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Abstract

Imaging with hard X-rays allows visualizing cochlear structures while maintaining intrinsic qualities of the tissue, including
structure and size. With coherent X-rays, soft tissues, including membranes, can be imaged as well as cells making use of the
so-called in-line phase contrast. In the present experiments, partially coherent synchrotron radiation has been used for
micro-tomography. Three-dimensional reconstructions of the mouse cochlea have been created using the EM3D software
and the volume has been segmented in the Amira Software Suite. The structures that have been reconstructed include scala
tympani, scala media, scala vestibuli, Reissner’s membrane, basilar membrane, tectorial membrane, organ of Corti, spiral
limbus, spiral ganglion and cochlear nerve. Cross-sectional areas of the scalae were measured. The results provide a realistic
and quantitative reconstruction of the cochlea.
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Introduction

Today, mice provide the most common model to study

hereditary abnormalities of the human cochlea because the

homologies between mice and human genomes are well

established and the hereditary abnormalities are similar [1,2].

Genetically induced abnormalities might manifest themselves in

changes of cochlear dimensions and thus disturb normal cochlear

mechanics and cochlear function. Therefore, it is of special interest

to study mice with known gene defects and compromised cochlear

function regarding anatomical and histological changes. Current

techniques for using series of images to obtain a three-dimensional

structure of the cochlear anatomy include classical histology

(sectioning and staining), magnetic resonance imaging (MRI),

high-resolution computed tomography (CT) using conventional X-

ray sources and synchrotron radiation [3], orthogonal-plane

optical fluorescence [4–8], and optical coherence tomography

(OCT) using lasers [9–15]. A three-dimensional model of the

mouse cochlea has been created using magnetic resonance

microscopy [8].

Sectioning of a cochlea involves several steps, such as fixation,

dehydration, embedding, and slicing of the sample. These steps

may significantly change the dimension of the soft tissues [16–18],

including Reissner’s membrane.

Knowing the true location of Reissner’s membrane also has

clinical utility. For example, the bulging of Reissner’s membrane,

which has been shown in Ménière’s disease [19], may disappear

through shrinkage. Moreover, reconstruction of altered tissue may

provide different volumes of scala vestibuli, scala tympani, and

scala media [17].

MRI is a powerful method for investigating the cochlea but is

intrinsically slower at higher resolutions and even then cannot

resolve all structures of interest. Often, MRI is supplemented by

high-resolution CT [6]. Today, high-resolution CT with labora-

tory sources typically achieves a resolution of approximately

10 mm and provides a more efficient way to view the cochlea.

However, for cellular or sub-cellular structures, including

Reissner’s membrane, the resolution of this technique, as

implemented, is not sufficient.

Recently, it has been suggested that imaging with coherent hard

X-rays from a synchrotron constitutes an ideal method for rapid

characterization of cochlear morphology [20–22]. The method

uses what is described as in-line phase contrast. The advantage of

using hard X-rays and phase contrast to image the structures is the

non-invasiveness, the spatial resolution, and the short time to

acquire the images [22–25]. Generally, the method does not

require dehydration, sectioning, or staining of the tissue, as is

described in more detail in the following paragraphs.

Materials and Methods

The radiation source
For the present study, the X-ray images were captured at the

32-ID beamline of the Advanced Photon Source (APS) at Argonne

National Laboratory. The APS is a third generation synchrotron

radiation source that generates highly coherent X-ray radiation.

The X-ray beam is generated with an undulator, inserted in a

straight section of the storage ring. The full width half maximum

(FWHM) electron source size during the reduced-horizontal-beta

operational mode is 275 mm by 40 mm (horizontal6vertical) with
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an angular divergence of 60 mrad by 9 mrad (horizontal 6
vertical), FWHM. The monochromatic flux is about 1013

Photons/second @ 8–25 keV with a Si(111) double-crystal

monochromator. The experimental setup was ,70 m from the

source and the beam size was approximately 162 mm. Measure-

ments here were made using 25 keV X-rays with a sample-

detector distance of about 0.8 m for phase-contrast. The typical

detector system to capture the projections is described elsewhere

[20] and provides a resolution of about 3 mm in the present study.

Dissection and mounting of cochlear tissue
Animal care and use was carried out in accordance with the

NIH Guide for the Care and Use of Laboratory Animals and was

approved by the Northwestern University Animal Care and Use

Committee.

For imaging, temporal bone preparations were made as follows.

After an intraperitoneal injection of a lethal dose of sodium

pentobarbital, mice (C57BL6), 12 weeks of age, were sacrificed.

Following decapitation, the head was divided in the medial plane

and the bullae were removed. The cochleae were excised, fixed

with 4% paraformaldehyde in 0.1 M phosphate buffered solution

(PBS), and then placed for one day into 10% ethylene glycol

tetraacetic acid (EGTA) in PBS (0.1 M) for partial decalcification.

In the present experiments the specimens were partially decalcified

to reduce the X-ray absorption by the cochlear wall, and to ease

the detection of the cochlear soft tissue structures. Fixation was

used to stabilize the specimen during the decalcification (see also

Discussion).

Image acquisition and processing
A series of phase contrast X-ray projections was taken over a

range of 180 degrees at increments of 1 degree. The exposure

time for a single image was 0.6 s. At the end of each image series a

flat field image (no object in the beam path) and a dark field image

(the radiation beam was blocked) were captured. The raw images

were corrected with the dark- and the flat-field and were scaled

according to:

Icorrected~
Iraw{Idark

Iflat{Idark

� 65536,

in which Icorrected denotes the processed image, Iraw the original

image, Iflat the flat field, Idark the dark field, and 65536 the

maximum value to rescale the 16 bit-image.

For the reconstruction of the mouse cochlea with EM3D, the

data (images of 1280 pixels horizontal 61024 pixels vertical) were

binned 262. The rotation axis was off the image center and was

taken into account for the data manipulation. For each picture row

the series of projections under different angles were used to

reconstruct a slice of the cochlea. The software uses the filtered

backprojection algorithm. This set of slices was used to render a

three dimensional volume of the cochlea. The different cochlear

structures were be segmented using the Amira Software, which

utilizes a semi-automated segmentation algorithm. In the first step,

the segmentation was achieved automatically based solely on the

gray values of the image data set. This step separated the object

from the background. This is done by segmenting the volume into

exterior and interior regions on the basis of the voxel values. Each

voxel having a value lower than the threshold is assigned to Exterior

and each voxel whose value is greater than or equal to the

threshold is assigned to Interior. This may, however, cause artifacts

that are not part of the object, but which have voxel values above

the threshold to be assigned to the interior. This can be suppressed

by setting the remove couch option, which assures that only the

largest coherent area will be labeled as the interior and all other

voxels are assigned to the exterior. Furthermore, by inspecting the

image, the segmentation was corrected manually. Not every slice

was segmented. The software provided the option to project along

the stack automatically. The segmentation results by the program

were checked slice by slice and were corrected if necessary.

To determine the length of the basilar membrane, the heads of

the pillar cells were identified and marked in the reconstructed

slices. A line was drawn along the selected points and the program

estimated its length in pixels. The pixel value was converted to mm

with a conversion factor of 1.22 mm per pixels, which was

determined with a calibration grid. Cross-sectional areas were

determined by the software in a plane perpendicular to the line

drawn at the pillar heads.

Results

Reconstructions
The stack of reconstructed slices was cut in an xy- and yz-plane,

which are perpendicular to each other. Figure 1 shows a cut along

the xz-plane. From base to apex, three cut edges can be identified.

The image shows the cochlear wall, modiolus, basilar membrane,

tectorial membrane, Reissner’s membrane and stria vascularis.

The edges of the structures, including soft tissues, are enhanced.

Some horizontal lines and the granular structure in the

background are image artifacts, which make the segmentation

more difficult. Pillar heads were connected in Amira. The resulting

line along the cochlea gave the length measurement of the cochlea

(see also below). Cross sections of the reconstruction were made

perpendicular to this line. Note for the following paragraph that

interfaces between membranes, scalae, and bones can be clearly

identified despite the noisy background.

Segmenting and rendering
The xy-plane or the xz-plane is preferred for sectioning the

data, since the edges of the structures can be clearly identified.

This is not the case on the reconstructed slices (yz-plane), where

the intersection angles between the membranes and the slices are

rather shallow. In this case, the interfaces are more difficult to

identify.

Figures 1A demonstrates that a small section at the cochlear

base could not be imaged because the cochlea extended beyond

the field of view. Area measurements at this location were not

considered.

Figure 2 shows a corresponding orthogonal plane intercepting

at a selected (x,y,z) point. The colored lines in Figure 2 represent

the segmentation of the cochlear structures. The segmentation of

the structures was used for the 3D-rendering. A rendered 3D-

model of the mouse cochlea is presented in Figure 3. Scala

vestibuli, scala media and scala tympani are shown in semi-

transparent forms, while Reissner’s membrane, tectorial mem-

brane, basilar membrane, organ of Corti, spiral lamina, cochlear

nerve and the spiral ganglion are presented in opaque colors.

Length and Cross sectional area measurements
Quantitative data were obtained from the rendered structures.

The length of the cochlea according to a line drawn along the

pillar heads was 6.67 mm, which is in agreement with published

data [e.g. 26].

The cross-sectional areas of the scala tympani was the largest

close to the cochlear base, 0.16 mm2, and decreased in the second

turn and the apex to 0.031 mm2 at its lowest (Fig. 4A). The area of

scala media stayed approximately constant at an average of

X-ray Tomography of the Cochlea
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0.035 mm2 along the cochlea (Fig. 4B). For scala vestibuli, the area

decreased from 0.11 mm2 at the base to 0.011 mm2 at its lowest at

the apex (Fig. 4C).

Discussion

Phase contrast imaging with coherent hard X-rays allowed

reconstructing soft tissues of a mouse cochlea without removing

the cochlear walls or labeling the tissue. The cross-sectional areas

of scala tympani, scala media, and scala vestibuli were determined

from the reconstructed cochlea and the resulting values for the

cross sections are similar to published data obtained with classical

histology or MRI. Hence, the experiments demonstrated that

quantitative tomography can be achieved with this method.

Several benefits exist for using coherent hard X-rays and in-line

phase contrast for imaging: no physical manipulation of the

cochlear tissue is necessary, the preparation of the tissue is simple,

no dehydration is needed, the radiation dose can be small because

little absorption of the radiation is required for forming the image,

and the submicron resolutions can be achieved. Long periods of

scanning time are not necessary for high-resolution images.

Scanning time for the present experiments was approximately

20 minutes.

For the current experiment the samples have been decalcified

and fixed. Both steps provide ease for the first synchrotron

experiment but are not intrinsically necessary. The latter

modifications preserve the object’s dimensions. This is a strong

advantage to other sample modifications, necessary for other

methods. For example classical histology needs sample dehydra-

tion and inflicts shrinkage on the soft tissue in the order of

25%[e.g. 16,18].

The dimension obtained from the specimen correlate well with

published data on mouse morphology. In this study, the cochlear

length was determined with a line drawn along the pillar heads

and was 6.67 mm. This value is consistent with previous data, 5.81

to 6.8 mm [26–31]. The cross-sectional areas presented here are

consistent with the data obtained by Magnetic resonance

microscopy, also called high resolution MRI, for scala vestibuli,

scala media and scala tympani [8].

Other groups have published reconstructions from the human

cochlea using hard X-rays at a synchrotron [3,22,32]. Vogel

(1999) achieved a resolution of 10 mm but he was not able to

image cochlear soft tissue structures. Furthermore, the very thin

and hollow lamina spiralis ossea could only be imaged weakly.

Glueckert et al. (2011) and Lareida et al,. (2009) were able to

image soft tissue structures. Their approach was similar to the one

described in this study and the tissue was fixed before imaging.

Moreover, osmium tetroxide, a heavy metal was introduced to

enhance the contrast for myelinated structures.

Figure 1. 2D slice from cochlear reconstruction. 1A: 2D slice of
the reconstruction. The image shows three turns of the mouse cochlea,
including scala vestibuli, scala media, scala tympani, Reissner’s
membrane, tectorial membrane, organ of Corti, basilar membrane
and stria vascularis. 1B: Magnified view of a cochlear turn. Clearly
demonstrated and labeled are the scala vestibuli (SV), scala media (SM),
scala tympani (ST), Reissner’s membrane (RM), tectorial membrane (TM),
basilar membrane (BM), outer hairs cells (OHC), inner hair cells (IHC),
outer pillar cells (OPC), and inner pillar cells (IPC).
doi:10.1371/journal.pone.0033568.g001

Figure 2. Segmentation of the cochlea. An example of the
segmentation seen in the xz-plane. The colored segments (cochlear
compartments) were filled in the gray slices using semi-automated
algorithm in the Amira software. The purple denotes scala tympani and
the green denotes scala media. The yellow denotes scala vestibuli. The
periwinkle is spiral ganglion and the dark blue is cochlear nerve. The red
is basilar membrane, the light blue is Reissner’s membrane, the orange
is tectorial membrane, and the goldenrod is organ of Corti. The pink is
spiral limbus and brown stria vascularis.
doi:10.1371/journal.pone.0033568.g002

X-ray Tomography of the Cochlea
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Other methods have been implemented that are able to image

intact specimen. MRI has been used to determine fluid space

volumes, lengths, and cross-sectional areas of the different

compartments in the intact mouse cochlea [8]. With this

method, Reissner’s membrane could not be visualized without

the use of a Heidenhain-Susa stain. It has been shown that

staining causes substantial shrinkage of the membrane and alters

its location within the cochlear spaces [17]. With the present

technique, the thin Reissner’s membrane can be visualized

without the use of stains. Moreover, the use of MRI at high

resolutions requires extended times for data collection, in the

range of 12–13 hours.

Thin-sheet optical-imaging is another method to image thick

samples without physically slicing them and has already been

described in 1903 [33]. The plane of light, which is created with a

cylindrical lens, is used to illuminate a thin plane within the tissue.

The optical section is then observed orthogonal to the plane of

light. This method has been refined by others [34–36] and has

been used to image intact cochleae [5,37–39]. The most recent

development uses lasers a light source and allows for non-

destructive optical sectioning of the cochlea, thin-sheet laser

imaging microscopy (TSLIM) [5,39–41]. With this method, soft

tissue structures can be imaged at a cellular resolution. However,

TSLIM requires that the tissue is fixed, optically cleared and

incubated with a fluorescent probe [39–41].

Figure 4. Measurements obtained from the reconstruction.
Cross-sectional area as a function of distance from the base of the
mouse cochlea are shown by the solid line for A: scala vestibuli, B: scala
media, and C: scala tympani. Cross sectional areas decreased from base
to apex for scala vestibuli and for scala tympani. The cross sectional area
of scala tympani revealed a distinct maximum at about 0.16 mm from
the base. Values for scala media cross sectional area vary little. The
changes in cross sectional area of scala media are small. For all scalae
the cross sectional area measurements, which were obtained in the
present study, are in agreement with previously published data [8] and
are shown by the broken lines.
doi:10.1371/journal.pone.0033568.g004

Figure 3. Three dimensional reconstruction of the cochlea. A:
Three-dimensional rendered image of the mouse cochlea. The image
contains the scala vestibuli (SV), scala media (SM) and scala tympani
(ST), Reissner’s membrane (RM), tectorial membrane (TM), organ of Corti
(OC), spiral limbus (SL), spiral ganglion (SG) and cochlear nerve (N). B: All
structures but the Reissner’s membrane were made transparent.
doi:10.1371/journal.pone.0033568.g003

X-ray Tomography of the Cochlea
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Optical coherence tomography is an interferometric technique

that uses typically near infrared light to image soft tissue structures.

This technique has been employed to image cochlear structures

and to quantify movement patterns of those structures. When

interferometry is used to measure the vibration along the optical

axis it has a resolution in the nanometer scale. However, the

imaging resolution has been reported to be approximately 10 mm

[13,14]. Furthermore, the use of OCT to image cochlear

structures requires the opening of the bony cochlear wall.

Conclusion
A three dimensional model of the mouse cochlea has

successfully been created. The values for the structures, which

were obtained from the study, are within variation of existing data.

The results demonstrate that quantitative tomography is possible

in small samples such as the mouse cochlea. Future studies are

designed to improve image acquisition and the reconstruction. For

the present experiment the specimen was decalcified to identify the

contributions of the collagenous part of the cochlear wall on the

image formation. For further simplification of the sample

preparation, decalcification and fixation of the cochlea are omitted

in future experiments.
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