland, OR) was used to combine the output of Mascot,

X!Tandem and Sequest to enhance protein identifications.

Confidence scores were combined in a probability model as

specified in the PeptideProphet algorithm [49]; this model was

used to score each peptide. Peptides with a probability score lower

than 95.0% were rejected from the analysis. Proteins were then

scored by an algorithm included in PeptideProphet [50] that also

used a statistical model. Proteins that were associated with the

same set of peptides and therefore could not be further

discriminated were jointly associated to these peptides.

Bioinformatics
The Mascot output is further processed by a set of bioinfor-

matics procedures. Output files are summarized at the protein

level to include one protein per entry. Since peptides can be

related to several member of a protein family, only proteins with

the extension ‘_HUMAN’ were retained during the processing;

those not related to human proteins were rejected. The sequence

of each protein was extracted from the Uniprot database (http://

www.uniprot.org/ version May 15,2011). Protein comparison was

performed based on the sequence of each protein rather than its

name.

Supporting Information

Figure S1 A combination of MS and bioinformatics
tools was used to identify proteins bound to the AuNPs
surface from the OSE lysate. Venn diagram shows the

reproducibility of the identification process with triplicate MS runs

for proteins associated with the different AuNPs.

(TIF)

Figure S2 A combination of MS and bioinformatics
tools was used to identify proteins bound to the AuNPs
surface from the OV167 lysate. Venn diagram shows the
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reproducibility of the identification process with triplicate MS runs

for proteins associated with the different AuNPs.

(TIF)

Figure S3 Characterization of the AuNP and protein
corona made from cell lysates of a) normal ovarian cell
line (OSE) and b) ovarian cancer cell line (OV167). The

binding of protein is evident from the increase in UV absorbance.

(TIF)

Table S1 Unique Proteins present in the corona of
+AuNP and 2AuNP from OSE lysate.
(DOCX)

Table S2 Unique proteins present in the corona of
+AuNP and 2AuNP from OV167 lysate.
(DOCX)

Table S3 All Proteins OSE Lysate.
(DOCX)

Table S4 All proteins present in the corona of +AuNP
from OSE lysates.
(DOCX)

Table S5 All proteins present in the corona of 2AuNP
from OSE lysates.
(DOCX)

Table S6 All proteins present in OV167 lysate.

(DOCX)

Table S7 All proteins in the OV167 +AuNP corona.

(DOCX)

Table S8 All proteins in the OV167 2AuNP corona.

(DOCX)

Table S9 Comparison of proteins present in 2AuNP
corona from OSE and OV167 lysates.

(DOCX)

Table S10 Comparison of proteins present in +AuNP
corona from OSE and OV167 lysates.
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