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Abstract

Background: One of the most common symptoms of speech deficits in individuals with Parkinson’s disease (PD) is
significantly reduced vocal loudness and pitch range. The present study investigated whether abnormal vocalizations in
individuals with PD are related to sensory processing of voice auditory feedback. Perturbations in loudness or pitch of voice
auditory feedback are known to elicit short latency, compensatory responses in voice amplitude or fundamental frequency.

Methodology/Principal Findings: Twelve individuals with Parkinson’s disease and 13 age- and sex- matched healthy
control subjects sustained a vowel sound (/a/) and received unexpected, brief (200 ms) perturbations in voice loudness (63
or 6 dB) or pitch (6100 cents) auditory feedback. Results showed that, while all subjects produced compensatory responses
in their voice amplitude or fundamental frequency, individuals with PD exhibited larger response magnitudes than the
control subjects. Furthermore, for loudness-shifted feedback, upward stimuli resulted in shorter response latencies than
downward stimuli in the control subjects but not in individuals with PD.

Conclusions/Significance: The larger response magnitudes in individuals with PD compared with the control subjects
suggest that processing of voice auditory feedback is abnormal in PD. Although the precise mechanisms of the voice
feedback processing are unknown, results of this study suggest that abnormal voice control in individuals with PD may be
related to dysfunctional mechanisms of error detection or correction in sensory feedback processing.
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Introduction

Idiopathic Parkinson’s disease (PD) is a progressive neurode-

generative disease primarily associated with loss of dopaminergic

neurons in the pars compacta of the substantia nigra of the basal

ganglia. The cardinal symptoms of PD include resting tremor,

rigidity, bradykinesia and postural instability [1,2]. There have

also been several studies suggesting that the basal ganglia may be

involved in speech, language, stuttering, auditory discrimination,

determining basic parameters of movement, error detection,

learning behavioral control of movements, and gating of sensory

feedback for motor control [3–10]. Eighty-nine percent of people

with PD have speech and voice disorders that may impair their

ability to communicate, characterized by reduced voice amplitude,

monotone, breathy, hoarse voice quality, and imprecise articula-

tion [11]. Investigations of vocal output in PD have also reported

abnormal perceptual processing of voice and speech auditory

feedback [12–15] suggesting that input to the speech feedback

mechanisms is abnormal, which may explain why some individuals

with PD fail to recognize that their voice is not loud enough to be

heard by others [12]. Thus, it is also reasonable to conjecture that

speech and voice disorders in individuals with PD might be

associated with abnormal processing of voice auditory feedback.

One theory on the cause of the movement disorders in PD

suggests they may arise from abnormal processing of sensory

stimulation (kinesthetic, proprioceptive, auditory) at the cortical

and subcortical levels [16]. Other studies have reported that the

sensory-triggered reflexes (e.g., perioral, stapedial, stretch), in

individuals with PD have greater magnitudes or a lower threshold

than in control subjects [10,17–19]. Although there may be other

possible neural mechanisms that could account for these changes

in functions, evidence has shown that the abnormal status of these

functions could be mainly due to the impairment of the basal

ganglia [20]. Therefore, impairment of the basal ganglia may

cause a loss or error of filtering non-relevant sensory information

[21] for movement control, making it difficult to recognize the

amplitude of movement or in executing voluntary movements

[19]. The basal ganglia may also compare incoming sensory data

with motor control networks in the cerebral cortex. In the event of

a mismatch, incorrect networks will be activated resulting in

abnormal movement patterns [22]. Given the importance of the

basal ganglia in sensory processing and motor control, voice and
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speech disorders in individuals with PD could also be related to the

sensorimotor integration deficits arising from dysfunction of the

basal ganglia.

Recently, neural mechanisms of the role of auditory feedback

on voice control have been studied extensively in healthy adults

during both sustained vowels and speech production [23–33].

These studies have shown that perturbations in voice pitch or

loudness feedback lead to compensatory changes in voice

fundamental frequency (F0) or amplitude as well as event-related

potentials in the auditory cortex [34–37]. The mechanisms

underlying these responses have been described as a negative

feedback control system wherein an efference copy of the intended

vocal output is compared with the actual sensory feedback [28].

With a perturbation in auditory feedback, the resulting error from

the comparison process generates a compensatory response with a

latency of about 100 ms. The responses are thought to be reflexive

because of their short latency and because subjects produce the

responses without intent [24,28,38]. Although the magnitude of

the responses is relatively small compared to the size of the

feedback perturbation, it is believed voluntary responses that

follow the reflexive responses are capable of completing compen-

sation for the perturbation [28].

The present study was designed to test the hypothesis that

abnormal processing of voice auditory feedback contributes to the

voice disorders observed in individuals with PD who are in an

advanced stage of the disease and off medications. The voice

perturbation paradigm was used for this testing because it

measures the vocal motor responses to perturbations in the

acoustical properties of the voice, and relies at least in part on

cortical mechanisms. Also, because it was previously shown that

individuals with PD have a reduced sense of awareness of

laryngeal somatosensory stimulation leading to voice problems

[39], and that anesthesia of the laryngeal mucosa leads to larger

than normal responses to pitch-shifted feedback [40], it was

predicted that individuals with PD would show larger responses to

perturbations in voice auditory feedback than healthy control

subjects. In the present study,we tested this hypothesis. We

examined responses to perturbations in voice loudness and pitch

feedback in healthy control subjects and individuals with PD who

were off medication. Results confirmed our predictions that the

individuals with PD displayed larger response magnitudes than the

control subjects.

Methods

Ethics statement
Signed informed consented was obtained from all subjects in

this study. PD subjects were tested at Rush University Medical

Center. Healthy controls were tested at Northwestern University.

The test protocol was approved by the Institutional Review Board

(IRB) from each institution.

Subjects
Twelve individuals (10 males and 2 females) with a clinical

diagnosis of idiopathic PD and speech impairment participated in

the study. The mean age at the time of testing for the PD group

was 62.25 (SD 10.15) years, ranging from 45 to 75 years (Table 1).

The mean disease duration was 10.58 (SD 4.76) years. The

subjects’ performance on non-speech motor tasks was rated by the

third author, LV, a movement disorders neurologist, using the

motor section of the Unified Parkinson’s Disease Rating Scale

(UPDRS-III) [41]. The mean UPDRS-III motor score was 36.88

(SD 15.12) in the off-medication state, ranging from 18 to 58.5

with a total number of possible points of 108. The mean Hoehn &

Yahr [42] stage was 3.14 (SD 0.90) in the off-medication state,

ranging from 2 to 4. All had functional hearing and without

dementia. Two subjects (S8, S10) had been diagnosed with mild

depression associated with PD and both were treated with Celexa.

Subject 2 was treated with Amitriphyline for sleep disorder. All

subjects were tested in the off-medication state (12 hours off anti-

Parkinsonian medication). For the three subjects who had

previously received unilateral deep brain stimulation (DBS) of

the subthalamic nucleus (STN), the stimulator was turned off for

12 hours before the testing. Clinical descriptions of speech and

voice characteristics were provided by the second author, E.W., a

licensed speech language pathologist who is specialized in working

with individuals with PD and speech impairment.

The 13 control subjects (11 males and 2 females) had a mean

age of 68.7 years (SD 10.6) ranging from 49 to 89 years. Both

testing sites used identical equipment, and the PD subjects were

tested in a quiet office environment (ambient noise level was about

50 dB SPL). In a previous study it was determined that absolute

control of voice auditory feedback or added noise had no effect on

vocal responses to pitch-shifted feedback, and therefore it was

considered that the low ambient noise level of the office

environment would not affect the results in the present study

[24]. Control subjects had no known cognitive, speech, and

hearing problems and were free of any neurological problems at

the time of the testing. All subjects passed a hearing screening at

250, and 500 Hz at 25 dB HL; and 1000–8000 Hz at 50 dB HL.

It is unlikely that differences in hearing threshold would have

affected the results since it was previously reported that 10 to

20 dB SPL changes in voice amplitude feedback, with or without

added noise do not affect the responses (Burnett et al., 1998).

Statistical analyses showed no significant difference in the age

between PD and control groups (t = 21.450, p = 0.161).

Procedures
The same instrument set up and equipment were used for

testing for both subjects with PD and control subjects. While

seated in the examination room, the subjects’ voices were recorded

with an AKG boom-set headphone and attached microphone

(model K270 H/C) with a mouth-to-microphone distance of 1

inch, and amplified with a MOTU Ultralite (model 8410) firewire

audio interface, and shifted in pitch or loudness with an Eventide

Eclipse Harmonizer. MIDI software (Max/MSP v.4.1 by Cycling

74) was used to control the harmonizer. A Brüel & Kjær sound

level meter (model 2250) was used to calibrate the microphone and

headphones to a set gain of 10 dB SPL between the subject’s voice

amplitude and the feedback loudness. The voice output, feedback

and TTL control pulses were digitized at 10 kHz by PowerLab

(AD Instruments), and recorded using Chart software (AD

Instruments).

Each subject was tested under three conditions, one pitch-shift

and two loudness shift conditions. For each condition, subjects

produced 8–13 vocalizations (sustained vowel /a/) for approxi-

mately 5 sec. During each vocalization, either the subject’s voice

loudness feedback was shifted upwards or downwards by 3 dB or

6 dB (200 ms duration) or voice pitch was shifted up or down by

100 cents (100 cents equals one semitone). Most subjects received

five shifts per vocalization over eight vocalizations, resulting in 40

shifts per block of trials (20 upward and 20 downward). However,

some of the PD subjects were unable to hold their vocalizations for

5-sec durations, and in these cases three shifts were delivered for

each vocalization, and the subjects vocalized 12–13 times,

resulting in about 36 to 39 shifts per block (18 to 19 shifts in

each direction). In a previous study we determined that varying

the number of perturbations per trial from 1 to 10 results in no
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difference in response magnitudes [43]. During each trial, the

timing and direction of the shift was randomized (500–700 ms

inter-stimulus intervals).

Data analysis
Digitized voice and feedback signals were analyzed using an

event-related averaging technique offline in a lab computer. For

the measurement of vocal response during the perturbed loudness

feedback, the voice signal was converted to a root-mean-square

(RMS) voltage signal using Igor PRO software (v.6.0, Wave-

metrics, Inc.). A RMS wave was obtained using a 50 ms sliding

window:

RMS(x)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

Xnz25

n{25

x2

vuut ð1Þ

where x is the value of each data point, and N is the total number

of data points. Voice RMS voltage measures were then converted

to dB SPL to reflect actual voice amplitude using the following

formula:

Voice(dB)~20|log(RMS(x)=c)z70 ð2Þ

where c equaled 0.228, which is the RMS voltage corresponding

to a vocal level of 70 dB SPL that was obtained through

calibration procedures.

For the measurement of vocal responses during perturbed pitch

feedback, the voice signal was processed by Praat [44] using an

autocorrelation method to produce a train of pulses corresponding

to the fundamental period of the voice waveform. This pulse train

was transformed to an F0 contour wave in Igor PRO, and then

converted to a cent scale using the following:

Voice(cents)~100|(12|log(f2=f1)=log(2)) ð3Þ

where f 1 is an arbitrary reference note at 195.997 Hz (G4), and

f 2 is the voice F0 in Hertz.

The voice F0 or RMS signal of all trials per block for each

subject was then time aligned to the TTL pulses (stimulus onset),

and averaged responses to upward and downward stimuli were

calculated. Initial acceptance of averaged vocal responses was

defined by the averaged waveform exceeding a value of two

standard deviations (SDs) of the pre-stimulus mean beginning at

least 60 ms after the stimulus and lasting at least 50 ms [25]. The

criterion for the end of a response was that it returned to within

two SDs for at least 30 ms. Latency of the averaged response was

defined as the time from the stimulus onset at which the response

exceeded 2 SDs of the pre-stimulus mean. Response magnitude

was defined as the maximum deviation of F0 from the baseline.

Response magnitude and latency values were submitted to

significance testing using repeated-measures ANOVAs (SPSS, v.

16.0). There were 3 cases (see Table 2) in which a F0 or amplitude

response could not be measured. In theses cases, for statistical

analysis, the missing value was replaced by the mean of the values

from other subjects within the same condition. This is a standard

procedure that is routinely used to meet the assumption of the

repeated-measures ANOVA [45]. Assumptions of compound

symmetry and circularity for repeated measures ANOVA were

met. An alpha level of p,0.05 was considered to be statistically

significant.

Results

Table 2 provides the number of each response type for each

group of subjects, including the pitch- and loudness-shift

conditions and the type of response. The responses were separated

into three types: opposing (response and stimulus change in the

opposite direction), following (response change was in the same

direction as the stimulus), and non-response (response that fails to

reach the criteria of valid response). Ninety-five percent of

responses opposed the stimulus direction, while only four followed

the direction of the stimulus. In addition, there were three

instances where PD subjects did not register a valid response.

Figures 1, 2, and 3 show grand-averaged vocal responses to

3 dB, 6 dB, and 100 cents perturbations in auditory feedback

across all PD and control subjects. As shown in Figures 1 and 2,

both PD and control subjects produced compensatory voice

amplitude responses in the direction opposite to the perturbation

in voice loudness feedback. In addition, the PD subjects produced

larger vocal response magnitudes in comparison with the control

subjects, especially for responses to upward perturbations.

Similarly, the PD subjects showed larger response magnitudes to

pitch perturbations than the control subjects (Figure 3).

Voice amplitude response magnitudes were tested in a three-

way (testing group, stimulus magnitude, stimulus direction)

repeated-measures ANOVA, which revealed significant main

effects for testing group (F(1, 23) = 25.543, p,0.001) and stimulus

direction (F(1, 23) = 84.536, p,0.001) but not for stimulus

magnitude (F(1, 23) = 1.133, p = 0.298). The PD group produced

significantly larger response magnitudes (1.3160.80 dB) than the

control subjects (0.7460.35 dB), and upward stimuli were

associated with larger response magnitudes (1.3660.75 dB)

compared to downward stimuli (0.6760.32 dB) (see Figure 4).

Voice amplitude latencies were also tested in a three-way

ANOVA and showed a significant main effect for stimulus

direction (F(1, 23) = 8.190, p = 0.009) but not for testing group

(F(1, 23) = 1.609, p = 0.217) or stimulus magnitude (F(1,

23) = 0.588, p = 0.451). A significant interaction was found

between stimulus direction and stimulus magnitude (F(1,

23) = 10.530, p = 0.004). Further statistical analyses showed

significantly longer latencies to downward stimuli (186671 ms)

than upward stimuli (121656 ms) for 6 dB stimuli (F(1,

23) = 16.264, p = 0.001) but not for 3 dB stimuli (147671 ms vs.

140656 ms) (F(1, 23) = 0.159, p = 0.694) (see Figure 5A). In

addition, directional effects on the voice amplitude latencies were

observed in the control group (F(1, 12) = 12.457, p = 0.004), where

downward stimuli led to significantly longer latencies (187676 ms)

than upward stimuli (129660 ms), but they were absent in the PD

group (145664 ms vs. 132654 ms) (F(1, 11) = 0.485, p = 0.501)

(see Figure 5B).

Table 2. Numbers of responses (Following, Non-Responses,
Opposing) to the loudness- and pitch-shift stimuli for each
group of participants (CT – Control; PD – Parkinson).

CT-LOUD CT-PITCH PD-LOUD PD-PITCH TOTAL

FOLLOWING 2 0 1 1 4

NR 0 0 2 1 3

OPPOSING 50 26 45 20 141

TOTAL 52 26 48 22 148

doi:10.1371/journal.pone.0033629.t002
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Testing voice F0 response magnitudes in a two-way (testing

group, stimulus direction) repeated-measures ANOVA indicated

that the PD group produced significantly larger vocal response

magnitudes (37617 cents) than the control group (2769 cents)

(F(1, 22) = 4.715, p = 0.041) (see Figure 6), but no significant

differences were found for stimulus direction (F(1, 22) = 1.172,

p = 0.291) or for interactions between testing group and stimulus

direction (F(1, 23) = 0.894, p = 0.355) (The pitch-shift reflex was

not tested in one of the PD subjects due to time limitations.). For

the response latency, neither significant main effects nor significant

interactions were found across all conditions.

Discussion

One of the most significant features of the speech of individuals

with PD is that their voices are not loud enough, which interferes

with their ability to converse with others. Although the control of

voice loudness appears to be a greater problem for communication

in individuals with PD than does the control of voice F0, a

monotonous voice is also a recognized symptom of individuals

with PD [11]. Results from the present study showed that

individuals with PD produced significantly larger vocal response

magnitudes to perturbations in voice amplitude and pitch feedback

when compared with age- and sex-matched control subjects.

These findings suggest that individuals with PD may have

perceived or processed the pitch- and loudness-shift stimuli

differently than did the control subjects.

In a previous study on normal subjects using the same

techniques as the present study, Bauer et al. [23] reported that

the amplitude of loudness-shift reflex was larger when people

vocalized with a soft voice amplitude compared to a normal voice

amplitude. Thus, it may be argued that larger loudness-shift

reflexes for individuals with PD in the present study resulted from

their softer voice amplitude as compared to the healthy controls.

However, variability in voice amplitude served as a within-subject

factor in Bauer et al.’s study [23], and so far there is no direct

evidence to support the conclusion that this would also be true

between groups of subjects. Moreover, it has been reported that

voice F0 level is not related to measures of the pitch-shift reflex

within different groups [46]. Clearly, these issues should be

investigated further. Unfortunately, due to the limitations in the

experimental design, the data from the present study do not

provide direct evidence to support the suggestion that differing

voice loudness levels between groups of subjects would have led to

reflexes of different magnitudes observed.

In addition to abnormal response magnitudes, the timing of the

vocal responses to perturbed auditory feedback appeared to be

Figure 1. Grand-averaged vocal responses to upward (top) and
downward (bottom) 3 dB perturbations across all PD and
control subjects. The red and black lines denote the averaged
responses produced by the PD and the control subjects, respectively.
Vertical bars represent the standard errors of averaged traces. Stimulus
timing and direction are illustrated by square trace at bottom of panels.
doi:10.1371/journal.pone.0033629.g001

Figure 2. Grand-averaged vocal responses to upward (top) and
downward (bottom) 6 dB perturbations across all PD and
control subjects. See Figure 1 for details.
doi:10.1371/journal.pone.0033629.g002
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different in the individuals with PD compared to the healthy

controls. Specifically, in the control group, latencies of voice

amplitude responses to upward perturbations were shorter than

those to downward perturbations, but similar differences were not

observed in the PD group. Such longer latencies to downward

voice loudness perturbations compared with upward perturbations

were also reported in a group of young healthy subjects [47]. A

possible explanation of this finding is that an increase in voice

loudness may be more perceptive than a decrease in loudness,

which may have triggered a more rapid response. It was also

previously shown that timing of voice F0 responses to voice pitch-

shifted feedback were different in PD subjects compared with

healthy control subjects [48]. Taken together, these findings

suggest that individuals with PD may differ from the healthy

controls not only in the magnitude but also in the timing of vocal

responses to perturbations in voice auditory feedback.

Finally, it was observed that in both subject groups, response

magnitudes to increases in loudness-shifted feedback were larger

than those to decreases in loudness-shifted feedback. Similar

findings were previously reported [23,47], in which normal

subjects were presented with perturbations in pitch, loudness

and combinations of pitch and loudness feedback. The most likely

explanation for these observations is that equal magnitude

increases in the loudness of sounds are more perceptible than

equal magnitude decreases in loudness [49]. However, since both

subject groups showed larger response magnitudes to increases in

loudness-shifted feedback compared with decreases in feedback,

this responses tendency does not appear to be affected by

Parkinson’s disease.

An interesting group of studies bears directly on the present

study from the standpoint of altered auditory feedback and voice

control. The Lombard effect demonstrates that when speakers are

presented with loud masking noise, they increase their voice

loudness as part of a compensatory mechanism [50]. This

technique has been shown to increase voice loudness in individuals

with PD [51,52]. The corollary to the Lombard effect is that of

side-tone amplification. In the latter, a speaker responds to an

increase in voice feedback loudness by reducing voice amplitude,

and to decreases in voice feedback loudness with an increase in

voice amplitude. This phenomenon is thought to represent the

same mechanisms as the Lombard effect [50]. In both of these

conditions, the speaker attempts to increase communicative

effectiveness in the presence of competing auditory stimulation.

However, given the long temporal nature of the stimulus durations

in the above studies [51,52], it is likely that the responses reflect

both reflexive and voluntary mechanisms. In the present study, the

stimuli were 200 ms in duration, which have previously been

shown to elicit reflexive responses [24,28]. Therefore, the

increased voice amplitude and F0 responses to reductions in voice

loudness or pitch feedback associated with individuals with PD in

the present study, show that the reflexive components of the

Lombard and side-tone amplification effects are impaired in

individuals with PD, but the present study cannot rule out the

possibility that voluntary mechanisms of vocal control are also

affected in PD.

The voice auditory feedback perturbation paradigm has proven

to be very important for the understanding of how the nervous

system responds to changes in auditory feedback for vocal control.

Hain et al. [28] proposed an internal model of the audio-vocal

system to process the F0 drive signal from vocal motor cortex,

suggesting that auditory feedback works as a negative feedback,

closed-loop system during vocalization. This model was also

Figure 3. Grand-averaged vocal responses to upward (top) and
downward (bottom) 100 cents perturbations across all PD and
control subjects. See Figure 1 for details.
doi:10.1371/journal.pone.0033629.g003

Figure 4. Box plots illustrating the voice loudness response
magnitudes as a function of stimulus direction and testing
group. Box definitions: middle line is median, top and bottom of boxes
are 75th and 25th percentiles. Cross-hatched boxes and blank boxes
represent the responses for the control group and the PD group,
respectively. The asterisks indicate significant differences between
conditions.
doi:10.1371/journal.pone.0033629.g004
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demonstrated to be a feasible representation of internal circuitry

that produces vocal responses to loudness perturbations [23]. In

this model, auditory input (auditory feedback) is compared with

the efference copy of F0 or voice amplitude (the intended

feedback), generating a perceptual pitch or loudness error signal.

This error signal is further processed at the level of the cortex and

brainstem, leading to a final vocal output, which reflects the

correction in the response to pitch or loudness perturbations in

auditory feedback.

Given this model of processes that may be involved in control of

the voice, it is constructive to consider research on the basal

ganglia and the role of sensory feedback in motor control. Animal

studies have demonstrated that the basal ganglia play a crucial role

in error detection, indicating that dopaminergic neurons in the

basal ganglia can produce phasic activity projected to other parts

of the brain in order to modulate future behavior when an error in

the prediction of a future salient event occurs [53]. Falkenstein et

al. [13] reported that the impairment of the basal ganglia in

individuals with PD causes deficits in error detection in

comparison with normal healthy people. Further evidence has

demonstrated that the basal ganglia are involved in the sensory

processing of auditory information [54,55]. Due to PD, the basal

ganglia may no longer be able to effectively filter relevant from

non-relevant sensory information [21], resulting in an error in

perception. In the present study, therefore, the impairment of the

basal ganglia in individuals with PD may have caused an error in

the detection of the magnitude of loudness or pitch changes, which

could in turn lead to an error in the correct scaling of the

responses. These impairments could then lead to the greater

response magnitudes to auditory feedback perturbations than in

the control participants.

The impairment of error detection and/or correction in

individuals with PD may be related to abnormal sensorimotor

integration, possibly involving reduced efference copy of the motor

output. The efference copy is thought to predict the sensory

consequences of the actions [56,57]. Sensory processing mecha-

nisms rely on a subtractive comparison of the efference copy with

the actual sensory feedback [58,59], and if there is an error

resulting from this comparison, a corrective response is produced

[60]. It was suggested from studies in the limb literature that the

efference copy may be reduced in individuals with PD such that

the error signal resulting from a subtractive comparison between

motor output and sensory feedback is reduced, which could result

in the classic reduction in output [hypokinesia; [61]] and other

abnormalities such as drooling and tremor. Rickards and Cody

[19] have argued that the core deficit in PD is a reduction in the

efference copy resulting in reduced overall output, which in speech

would relate to the monotone and reduced loudness of the voice.

That is to say, a reduced efference copy means that the subject

thinks he or she is producing a response of adequate magnitude,

but the actual magnitude perceived by others is too low. With a

deficit in the efference copy mechanisms, the comparison with the

sensory feedback would be inaccurate, which could lead to the

larger responses reported here.

There are other ways in which abnormalities in sensorimotor

integration could possibly lead to the enhanced responses we

report. The present study manipulated auditory feedback,

Figure 5. Box plots illustrating the effect of stimulus direction on the voice loudness response latencies as a function of stimulus
magnitude (A) and testing group (B). Cross-hatched boxes and blank boxes represent the responses to downward and upward loudness-shift
stimuli, respectively. The asterisks indicate significant differences between conditions.
doi:10.1371/journal.pone.0033629.g005

Figure 6. Box plots illustrating the voice F0 response magni-
tudes as a function of stimulus direction for the control group
(cross-hatched boxes) and the PD group (blank boxes). The
asterisks indicate significant differences between conditions.
doi:10.1371/journal.pone.0033629.g006
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however, there are other forms of sensation that could affect vocal

control, and the neural processing of them, or the interactions with

other forms of sensation and auditory feedback could affect the

responses to the pitch- or loudness-shifted feedback. For example,

Hammer and Barlow [39] reported that individuals with PD had

higher thresholds for detecting somatosensory stimulation of the

laryngeal mucosa than did healthy control subjects. The

individuals with PD also had reduced subglottal air pressure, air

flow rates, laryngeal resistance and lung air volume compared to

control subjects. These aerodynamic measures are consistent with

reduced voice loudness of individuals with PD. Thus, more severe

laryngeal somatosensory deficits in individuals with PD were

associated with greater reductions in their voice loudness and

monotone quality. Moreover, in a previous study, Larson et al.

[40] anesthetized the vocal fold mucosa in healthy subjects and

observed that their voice F0 responses to pitch-shifted voice

feedback were larger than in the absence of anesthesia. These

results were interpreted to mean that in the normal situation, both

somatosensory and auditory feedback are used to help control

voice F0. When one of these modes of sensation is reduced or

eliminated, the nervous system places greater value on the intact

sensation form. Therefore, if individuals with PD have reduced

somatosensory input from the larynx, the imbalance between

somatosensory and auditory feedback could result in the nervous

system placing greater weight on auditory feedback, which could

in turn lead to the enhanced responses to the pitch- or loudness-

shifted feedback than those in healthy subjects.

Data from other studies more directly link symptoms of PD to the

interactions between the basal ganglia and cortical mechanisms.

Several transcranial magnetic stimulation and functional imaging

studies have shown reduced motor cortex inhibition, or over activity

of motor cortical areas in PD [62–65], and reduced inhibition of

responses was also found in electrophysiological studies [66,67]. This

inhibition may be related to the reduction in suppression resulting

from abnormal sensorimotor integration mentioned above. Given

that one major function of the basal ganglia is to facilitate the

synchronization of cortical activity of a movement [68], these

findings suggest that basal ganglia dysfunction may indirectly affect

the processing of sensory feedback related to movement control.

Zarate and Zatorre [69] conducted an fMRI study during pitch-

shifted auditory feedback in singers and non-singers and found

that the anterior cingulate cortex, auditory cortices, and putamen

were recruited as people learned to monitor their voice pitch

feedback and adjust their vocal responses accordingly. This finding

also suggests that the basal ganglia may become involved in the

modulation of vocal responses to auditory feedback perturbations

(i.e. feedback error correction). The effectiveness or reduction of

the inhibition effect on the motor cortex due to the impairment of

basal ganglia may lead to the failure of inhibiting or overruling the

incorrect/abnormal reflexive response, which accounts for the

larger vocal reflex magnitudes to the pitch/loudness feedback

perturbations.

These modulatory effects of the basal ganglia on cortical

function may help to explain abnormal reflexes in PD reported by

others [10,12,16,17,19,52,70–76]. Although the precise mecha-

nisms underlying these observations may be similar to the release

from cortical inhibition, this is not certain. Nevertheless, all these

observations support the general idea that dysfunction in the basal

ganglia can impair the modulation of sensory input to cortical or

subcortical areas resulting in abnormal reflexes either at the

brainstem or cortical level [8,22,75,77].

This is a preliminary study indicating that individuals with PD

have larger vocal responses to perturbations in voice loudness- or

pitch-shifted voice feedback compared with healthy control

subjects. This study provides evidence suggesting that individuals

with PD have abnormal sensorimotor integration of voice F0 and

intensity. It should be pointed out, however, that one primary

limitation of the present study is the lack of direct correlational

analysis between speech measures and vocal responses. Speech

measurements of F0 and intensity (e.g. mean intensity, pitch/

intensity variability) were not provided for either PD or control

groups. As such, it is not possible to determine whether the

abnormal voice loudness responses are associated with speech

measures in individuals with PD. Thus, the present study does not

allow a conclusion about a relationship between the response

patterns to perturbed voice loudness feedback and disordered

Parkinsonian speech. Future studies could improve on the present

one by using electrophysiological, neuroimaging and dynamic

causal modeling techniques to help understand neural mechanisms

of these responses, testing of a larger cohort of PD participants,

and to correlate other measures, such as laryngeal somatosensory

sensitivity or specific speech/voice impairments with vocal

measures such as the ones in the present study.

Conclusion
We investigated the vocal responses to perturbations in voice

pitch and loudness auditory feedback generated by individuals

with PD and control subjects. Individuals with PD produced

significantly larger response magnitudes than control subjects to

both pitch and loudness-shifted voice auditory feedback. Addi-

tionally, larger response magnitudes were found for upward

loudness-shift stimuli than for downward stimuli in both of subject

groups. These data support the hypothesis that individuals with

PD and the control subjects differed in the sensory processing of

pitch/loudness errors in voice auditory feedback, suggesting that

basal ganglia dysfunction may impair the sensorimotor integration

of auditory feedback in individuals with PD.
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