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Abstract

Meis1, a conserved transcription factor of the TALE-homeodomain class, is expressed in a wide variety of tissues during
development. Its complex expression pattern is likely to be controlled by an equally complex regulatory landscape. Here we
have scanned the Meis1 locus for regulatory elements and found 13 non-coding regions, highly conserved between
humans and teleost fishes, that have enhancer activity in stable transgenic zebrafish lines. All these regions are syntenic in
most vertebrates. The composite expression of all these enhancer elements recapitulate most of Meis1 expression during
early embryogenesis, indicating they comprise a basic set of regulatory elements of the Meis1 gene. Using bioinformatic
tools, we identify a number of potential binding sites for transcription factors that are compatible with the regulation of
these enhancers. Specifically, HHc2:066650, which is expressed in the developing retina and optic tectum, harbors several
predicted Pax6 sites. Biochemical, functional and transgenic assays indicate that pax6 genes directly regulate HHc2:066650
activity.
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Introduction

Meis genes belong to the TALE-homeodomain class of

conserved transcription factors. Together with their Drosophila

homologue, homothorax (hth), they are known to be required for the

development of many organs in vertebrates and invertebrates

[1,2,3]. Molecularly, Meis proteins are known partners of PBX

family proteins, also TALE-homeodomain transcription factors

and, together with them, interact with region and organ-specific

transcription factors, such as Hox, MyoD or Pax proteins

[2,4,5,6]. The founding member of the family in vertebrates,

Meis1 (myeloid ecotropic insertion site 1, [7]), has also been found

miss-expressed in a number of tumor types, including acute

myeloid leukemia [8], lung adenocarcinoma tumors [9], neuro-

blastomas [10,11,12], ovarian carcinomas [13] and nephroblasto-

mas [14].

Part of the pleiotropic developmental roles of Meis genes reside

in their complex and dynamic expression patterns. In zebrafish,

early meis1 expression is detected in the developing eye, and in the

midbrain and hindbrain regions. Later on, meis1 expression is

found in the ciliary marginal zone of the eye, optic tectum,

forebrain (presumably olfactory bulb) and branchial arches

[15,16]. In other vertebrates, Meis1 has been also detected in

the somites and proximal fore- and hind-limbs at different

developmental stages, as well as in the developing haematopoietic

system and the pancreas [17,18,19]. This complex expression

profile is likely to be controlled by an equally complex regulatory

landscape. However, very few studies have been carried out on the

transcriptional regulation of Meis genes [20]. In order to start

unraveling this complex regulation, we have set to identify cis-

regulatory elements (CREs) of the meis1 gene. First, we have used a

criterion of synteny and evolutionary conservation [21] to extract

non-coding DNA sequences from the meis1 locus conserved from

human to fish. This approach has been shown to be useful in CRE

identification [22]. Second, we have tested the enhancer potential

of these human sequences in vivo using zebrafish transgenesis. This

analysis has allowed us to find CREs containing transcriptional

enhancer activity with different degrees of tissue-specificity.

Finally, we have tried to identify potential trans-regulators of the

identified meis1 enhancers, using bioinformatics and gene expres-

sion data information. In all, this paper presents a first attempt at

unraveling the transcriptional regulatory complexity of the

vertebrate Meis1 locus, identifying a number of tissue-specific

CREs and predicting new potential regulators of Meis1 CREs.

Materials and Methods

Animal care
Zebrafish (Danio rerio) were maintained in our breeding colony

according to standard procedures (http://zfin.org). Embryos used

for Tol2-mediated transgenesis were obtained from the wild-type

AB/Tuebingen (AB/TU) zebrafish strain. Potential transgenic

founders were out-crossed to a TUP strain. Fertilized eggs were

kept at 28uC in E3 medium with 0.003% 1-phenyl-2-thiourea to

prevent pigmentation and were staged according to Kimmel et al.

[23].
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Candidate region selection criteria
Human sequences (genome release: hg18) were extracted from

those with at least 75% identity to mouse (genome release: mm8)

and at least 100 bp long. We removed the human-mouse

conserved elements that overlapped with gene annotations, human

mRNAs or repeats. The remaining human-mouse conserved non-

coding elements were clustered if they were 3 Kb or closer from

each other. We then checked if the clustered region had human-

chicken (genome release: galGal2), human-frog (genome release:

xenTro2) and human-zebrafish (genome release: danRer5)

conservation (at least 70% identity to human and at least 50 bp

long). In order to call a region as highly conserved non-coding

region (HCNR), we demanded that the clustered human-mouse

region overlapped with the respective conserved elements from all

the other species (chicken, frog and zebrafish). We extended the

HCNR 150 bp on both sides and looked for primers between 18

and 27 bp in those flanking regions (Table 1).

ZED-HCNR Collection
Human HCNR fragments where PCR-amplified using HiFi

Taq polymerase (Roche, Manheim, Germany) using standard

procedures. PCR products were cloned into the pCR8/GW/

TOPO vector (Invitrogen, Pasadena, USA). HCNR-containing

clones were recombined into the Zebrafish Enhancer Detection

(ZED) shuttle transgenesis vector [24]. Briefly, ZED contains two

modules flanked by Medaka (Oryza latipes) TOL2 transposase

target sites, enabling efficient transgenesis, as previously described

[25]. The first module contains the minimal GATA promoter

driving the expression of the enhanced green fluorescent protein

(GFP). All HCNRs were cloned upstream of this module using the

Gateway system (Invitrogen, Pasadena, USA). Two strong

insulators, which reduce the potential influence of the regulatory

elements that may be present in the vicinity of the integration sites,

flank this reporter cassette. The second module contains the

cardiac actin promoter driving the expression of the red

fluorescent protein (RFP), which serves as a positive control for

transgenesis in F0 and F1 embryos [24].

Selection of enhancer-containing HCNRs candidates
One-cell stage embryos were injected with 3–5 nl of a solution

containing 25 ng/ml of each construct and 25 ng/ml of TOL2

mRNA. A minimum of 300 embryos were injected per

experiment. Embryos where then incubated at 28uC as previously

described. GFP expression was evaluated 24, 48 and 72 hours

post-fertilization. Whenever GFP was observed, the HCNR tested

was considered as a potential candidate and embryos were selected

and raised to sexual maturity to be analyzed in F1. Both somites

and heart expression of RFP were used as positive control for

transgenesis and served to discard any HCNR without enhancer

activity. For high-resolution pictures a F-View black/white digital

camera coupled to a WD70 Nikon camera was used. Adobe

Photoshop was used to adjust bright and contrast.

Enhancer mutational assays
Mutation of the potential Pax6 binding sites was performed

using site-directed PCR-based mutagenesis over the pCR8 TOPO

containing the HHc2:066650 HCNR using the following muta-

genic oligos (59-39): Mut1F: CATAAATCTGTCTAACCGCA-

CATTT CTACACTAACCTGC, Mut1R: GCAGGTTAGTG-

TAGAAATGTGCGGTTAGAC AGATTTATG and Mut2F:

CTTGCTTGTGTCTCTGATTATAAAAATCACTGCT GA-

GGCC, Mut2R: GGCCTCAGCAGTGATTTTTATAATCA-

GAGACACAAG CAAG. The resulting construct was recom-

bined into the ZED vector. Upon injection, mosaic embryos were

selected according to the presence of RFP expression in the

somites, which served as an injection control. This selection was

made double blind by a different operator. Embryos were then

dechorionated and photographed using identical exposures. The

eye GFP expression for each embryo was normalized with its

somite RFP expression.

Whole-mount in situ hybridization
Embryos were raised at 28uC until fixed in 4% paraformalde-

hyde in PBS. Whole-mount in situ hybridization was performed as

previously described [26] using a digoxigenin-labeled anti-gfp

probe. For staining, anti-digoxigenin, an alkaline-phosphatase

Table 1. Human highly conserved non-coding regions
assayed for enhancer activity.

Region (Hg18) Construct name G0 GFP activity

chr2:65915131–65916370 HHc2:065915 YES

chr2:65944793–65946456 HHc2:065944 YES

chr2:65946418–65947702 HHc2:066515 n.d.

chr2:66363945–66365004 HHc2:066523 n.d.

chr2:66515157–66516033 HHc2:066543 YES

chr2:66523076–66524718 HHc2:066588 YES

chr2:66541547–66543530 HHc2:066589 YES

chr2:66543660–66544441 HHc2:066603 YES

chr2:66549771–66550550 HHc2:066617 YES

chr2:66588227–66589754 HHc2:066628 YES

chr2:66589737–66591000 HHc2:066629 n.d.

chr2:66628254–66628945 HHc2:066650 YES

chr2:66635244–66637062 HHc2:066659 YES

chr2:67361651–67363128 HHc2:066769 n.d.

chr2:66649442–66651672 HHc2:066775 YES

chr2:66651589–66653505 HHc2:067135 YES

chr2:66654727–66656625 HHc2:067156 YES

chr2:66658870–66660479 HHc2:067347 YES

chr2:66768926–66770178 HHc2:067361 YES

chr2:66775251–66777554 HHc2:067641 YES

chr2:67075335–67076935 HHc2:066104 YES

chr2:67134578–67136311 HHc2:066522 YES

chr2:67155556–67157246 HHc2:066569 YES

chr2:67316077–67317518 HHc2:066644 YES

chr2:67347336–67349242 HHc2:066683 YES

chr2:67361651–67363128 HHc2:066719 n.d.

chr2:67398590–67400452 HHc2:066758 n.d.

chr2:67641486–67643007 HHc2:066780 YES

chr2:67934055–67936018 HHc2:067044 n.d.

chr2:66103519–66104070 HHc2:067086 n.d.

chr2:66264836–66265369 HHc2:067288 n.d.

chr2:66442170–66442486 HHc2:067353 n.d.

chr2:66443231–66443891 HHc2:067289 n.d.

chr2:66522162–66522381 HHc2:067353 n.d.

Annotation of the regions corresponding to the human Hg18, that were
amplified by PCR and assayed for enhancer activity using the ZED vector. (n.d:
not detected).
doi:10.1371/journal.pone.0033617.t001
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conjugated antibody followed by NBT/BCIP was used. meis1 ISH

was performed as previously described [27].

Chromatin immunoprecipitation
For immunopreciptation assays we used a c-myc-tagged Pax6

protein, produced by fusing a c-Myc epitope to the 59 end of Oryza

latipes Pax6 full length open reading frame (Genebank accession

number CAA04395.1) (L. Beccari and P. Bovolenta, unpublished

results). One-cell stage embryos were injected with 100 pg of a

Pax6::Myc capped mRNA and incubated for 24 hpf before fixation

with 1.85% formaldehyde. Nuclei were further isolated prior to

sonication using Bioruptor (Diagenoder, Belgium). Lysates were

incubated with monoclonal anti-Myc (9E10, Babco#MMS150R-

500) conjugated with Magnetic Protein-G Dynabeads (Invitrogen,

Norway). DNA was purified from both input lysates and

immunoprecipitated samples and analyzed using using real time

qPCR. Oligos used were zHHc2:066650F: TGCCTTTGCCAT-

TAGTAATCC and zHHc2:066650R: CAGCCAACACATAGC-

CACAC. Amplifications were normalized according to a random

region from the zebrafish genome ControlF: AACAGCTACCGG-

TAATAAACT and ControlR: AGGAAACACTGCCAAATAA

GC.

Chromatin conformation capture (3C) assays
3C assays were performed according to standard procedures using

whole zebrafish embryos at 24 hpf [28]. Zebrafish BAC CH211-

216I21 spanning 214 kb covering the region of interest, was used

for normalization. Oligos were designed using Primer3 software

pointing towards the selected HindIII genomic restriction sites.

Downstream 3C_control: GGCTTAGCATCTTGTCAATGC,

Upstream 3C_control: TCGAAGACAACTGTCAGCTTTG, the

zHHc2:066650: TAACATGGCCAGAAATG TGC, promoter

anchor: AATGCCACTATCACTGCAAATG.

Web resources
For representation and non-coding conservation analysis of the

meis1 locus, we used the VISTA browser, taking as a reference

the human hg18 genome release [29] (http://pipeline.lbl.gov/

cgi-bin/gateway2). Synteny blocks were extracted from http://

ecrbrowser.dcode.org/ [30]. For comparative potential transcrip-

tion factor binding sites, the Consite Web Resource was used,

using the positional weight matrixes loaded from JASPAR [31]

(http://asp.ii.uib.no:8090/cgi-bin/CONSITE/consite/). Anno-

tated expression patterns of different transcription factors were

obtained from ZFIN (http://zfin.org).

Results

meis1 HCNRs are enriched in tissue-specific enhancers
Analysis of the genomic region surrounding the human meis1

transcriptional unit identifies a genomic desert of <1.5 Mb on

chromosome 2 between SPRED2 and ETAA1 genes. This region

has preserved its syntenic organization since the last common

ancestor of teleost fishes and humans (Figure S1), suggesting that

the large non-coding region surrounding the meis1 transcriptional

unit have been maintained as a large regulatory domain. Although

this vast area represents just <0.7% of human chromosome 2, it

contains 18% of all HCNRs present on this chromosome. This

HCNR enrichment has been previously shown to be characteristic

of developmental genes, and has been suggested to be associated to

their complex spatiotemporal expression patterns [22,32–36].

Using our own selection criteria (see methods for a detailed

description) together with the visual inspection of previously

annotated HCNRs via the VISTA browser [37,38], we selected a

total of 34 HCNRs present in the human meis1 locus (Hg18,

chr2:065.893.545–067.353.996) that exhibited a high degree of

conservation among vertebrates. These regions were amplified

from human DNA and assayed for enhancer activity using

transgenesis in zebrafish. Upon an initial evaluation at 24 and

48 hours post fertilization (hpf) in injected (mosaic) embryos, we

detected GFP activity in 65% (22 out of 34; Table 1) of the assayed

HCNRs, a surprisingly high proportion of the sequences tested.

Mosaic embryos injected with these constructs were raised to

sexual maturity and their progeny screened for stable transgenic

lines.

Upon outcrossing, we found reporter cassette transmission in

offsprings for 19 HCNRs, clearly detected by the somites-specific

expression of the transgenesis reporter control (RFP). GFP

expression patterns of stable transgenic lines are summarized in

table 2. Thirteen HCNRs out of the nineteen (68%) exhibited clear

enhancer activity when compared to stable lines carrying just the

empty backbone (Figure 1) [39,40]. Among them, 9 HCNRs

exhibited tissue-specific enhancer activity, consistently shared by all

the lines (no. of founders $3) established for each of them, as

illustrated in Figure 2 (for a full annotation see Figure S2). As

previously described, meis1 is expressed in the segmental plate,

midbrain, hindbrain and the eye field at 12 hpf. At 24 hpf meis1 can

be also detected in the somites and the spinal chord while the

expression in the hindbrain turns more intense in the rhombomeres.

At this stage meis1 eye expression is restricted to the retina, the

expression in the somites decays while appearing in novel territories

such as the olfactory bulb and the optic tectum. Finally, at 48 hpf,

branchial arches and pronephric ducts also start expressing meis1

[16]. As illustrated in Figure 2, several HCNRs drive the expression

to different territories of the central nervous system. HHc2:065944

shows expression in the rhombomeres, while HHc2:066543 show

expression in the telencephalon (presumable olfactory bulb). Both

HHc2:066628 and HHc2:066644 drive the expression of the GFP

to the spinal chord. HHc2:066543 together with HHc2:067135

exhibit also weak expression in some particular hindbrain cells. The

overlap between meis1 endogenous pattern and those driven by the

different HCNRs was particularly evident for HHc2:066650 (retina,

tectum and neural crest derivatives) and HHc2:066644 (hindbrain,

neural tube and branchial arches). Therefore, the HCNRs with

enhancer activity are expressed in domains of the expression pattern

of meis1 (Figure 2, panel B), except in somites, as no somite-specific

enhancers were detected among the different HCNRs assayed. The

only exception to this general rule was observed for HHc2:066522,

which drives GFP expression to the midbrain/hindbrain boundary,

a territory where meis1 is not expressed. This ectopic expression

could be explained if some important regulatory sequences were not

included in the cloned fragment.

For other HCNRs, patterns of GFP expression were non-

overlapping among the founder lines established for each of them

(HHc2:066683, HHc2:066104 or HHc2:065915). This suggested

that these HCNRs were still able to recruit basic transcriptional

machinery out of their genomic context, but lacked a clear tissue-

specific activity. A full description of the patterns obtained can be

found in (Figure S2). The remaining 6 HCNRs showed somite

RFP expression but no GFP, and were therefore considered false

positives. For the remaining constructs no transgene transmission

was obtained.

Exploring potential regulators upstream of mies1 taking
advantage of tissue-specific HCNRs

Human HCNR sequences showing enhancer activity were

analyzed in silico for potential transcription factors binding sites

using JASPAR positional weigh matrixes (PWM) at the Consite

Meis1 Enhancers
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Figure 1. Distribution of the human conserved non-coding regions showing enhancer activity in transgenic Zebrafish. Vista browser
representation of the genomic region surrounding the human MEIS1 gene (chr2:065.893.545–067.353.996), using Hg18 human genome as reference.
Conservation is represented as pink peaks. Conserved non-coding elements (CNEs) with confirmed enhancer activity in stable transgenic zebrafish
lines are marked as vertical bars.
doi:10.1371/journal.pone.0033617.g001

Table 2. Enhancer activity displayed by the HCNRs in stable transgenesis at 24–48 hpf.

Construct
Founders
(n)

Enhancer
activity in F1 Forebrain Midbrain Hindbrain Eye

Branchial
arches

Neural
tube

Otic
vesicle Notes

HHc2:065915 6 + 2 1 1 2 - 1 2 Booster: Larynx, lens and hatching gland

HHc2:065944 5 +++ - - 5 - - 1 - When hindbrain also Rhombomere

HHc2:066541 5 2 - - - 1 - - 1

HHc2:066543 5 + 3 - 2 - - 1 2

HHc2:066588 6 +++ 3 - 2 1 2 - 1 Notochord, n = 1

HHc2:066628 5 ++ 3 1 4 3 - 2 - Fins: n = 1

HHc2:066650 4 +++ 3 2 3 2 - 1 -

HHc2:066659 7 +++ 2 - 3 - - 1 2

HHc2:066775 3 2 - - - - - - -

HHc2:067135 4 + 1 - 3 - - - -

HHc2:067347 3 +++ 1 - 3 - - - -

HHc2:067361 3 2 - - - - - - -

HHc2:067641 2 2 - - - - - - -

HHc2:066104 5 ++ 1 - 1 2 1 1 3 When eye also lens

HHc2:066522 5 +++ - 4 - - - - - Midbrain/hindbrain boundary

HHc2:066569 4 2 - - - - - . -

HHc2:066644 5 + - - 2 - 1 2 1

HHc2:066683 6 +++ 1 1 2 1 - 2 - Muscles at 24 hpf; n = 1

HHc2:066780 3 2 - - - - - - -

Table summarizing the GFP expression patterns and the enhancer activity found in the study. The ‘‘+’’ symbol in the enhancer activity column symbolizes the strength
of the expression patterns according to GFP expression levels regardless of the similarity among founders. The ‘‘2’’ symbol represents the absence of activity. Columns
4–11 refer to the number of founders showing GFP expression on each territory. A CNE was classified as ‘‘negative’’ if at least two founder lines did not show any GFP
expression. To annotate the expression pattern of any positive CNE, at least three stable transgenic lines were analysed. ‘‘Booster’’ refers to HCNRs that, when in
different stable lines, drive expression in very different patterns, as if boosting the position effects.
doi:10.1371/journal.pone.0033617.t002
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Web Resource (Table S1). This analysis provided a wide range

of potential direct meis1 upstream regulators. Although extreme-

ly sensitive, this approach is particularly prone to detect false

positives. To increase the reliability of these predictions, we

applied two additional filters. First, we selected those sites with

highest PWM scores (in the first quartile). Second, of those, we

identified the sites conserved between human and zebrafish,

with a conservation cut-off above 75%, according to the analysis

carried out using the CONSITE web resource. Then, we

analyzed the expression of each of the potential trans-regulators

using the in situ RNA expression data available at ZFIN (www.

zfin.org) and selected those whose expression overlapped with

the HCNR-driven GFP expression. Of these potential direct

regulators, runx1, pbx family members and pax6 had been

previously shown to interact with meis1 [2,4,5,6], although none

of these studies provided evidence for them acting as direct

Figure 2. Enhancer activities from the HCNRs recapitulate endogenous meis1 expression pattern. A) Dorsal and lateral views of a
representative founder illustrate the expression pattern of each HCNR. B) Picture of a meis1 in situ hybridization of a 30 hpf embryo illustrates the
different expression territories. A color-based schema of a zebrafish embryo highlights the different domains where GFP expression was found during
the study. C) Diagrams of patterns of expressions of highly penetrant enhancers (boxed in red) and of non-tissue specific enhancers (boxed in blue).
In each diagram, the number of founder lines showing expression in each particular body structure is represented by the red lines. For example, of
three lines of HHc2:066543, all three showed forebrain expression, and additionally, two of them drove expression in the hindbrain while the
remaining one in the neural tube. In situ hybridization picture is from ZFIN [16].
doi:10.1371/journal.pone.0033617.g002
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upstream regulators of meis1. Interestingly, we noted that

HCNR HHc2:066650 expressed GFP starting around 12 hpf

(Figure 3A), when it is detected in the forming eye vesicles,

midbrain and hindbrain, and, in later embryos, in the retina and

tectum. This expression pattern coincides with that of meis1 in

the anterior neural tube [15,16]. Interestingly, Pax6 genes are

expressed in the retina and optic tectum in a number of

vertebrates [41–43]. Moreover, when orthologous sequences

from both human and zebrafish were compared, one of the two

best-fitting Pax6 potential binding sites (Figure 3D) mapped to

the same relative position in the enhancer, within a microisland

of ultraconservation inside the HCNR (Figure 3E). To test the

requirement of Pax6 for HHc2:066650 enhancer activity in

zebrafish, we injected morpholinos against the two zebrafish

paralogues, pax6a and pax6b, alone or in combination, in

HHc2:066650-GFP one-cell embryos. As previously described,

pax6a and pax6b morphants showed microphthalmia (Figure S3)

[44]. When GFP expression was analyzed in the eye primordia

of MOpax6a or MOpax6b-injected HHc2:066650-GFP embry-

os, a strong decrease in the number of GFP-positive cells in the

retina (normalized for total retinal area) (Figure 4A, Figure S4)

was detected. We also noted a decreased expression in the

prospective optic tectum. These results indicated that Pax6 gene

activity is required for HHc2:066650-enhancer activity.

Figure 3. HCNR sequence analysis suggests novel meis1 upstream regulators. (A) meis1 transcription, detected by in situ hybridization
(upper panel) compared to GFP expression, driven by the HHc2:066650-GFP transgenic line (lower panel) at 12 (left), 24 (middle) and 30 hpf (right).
Side views are shown. HHc2:066650 drives GFP expression in the eye primordium, the early hindbrain, the retina, the optic tectum and the olfactory
bulb, which are meis1 expression domains. B) The analysis of the potential binding sites predicted by Jaspar highlights the presence of three potential
Pax6 sites. Two of these sites contain a high degree of similarity with the consensus. (C) Pax6_Binding_Site1 also mapped to a microisland of
ultraconservation when human and zebrafish orthologous regions were aligned.
doi:10.1371/journal.pone.0033617.g003

Meis1 Enhancers
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Figure 4. Pax6 regulates the enhancer activity of HHc2:066650. A) Representative pictures of transgenic zebrafish embryos at 24 and 48 hpf,
corresponding to HHc2:066650 F2 offspring injected with MOpaxA, MOpaxB, or a mixture of both. The red arrow points to the retina, where a strong
decrease in the GFP levels is observed after morpholino treatment. A control mopholino-injected individual is shown for comparison. B)
Representative mosaic embryos injected with HHc2:066650 construct with/without the two candidate Pax6 binding sites. Both the GFP and RFP
channels are included. The boxed region is magnified on the right. The dashed circle delineates the eye. (C) GFP expression was measured in the eye
(area marked by the dashed circle in (B)) of wild type and Dpax6_BS version of HHc2:066650 mosaic embryos (n = 9 and 11 embryos, respectively),
and normalized with their respective muscle RFP expression. Enhancer signal significantly decreased in the mutant version of HHc2:066650 (p = 0.018,
Mann Whitney test). The box plots contains a central rectangle, which spans from the first quartile to the third quartile. A segment inside the
rectangle shows the median and whiskers above and below the box show the locations of the minimum and maximum.
doi:10.1371/journal.pone.0033617.g004

Meis1 Enhancers
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Pax6 directly regulates retinal expression of a meis1 eye
enhancer

The results described so far suggested a direct regulation of

Pax6 on HHc2:066650. To test this point, we decided to mutate

the highest scoring Pax6 binding sites (Pax6_BS1 and 2) and to

compare the retinal GFP expression pattern driven by the control

and the mutated version of HHc2:066650. For this assay, we took

advantage of the high penetrance of the GFP expression driven by

HHc2:066650 in F0 (i.e. mosaic) embryos, where nearly 70% of

the injected embryos consistently showed a GFP expression

pattern comparable to that of the stable transgenic lines

(Figure 4B, upper panel). The two constructs (i.e. wild type and

DPax6_BS HHc2:066650) were injected and GFP signal was

quantified. Reporter expression was normalized against RFP

somite expression, which gave us a measure of the transformation

efficiency in each embryo. As illustrated in Figure 4, the signal in

DPax6_BS HHc2:066650 was reduced more than two-fold

compared to the levels driven by the wild type HCNR

(p = 0.018, Mann Whitney test). Even though these results do

not rule out the possibility that other Pax6 BSs are active in this

enhancer, they indicate that the two mutated BSs are required for

normal expression levels.

To test for actual Pax6 binding to HHc2:066650, we injected a

Myc-tagged version of Pax6 mRNA in one-celled zebrafish

embryos. Chromatin immunoprecipitation using an anti-Myc Ab

followed by quantitative amplification of the zebrafish

HHc2:066650 orthologous region showed a three-fold enrichment

of this CRE relative to input chromatin (Figure S5), supporting

direct binding of Pax6 to HHc2:066650. The pattern of expression

driven by HHc2:066650 is reminiscent of a subset of pattern

elements of the meis1 gene, strongly suggesting that it is indeed a

meis1 CRE. In order test whether zebrafish HHc2:066650

contacted the endogenous meis1 promoter, we designed a series

of 3C experiments. In these assays, the normalized 3C signal of

zebrafish HHc2:066650 was significantly higher than that of two

control regions mapping proximal and distal, respectively, to it

(Figure 5), which demonstrates an in vivo physical interaction

between this CRE and the meis1 promoter.

All results described in this section indicated that pax6 exerted a

direct regulation on a meis1 CRE. In order to test the relevance of

this pax6-meis1 interaction, we asked what effects the manipulation

pax6 levels would have on meis1 transcription. We evaluated the

effects on meis1 transcription by whole mount in situ hybridization

in pax6a, pax6b and pax6a+pax6b morphant embryos at 18 hpf, but

detected no obvious alterations in neither meis1 pattern nor levels.

Discussion

Here we present the first systematic scan for conserved cis-

regulatory regions governing the expression of the meis1 gene in

any vertebrate. Our functional analysis of the HCNRs found in

the meis1 locus reveals that a large proportion of these sequences

contain tissue-specific enhancers. These are active in many of the

tissues where meis1 itself is expressed at the stages analyzed,

including regions of the neural tube, retina, olfactory bulb and

branchial arches. Of note is that, even at these early stages, meis1

expression in the neural tube is composite, likely resulting from the

integration of many independent enhancers. It is also likely that

our screening method missed some HCNRs with enhancer activity

in small expression domains, since HCNRs were pre-screened for

GFP expression in F0. This is because of the mosaic nature of F0

expression, by which large expression domains are more likely to

be detected than small ones. This, together with the fact that

enhancers can also be found in non-coding DNA that is not

evolutionarily conserved [45,46] suggests that unraveling the

upstream regulatory cascades controlling meis1 expression will be

complicated due to the multiplicity of cis-regulatory elements.

However, the degree of concordance between the enhancer

expression territories found in our study and the endogenous meis1

expression suggests that our analysis has identified a significant

number of meis1 tissue-specific enhancers. In addition, synteny has

been found in the gene desert surrounding meis1 and these non-

coding regions show a high degree of conservation across

evolution. Altogether, this data allow us to propose that

orthologous sequences of these enhancers may also be meis1

enhancers with similar activity in other vertebrates. Thereby, these

HCNRs might comprise an evolutionarily conserved set of meis1

cis-regulatory regions.

From the regulatory point of view, we must highlight the

interesting behavior found among the different enhancer activities

Figure 5. Chromatin conformation assays measuring in vivo the relative interaction frequency between zHHc2:066650 and meis1
promoter. Relative interaction of the zebrafish HHc2:066650 orthologous region and the meis1 promoter, 70.8 Kb upstream of zHHc2:066650.
Interaction frequency was measured relative to two control regions: the first control maps 62 Kb upstream zHHc2:066650, while the second one lies
47.8 Kb downstream the enhancer. Interaction between meis1 promoter and zHHc2:066650 shows a 3-fold increase when compared to the controls.
Error bars represent the standard deviation of three independent measurements.
doi:10.1371/journal.pone.0033617.g005
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here reported. We observe HCNRs with different degrees of

enhancer penetrance, defined as the degree of similarity between

the different founders of the same HCNR. Some sequences drive

highly reproducible expression patterns (i.e. HHc2:065944,

HHc2:067347 or HHc2:066522) while others exhibit some degree

of variation in the GFP-expressing territories among founders.

This phenomenon could be due to position effects –i.e. the

regulatory influence exerted by regulatory regions in the vicinity of

the transgene’s insertion point. However, we cannot exclude that

this variability in expression patterns is attributable to some special

properties of these sequences.

The identification of functional CREs is a first step in the

investigation of the gene regulatory networks controlling gene

expression. Here, we have used information based on binding site

composition and gene transcription to identify a number of

potential meis1 trans-regulators. We have followed different

approaches in order to filter out false positives predicted by

bioinformatics. Thus, we considered only those transcription

factors with the top-scoring PWMs and whose expression

overlapped the enhancers’ activity at the stages analyzed.

Interestingly, some candidates with previously described interac-

tion with meis1 were found, such as PBXs or Pax6 genes. To date,

Pax6 has been shown to be directly regulated by Meis genes

during the development of the eye lens and pancreatic islet cells in

the mouse [2,19]. However, a reciprocal regulation of Pax6 on

meis1 has not been described in vertebrates. Under this scenario,

we investigated the regulatory relationship between Pax6 genes

and the meis1 retinal and optic tectum enhancer HHc2:066650 in

zebrafish. Both morpholino analyses, site-directed mutagenesis of

HHc2:066650 and in vivo binding assays led us to conclude that

Pax6 directly regulates HHc2:066650. In addition we show that

zebrafish orthologous HHc2:066650 sequence physically interacts

with the meis1 promoter in its natural genomic context, which

confirms that this HCNR is indeed a meis1 regulatory sequence.

The fact that we do not detect alterations in meis1 expression

pattern or levels by in situ hybridization in pax6 morphants suggests

that its transcriptional regulation is strongly buffered, perhaps by

other CREs with similar enhancer activity, and that the individual

contribution of HHc2:066650 is minor. Due to the large impact of

Pax6 during normal retinal and brain development, it is of great

relevance to identify its downstream targets. Our results suggest

that meis1 should also be considered a direct Pax6 target gene in

vertebrates.

Supporting Information

Figure S1 Human MEIS1 gene lies in a syntenic region
among vertebrates. A) Graphical representation of the MEIS1

regulatory block found according to ECR genome browser which

uses MIME algorithm. B) Detailed correspondence between the

Hg18 region of interest and their orthologous genomic regions

from mouse (mm9), chicken (galga3), frog (xentro), and zebrafish

(danrer05).

(TIF)

Figure S2 GFP-expressing domains displayed by the
different founders. Summary of the expression patterns from

the different founders from all positive cis-regulatory regions found

in the study. Whenever a particular founder exhibit GFP

expression in a defined territory, we refer it as a ‘‘1’’ and the

cell is highlighted in green. When no GFP expression is found, the

corresponding cell remains grey. Forebrain refers to the

presumptive olfactory bulb. M/H_bound. stands for Midbrain-

Hindbrain boundary, and D.R. ganglia stands for Dorsal Root

ganglia.

(TIF)

Figure S3 Morpholinos against Pax6a and Pax6b affect
eye development. Representative pictures of 48 hpf wild type

zebrafish embryos after different MO injection. The microphthal-

mia observed among morphants (red arrow) confirmed the

functionality of the morpholinos. No effects on control morpholino

injected animals were detected.

(TIF)

Figure S4 Effect of Pax6 MOs on the GFP retinal
expression levels of HHc2:066650 stable transgenic line.
Whisker plots showing retinal GFP fluorescence was measured in

both morphants and controls (n = 13 for controls, n = 8 for

MOpaxA; n = 11 for MOpaxB and n = 13 for MOpaxA+B). * : p-

value#0.05 after Mann Whitney test.

(TIF)

Figure S5 Chromatin immunoprecipitation of a myc-
tagged version of Pax6 shows an enrichment in
zHHc2:066650 relative abundance. Levels of zebrafish

HHc2:066650, amplified by PCR, in the chromatin immuopre-

cipitated with an anti-Myc antibody (ChIP) or in the input

chromatin (Input), from 24 hpf embryos injected with 100 pg of a

pax6-myc capped mRNA. The figure represents the average and

the error bars the standard deviation of three independent

analyses.

(TIFF)

Table S1 Transcription factors hits predicted to bind
each human MEIS1 enhancer according to JASPAR
dataset scoring within the first quartile.

(DOC)
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