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Abstract

We utilize a standard competition-colonization metapopulation model in order to study the evolutionary assembly of
species. Based on earlier work showing how models assuming strict competitive hierarchies will likely lead to runaway
evolution and self-extinction for all species, we adopt a continuous competition function that allows for levels of uncertainty
in the outcome of competition. We then, by extending the standard patch-dynamic metapopulation model in order to
include evolutionary dynamics, allow for the coevolution of species into stable communities composed of species with
distinct limiting similarities. Runaway evolution towards stochastic extinction then becomes a limiting case controlled by
the level of competitive uncertainty. We demonstrate how intermediate competitive uncertainty maximizes the equilibrium
species richness as well as maximizes the adaptive radiation and self-assembly of species under adaptive dynamics with
mutations of non-negligible size. By reconciling competition-colonization tradeoff theory with co-evolutionary dynamics,
our results reveal the importance of intermediate levels of competitive uncertainty for the evolutionary assembly of species.
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Introduction

Underlying various evolutionary models of community assembly

have been different ecological mechanisms of species coexistence.

Most often evolutionary models of community assembly assume

coexistence results from the operation of resource partitioning

mechanisms [1] that minimize niche overlap between competitors.

As such, the evolutionary assembly of communities arises when

character displacement in the traits associated with resource use

allows the stabilization of competitive interactions between species

within an assemblage [2–8].

An alternative ecological mechanism for species coexistence

involves life-history trade-offs between competitive ability and

fecundity (or mortality) [9–12]. This coexistence mechanism,

however, has proved a more problematic basis for modelling the

evolution of adaptive communities. Classic metapopulation models

based on a strict competition-colonization tradeoffs, and spatial

subdivision of habitat resources, have – despite their widespread use

in explaining biodiversity maintenance – been problematic for studying

the evolutionary emergence or assembly of communities due to

their inability to predict stable multispecies communities, or the

evolutionary build-up of biodiversity [13]. Here we study compet-

itive uncertainty through the use of a competition function

introduced by Calcagno et al [14] to study multispecies coexistence.

Using this framework, we show how current metapopulation models

can be used as a framework for the study of evolutionary assembly of

species.

Multi-species metapopulation – or metacommunity – models

[10,12] describe competitive interactions as being equally strong

between species regardless of the difference in trait value. Since

some trait value is traded off with competitive ability, species with

a more advantageous trait value (e.g. higher fecundity or lower

mortality) will be competitively excluded by species with a less

advantageous trait value in local interactions. Coexistence

becomes possible by the spatial subdivision of the habitat, which

allows persistence of the poorer competitors at the regional spatial

scale despite exclusion within local sites, because of the

compensating effects of such traits as higher fecundity or lower

mortality [9,11,12]. Examples include predator-induced mortality

among marine mollusks [15], competition for habitat among

African acacia-ants [16] or insects spatially partitioning food

resource patches [17,18].

Competitive life-history trade-offs have been incorporated into

several evolutionary studies that involve mechanistic models of

resource competition and niche overlap [19,20]. However, efforts to

utilize standard metapopulation models as an evolutionary

framework for studying species assembly in regional communities,

or metacommunities, have faced a number of challenges related to

predictions of unrealistic adaptive or co-evolutionary dynamics.

More precisely, metapopulation models with strict competitive

hierarchies have been shown capable of allowing an infinite number

of species to pack into the system at the low abundance (high

competitive) threshold of the trait gradient [13]. This prediction of

infinite diversity in invasion-structured communities, combined

with biologically unrealistic low abundances, poses a challenge to

the use of such models when studying equilibrium community

assemblages. One way to addressing this challenge is to relax the

classic assumption of strict competitive hierarchies [10,12].
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In natural populations interactions between competitors are

better described as being probabilistic in nature due to the random

individual differences within species that often weaken the

competitive advantage one species has over an inferior competitor

[21–24]. Such competitive uncertainty between species has been

associated with co-evolution and stable co-existence between two

competitors [25], as well as speciation through deterministic

branching in Lotka-Volterra and mechanistic competition models

[19,26]. Calcagno et al. [14] also studied how the introduction of

competitive uncertainty could enable the coexistence of multiple

species in competition-colonization trade-off models. Here we

adopt the metapopulation model of Calcagno et al. in order to

study the evolutionary assembly of whole metacommunities.

We first demonstrate the inability of the standard metapopu-

lation model of Tilman [12] to allow for the evolution of a stable

assemblage due to the evolutionary extinction of all species, as was

suggested by the earlier results of Kinzig et al. [13]., We then

analyze trait evolution in the metapopulation model of Calcagno

et al. [14], where the strict nature of competitive exclusion has

been relaxed, making the outcome of competitive interactions

between two individuals of different species probabilistic. Studying

the adaptive dynamics of this metapopulation model we report the

evolution of stable multispecies assemblages, and also demonstrate

how intermediate degrees of competitive uncertainty maximize the

equilibrium species biodiversity, as well as the possibility that

biodiversity could emerge through species diversification and

adaptive radiation in the presence of transient phenotypes arising

from mutations of non-negligible sizes.

Results

Metacommunity dynamics
The dynamics of the regional community – or metacommunity

– are given by the metapopulation equations for multiple

competing species [9,10,12,27]. The metapopulation formalism

we adopt here is interpreted as applying at the scale of individuals

that are colonizing and occupying microsites in a spatially implicit

habitat landscape [10,12]. In this model the community is

structured by a competitive-colonization trade-off, where a

transitive hierarchy for competitive ability exists amongst species

such that species 1.species 2.… species i ….species n. The

model further assumes that lower ranking species are always

capable of displacing or overgrowing species of a higher rank

index, while species of higher rank can never displace species of

lower rank. As part of the trade-off a transitive hierarchy for

colonizing ability also exists but in the opposite direction such that

species 1,species 2,… species i …,species n. Each species i has

an abundance pi, representing the fraction of the total landscape

that is occupied by the species. The rate of change in the

proportion of sites occupied by the ith species can thus be

represented by the following equation [12]:

dpi

dt
~bipi(x{

Xi

j~1

pj){dpi{pi(
Xi{1

j~1

pjbj), ð1Þ

where bi represents the colonizing rate of the ith species and x
represents the proportion of the total landscape available for

colonization. Mortality for all species is represented by d. In the

first term x{
Xi

j~1

pj

 !
represents the proportion of sites available

for colonization by the ith species. The third term gives the loss due

to competitive displacement by the spread of superior competitor

species ( j,i) into sites occupied by i.

The minimum colonization rate b0~d=x required for persis-

tence on the landscape is found by solving for b1 when p̂p1 is set to

zero. For any species i to persist in the landscape its colonization

rate must be larger than this minimum threshold (i.e. bi.b0).

Evolutionary dynamics. An expression for the limiting

similarity expected between species in competitive trade-off

models has been derived by Tilman [12] and May & Nowak

[11], which defined the minimum difference that was required

in colonization rate, b, between two species for the successful

invasion of the inferior competitor. We can test the robustness of

the predicted limiting similarity to evolutionary dynamics by

implementing stochastic simulations of Equation (1) as detailed in

the Methods, while allowing for mutation and selection processes

to be applied to introduced asexually reproducing individuals

along the b phenotypic space. Results confirm the evolutionary

extinction of all species introduced as they approach the minimum

trait threshold b0 [13] (Fig. 1A), due to the continuous decrease of

their densities and subsequent stochastic extinction [28], as was

suggested by the results of earlier studies by Kinzig et al. [13]. In

other words, it appears impossible for a stable community

assemblage to evolve given the assumptions underlying Equation

(1).

Defining metapopulation fitness under conditions of
competitive uncertainty

We now analyze the adaptive dynamics of a multispecies

metacommunity as defined by Calcagno et al.’s [14] extension of

Tilman’s [12] model:

dpi

dt
~bipi x{

Xn

j~1

(1{Cj,i)pj

 !
{dpi{pi

Xn

j~1

Ci,jbjpj : ð2Þ

Following Law et al. [25] and Calcagno et al. [14] we now assume

that the outcome of competitive interactions between species is

probabilistic, and not strictly deterministic in nature, as defined by

the competition function Ci,j~
1

1ze{k(bi{bj )
, where Ci,j is the

probability that species j displaces species i. Parameter k in the

equation indicates the steepness of the competition function, and

1/k can be interpreted as the degree of uncertainty in the outcome

of competition between species i and j. High k values indicate a

strongly deterministic outcome to competitive interactions, while

low k values describe competitive interactions that are highly

probabilistic. Such asymmetric competition between competitors

has been associated with co-evolution and stable co-existence

between two competitors [25] as well as speciation through

deterministic branching in Lotka-Volterra and mechanistic

competition models [19,26].

Using Equation (2) we can define the per capita rate of growth

fi = (1/pi) ? (dpi/dt) as the fitness of species i [29]. By setting species i

to its carrying capacity (fi = 0), and noting that 12Cj,i = Ci,j, we get

fi~0~bix{d{
Xn

j~1

(bizbj)Ci,j p̂pj : ð3Þ

For a system of n species we can rewrite the n fitness equations as a

linear system in matrix form:

Ap̂p~b, ð4Þ

Evolutionary Assembly of Species
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where

A~

2b1C1,1 (b1zb2)C1,2 � � � (b1zbn)C1,n

(b2zb1)C2,1 2b2C2,2 � � � (b2zbn)C2,n

..

.
P

..

.

(bnzb1)Cn,1 � � � � � � 2bnCn,n

0
BBBB@

1
CCCCA,

p̂p~

p̂p1

p̂p2

..

.

p̂pn

0
BBBB@

1
CCCCA and b~

b1x{d

b2x{d

..

.

bnx{d

0
BBBB@

1
CCCCA

If the matrix A is nonsingular (detA?0), then there is a vector of

abundances p̂p that is a unique solution to the above system of

equations. Biologically relevant solutions of p̂p require that the values

for all bi be such that p̂pj$0, for all j. In contrast to the original

competition-colonization model [12], incorporating the competi-

tion function Ci,j lead to continuously differentiable fitness functions.

We now use the competition function, Ci,j, defined above to study

adaptive dynamics of single and multi-species systems.

Adaptive dynamics of a single species
We start our study of the adaptive dynamics [30–32,29] of a

single asexually reproducing species by first considering the fitness,

fm, of a mutant m emerging from a single resident species (species 1)

at carrying capacity:

fm~bmx{d{2bmCm,m
:pm{(bmzb1)Cm,1

:p̂p1:

Although we defined fitness here using the per capita growth rate

[29], an alternative approach to defining fitness using the total

Figure 1. Time-series of stochastic simulations depicting evolution of species. In all simulations species were introduced at the high
colonization (low competitive) end of trait space and allowed to subsequently evolve For all simulations shown d = 0.6, x = 0.654, and the average
mutation in trait value b, for every bout of reproduction, is m = 0.001* (1/N) unless otherwise stated (see Methods for details). (A) Simulation when
community is defined by classic competition-colonization trade-off of Equation (1) with the minimum threshold, b0, indicated by the vertical dashed
line. (B) Evolutionary dynamics in a one-species system for the generalized metapopulation model of Equation (2) with k = 60. Species now avoid
evolution to stochastic extinction by evolving to a singular strategy, b1

*, some distance above the minimum threshold b0. (C) Illustration of disruptive
selection with high average mutation distance (m = 0.0095*(1/N)) in trait value and intermediate k values (k = 60). (D) Community assembly for a large
number of species for k = 60 and with distinct phenotypic distances between strategies corresponding to predictions from Equation (9).
doi:10.1371/journal.pone.0033566.g001
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lifetime colonizer output of a single mutant invasive (the

metapopulation fitness criteria of Metz and Gyllenberg [33,34])

can be easily shown to lead to the same adaptive dynamic

behaviour.

Since we are interested in the ability of a mutant to invade and

establish itself in a resident population when rare we can assume

that the invasive/mutant density is very low (pm<0), and thus the

mutant’s fitness equation reduces to

fm~bmx{d{(bmzb1)Cm,1
:p̂p1:

The density p̂p1 at carrying capacity can be determined from (3) as

p̂p1~x̂x{d=b1. Furthermore, for this solution to be biologically

relevant (i.e. p̂p1.0) would requireb1wd=x̂x.

The gradient of selection, g(b1), when resident b1 is at its

carrying capacity is defined by [32,29]

g(b1)~
Lfm

Lbm

����
bm~b1

:

In order to determine our evolutionarily singular points, b�1, we

have to set the selection gradient g(b1) = 0 and solve for b1. Doing

so gives us

b�1~
1

2

1

k
z

d

x
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

k2
z

6

k
: d

x

� �
z

d

x

� �2
s0

@
1
A: ð5Þ

The biologically relevant solution to the above equation is that

where b�1wd=x̂x. For the singular point b�1 to be an evolutionary

attractor the following necessary and sufficient condition would

have to be met [32,29]:

dg(b1)

db1

����
b1~b�

1

v0: ð6Þ

Since it is the case that

dg(b1)

db1

����
b1~b�

1

~{
1

2

d

b2
1

zxk

 !
,

it is clear that the convergent stable condition always holds and

that b�1 is an evolutionary attractor for all realistic parameter

values.

To determine ESS stability a different condition has to be met

L2fm(bm,b�1)

Lb2
m

�����
bm~b�

1

v0: ð7Þ

If this condition holds then the singular point b�1 is located

at a fitness maximum and neighbouring mutants will be unable

to invade, thus preventing evolutionary branching from occurr-

ing. Since for a single species ½L2fm(bm,b�1)�
�
Lb2

m

��
bm~b�

1
~

{(1=4):k:p̂p1, condition (7) always holds ensuring that b�1 will

always be an ESS. If a singular point both attracts nearby

strategies and prevents further evolution once they arrive

(convergent and ESS stable), as is the case in a single species

system, then the singular point is considered a ‘‘continuously stable

strategy’’ or CSS [29,32,35].

Since for a large range of k parameter values (k,100) Equation

(5) predicts significant differences in trait value between the

singular strategy b�1 and the minimum threshold for persistence,

b0, it is clear that evolution towards stochastic extinction is no

longer inevitable since evolution stops at b�1 without moving any

closer to the low abundance threshold b0. When the value of k

decreases b�1 becomes progressively larger, moving further away

from the threshold b0. For large k values, we find the solution for

the singular positive b�1 value to be

lim

k??
(b�1)~

d

x
,

which is also the minimum threshold needed for persistence,

b0~d=x. In other words, in the large k limit, where the

competitive function approximates perfect competitive exclusion,

selection will drive species towards the minimum threshold where

density becomes arbitrarily close to 0. On a stochastic landscape

this will result in an evolution of the population towards eventual

extinction – runaway selection leading to self-extinction [28]. This

is in fact what was observed with the original metapopulation

model with deterministic competitive exclusion. Stochastic simu-

lations demonstrate how moderate k values (k = 60) allow a single

strategy to establish at a singular strategy b�1, far enough away

from the minimum threshold b0 to avoid extinction (Fig. 1B).

Co-evolution in multi-species assemblages
We can similarly study the adaptive dynamics of a two species

system. However, now we are dealing with two mutants with

fitnesses fm1
, the fitness of the mutant/invasive whose trait value is

close to that of the first resident species, and fm2
, the fitness of the

mutant/invasive whose trait value is close to that of the second

resident species. Each mutant now competes with both its own

resident population and with that of the other resident species.

Selection gradients for both populations are:

g1(b1)~
Lfm1

Lbm1

�����
bm1~b1

, and g2(b2)~
Lfm2

Lbm2

�����
bm2~b2

: ð8Þ

The singular strategy b� representing a solution to this set of

equations is now a vector representing a coalition of strategies,

such that b�~(b�1,b�2). (See Appendix S1 for details). In the limit

where the system approximates a strict competitive hierarchy

(k??), solving for (8) results in the following solution for the

singular strategy b�:

b�1~
d

x
and b�2~b2

1

x

d

� �
,

The first expression corresponds to the minimum threshold b0,

and the second to the limiting similarity condition defined by

Tilman [12] and May and Nowak [11] when solved for two

species. Substituting the first expression into the second expression

solves for b�2 at the minimum threshold b0. These are precisely the

equilibrium values that would be predicted for the special case of

perfect competitive exclusion between species.

Using both numerical solutions for (8) and simulation results one

can once again observe how a range of k values allow both species

to avoid evolving to the low abundance threshold of the trait space

and hence to possible extinction (See Figure S1 for an example).

Evolutionary Assembly of Species
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The system of nonlinear equations for a n species community

can be represented in matrix form as follows:

0~x̂x{Qp̂p, ð9Þ

where

0~

0

0

..

.

0

0
BBBB@

1
CCCCA, x~

x

x

..

.

x

0
BBBB@

1
CCCCA, p̂p~

p̂p1

p̂p2

..

.

p̂pn

0
BBBB@

1
CCCCA,

and

Qn|n~ qi,j

	 

with qi,j~Ci,jz(b�i zb�j ):

LCi,j

Lb�i
:

Here p̂p = A{1b (see (4)). Both numerical solutions and stochastic

simulations confirm that introducing competitive uncertainty

facilitates diversity build-up (Fig. 1D). In a system open to

immigration, species assemble across the entire trait according to

their limiting similarity relationship, and avoid aggregating in the

high competitive end of the phenotypic trait space (Fig. 1D).

When k??, (9) predicts that the evolutionarily singular

strategy approaches the minimum abundance threshold, indicat-

ing possible evolution towards extinction (Appendix S2). The

evolutionary behaviour of the original model (Equation 1) [12] for

an n species community, as observed in the stochastic simulations,

thus appears as a special limiting case of the generalized

metapopulation model (Equation (2)). We now detail the

importance of competitive uncertainty (k) for the assembly of

species through both immigration and adaptive radiation.

Competitive uncertainty and multi-species assembly. In

metacommunities open to immigration of new species, competitive

uncertainty between individuals can promote greater diversity in

communities (Fig. 2). The degree of similarity between individual

strategies at the singular point b� for a two species system (where

similarity is measured as the absolute distance in trait value

between species) is shown for different k values by the solid black

curve in Fig. 2A (with similarity being robust to changes in d).

Here, in order to incorporate the biologically realistic

assumption that there must be some upper-limit in colonizing

ability that a species in this system can exhibit, we set an arbitrary

finite limit for the maximum b value possible of 1. At high k values

the two species pack in relatively close to each other, as well as

close to the minimum threshold b0. Although the small limiting

similarity between species at large k values should allow for high

biodiversity (Fig. 2A), stochastic extinctions observed in simula-

tions due to extremely low species abundances (dashed and broken

lines, Fig. 2A) strongly limit diversity. At the other end of the

spectrum (k?0) the community of two species collapses into a

community of one as the second species is required to evolve

beyond the maximum colonizing ability biologically allowed in this

model, b = 1, in order to persist. The resulting equilibrium

diversity over the same range of k values can be observed in

Fig. 2B. Increasing the biological maximum b value allowed

increases the number of species that can be packed at

intermediated k values. Maximum diversity thus corresponds to

a balance between limiting similarity and stochastic extinction

found at intermediate ranges of k imposing within-species variation

in competitive ability.

Competitive uncertainty and speciation. In meta-

communities that are closed to the immigration of new species

one important result is the role of the competitive uncertainty

parameter k for the onset of sympatric speciation through transient

phenotypes arising through mutations of non-negligible size. Using

deterministic adaptive dynamics we proved with condition (7) that

the singular strategy b�1 is always an ESS in a one-species system,

and therefore no species branching (speciation) can occur.

However, in stochastic simulations, as shown in Fig. 1C with

mutation steps m.0.001N (1/N) (see Methods for details), the single

strategy in the system, as it approaches its final convergent stable

state b�1, branches into two distinct strategies. This is followed by

branching of the second species leading to a three species

community, all of whose strategies line up with predictions from

(9) for a three species community (n = 3). The onset of such

stochastic branching is found to be highly sensitive to the degree of

competitive uncertainty, k.

The importance of competitive uncertainty can be understood

from a graphical analysis of the deterministic mutual invasibility

Figure 2. Effects of k parameter on phenotypic similarity and
diversity. (A) Phenotypic similarity (|bi2bj|) between strategies i and j
in a two-species system in relation to k (solid line). Area left over after
each species reaches equilibrium patch-occupancy (i.e., 12pi) in relation
to k for the superior competitor p1 (broken line), and the inferior
competitor p2 (dotted line). (B) Equilibrium species diversity in relation
to k in stochastic simulations. Diversity is measured as the number of
‘stable’ species, i.e. species able to persist or avoid stochastic extinction
over .100 000 time steps. Results shown for d = 0.6 and x = 0.654.
doi:10.1371/journal.pone.0033566.g002

Evolutionary Assembly of Species
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conditions. Mutual invasibility plots show how small mutations

along the vertical (mutant) axis will lead to evolution towards the

singular strategy b* (Fig. 3). Drawing a vertical line at this fixed

point shows the viability of mutants arising from a resident strategy

at this point in trait space [32]. In our metapopulation model

condition (7) demonstrates how mutants that are arbitrarily close

to this resident strategy will always be in a region of negative

growth regardless of the value of k, and will thus be unable to

invade the system. However in simulations, given that we allow for

non-negligible mutation in trait values, and for the associated

accumulation of mutants across phenotypic space, the possibility

arises for speciation because the phenotypic distance separating

mutants from positive fitness becomes smaller as k is increased

(Fig. 3A: k = 60). For small values of k the regions of negative

fitness around the resident strategy is large and hard to bridge

(Fig. 3C: k = 10 and Fig. 3D: k = 5). Alternatively, for very large k

values (e.g. k$100), b* is near the minimum threshold b0 where

low abundances of the resident species render the resident

population either prone to extinction, or cause the adjacent niche

space to occur too close to the resident strategy for the

establishment of a distinct species. Only at intermediate levels of

competitive uncertainty – this time representing a balance between

the need to minimize the distances between niches while

maximizing the viability of distinct strains – can one see the

possibility of disruptive selection leading to successful speciation.

As a result, stochastic simulation results reveal maximum diversity

resulting from adaptive radiation for 40,k,80 (Fig. 2B). What is

important in our results is the presence of evolutionary and

ecological constraints that maximize both species packing and

speciation for intermediate competitive uncertainty.

Discussion

Metapopulation theory has served as an important theoretical

framework for studying assemblages of species in competitive

metacommunities through competition-colonization tradeoffs

[10,12]. Yet, current ecological models are incompatible with

the evolutionary assembly of species in competitive communities.

We adopt the continuous competition function studied by

Calcagno et al. [14], interpreted here as uncertainty in the

competitive interactions between species, in order to allow

current metapopulation models based on competition-coloniza-

tion tradeoffs to serve as a framework for studying the

evolutionary assembly of communities. Our model allows for

the evolution of species packing and abundance distributions.

Results show how the degree of uncertainty in competitive

interactions between species determines both the extent of

biodiversity build-up and its underlying ecological and evolu-

tionary causes. Specifically, intermediate competitive uncertainty,

k, maximizes biodiversity by (i) striking a balance between species

packing and species abundance (i.e. the ability to avoid

extinction), and by (ii) balancing the countervailing effects of

phenotypic distance and species viability on the chances of

disruptive selection.

Figure 3. Mutual invasibility plots. Mutual invasibility plots for resident-mutant combinations when (A) k = 60, (B) k = 30, (C) k = 10 and (D) k = 5.
Plots shown for parameter values d = 0.6 and x = 0.65. Lines correspond to resident-mutant trait combinations where growth of both strategies is
zero. The regions marked by ‘+’ signs indicate resident-mutant trait combinations where either strategy can invade and experience positive growth in
the presence of the other strategy, while the ‘2’ signs indicate regions where both experience negative growth in the presence of the other. Mutants
experience positive (negative) growth, and residents negative (positive) growth in the trait space marked by +/2 (2/+). A vertical line at the singular
strategy (the point where all zero-growth isoclines intersect) demonstrates the viability of a mutant arising from a resident at or near the singular
strategy (see arrow in plot (D)).
doi:10.1371/journal.pone.0033566.g003

Evolutionary Assembly of Species
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Evolutionary consequences of competitive uncertainty:
Balancing species extinction vs. species packing

The theoretical assumption underlying most competitive trade-

off models is the idea that ‘‘differences among species overwhelm

variability among individuals, so much so that individual

differences can be ignored’’ [21]. This assumption was key to

the development of theories of competition-colonization tradeoff

mediated coexistence [10,12]. In their attempt to test the

competition-colonization tradeoff amongst forest trees Clark et

al. [21,22] have suggested that individual differences within species

may actually be the critical factor weakening competitive exclusion

and promoting coexistence and biodiversity. This hypothesis has

helped explain how competitively inferior Acer rubrum species can

coexist with competitively superior Liriodendron tulipifera in forest

tree communities [22].

Although the effects of intraspecific variation have been recently

highlighted as an important factor in structuring natural

communities [36–38], the presence of such intraspecific variation

is not required for interspecific competition to be defined or

characterized by competitive uncertainty. For example, a similar

weakening of the competition-colonization trade-off has been

shown to occur through environmental heterogeneity, which when

accounted for, allowed more biologically realistic predictions of

species abundance patterns in annual plant assemblages [39].

Incorporating a more probabilistic interpretation of competitive

interactions between individuals through a continuous competition

function, Ci,j, allows for evolutionary assembly of communities

over a range of values for a new parameter, k, which signified the

degree to which within population variability rendered competi-

tion more probabilistic in nature. High k values corresponded to

situations where populations exhibited little intraspecific variation

and hence more deterministic outcomes. Low k values signified a

high variability within populations for competitive ability,

weakening the one-to-one link between competitive and colonizing

capability. Furthermore, we were able to demonstrate that in the

limit of large k values the predictions of our deterministic model

converge to those of metapopulation models with strict determin-

istic exclusion. Predictions of previous metapopulation models [13]

are thus a special limiting case of our generalized model.

We also noted how decreasing the value of k increases the

phenotypic distance between strains, thus decreasing the total

number of species within the trait space, while at the same time

allowing species to persist or avoid extinction through increased

abundances. At increasingly high k values the reduction in limiting

similarity increases the potential number of available niches in the

trait space but at the cost of lowering species abundances to the

point where stochastic extinction becomes inevitable. In other

words, extreme values of k decrease the potential diversity in the

community, either through increased probability of extinction or

through decreased niche availability. The trade-off between

species packing and increased extinction risk associated with k

means that biodiversity is maximized for intermediate values of

competitive uncertainty corresponding to a balance between these

two antagonistic processes.

Our approach is also motivated by earlier theoretical studies of

mechanistic models based on specific biological systems, such as

Jansen & Mulder’s [19] study of seed competition in seasonally

reproducing organisms with a competition-fecundity trade-off.

Similarly, Bonsall & Mangel [20] and Bonsall et al. [40] studied

trade-offs between competitive ability and such life-history traits as

longevity and parasitoid attack rate in models of evolutionary

assembly of rockfish (Sebastes) communities, and the evolutionary

emergence of polymorphism in parasitoid guilds. We were able to

use a generalized metapopulation framework to predict species

packing and biodiversity build-up through the incorporation of

competitive uncertainty. It is because we were able to utilize a

standard multi-species modelling framework that the role of

competitive uncertainty on the evolutionary assembly of compet-

itive communities is able to have a general interpretation.

Competitive uncertainty and biodiversity buildup
Our evolutionary model offers a simple measure (k) of the

degree of uncertainty in competitive interactions. Similar functions

to the competition function used here have been used to study the

effects of asymmetric competition in allowing the co-evolution and

stable coexistence of species pairs [25]. Here we generalize these

results to the evolution of whole competitive communities. We

more precisely demonstrate how competitive uncertainty allows

for the evolution of stable multi-species communities by preventing

evolution towards unrealistic packing at the low abundance

threshold, and by allowing the equilibrium assemblage to be

defined by discrete phenotypic distances between species. As a

direct consequence of this generalization, we are able to predict

the functional relationship between competitive uncertainty and

biodiversity.

By using microcosm experiments to study the outcome of

pairwise interspecific interactions it may be possible test whether

this degree of competitive uncertainty between species could be

quantified, and perhaps whether a corresponding probability

kernel – relating the average trait values between pairs of species,

and the likelihood of competitive exclusion – could be drawn for a

given guild. Experimentally determining which species are then

capable of being assembled together into stable communities

would provide an important first step in testing whether the

mechanism outlined here plays an important role in allowing

biodiversity build-up in natural systems.

Competitive uncertainty and sympatric speciation: The
role of transient variation arising from non-negligible
mutation sizes

Our results reveal conditions allowing competitive uncertainty

to explain the occurrence of sympatric speciation and adaptive

radiation in metacommunities. The emergence of biodiversity

through sympatric speciation or evolutionary branching has been

investigated using several models [19,20,26,40]. However, in all

such studies speciation or evolutionary branching was explored as

a deterministic process arising from violations of ESS stability at

various fixed points in trait space. Our analysis demonstrates that

such a deterministic branching process is not permitted in our

metacommunity model where speciation requires the introduction

of mutations of non-negligible size, capable of creating enough

transient variation to bridge the limiting similarity in trait distance

required for successful invasion and coexistence.

Such interaction between deterministic and stochastic processes

to explain the maintenance and structure of communities within

adaptive dynamics frameworks has been revealed using Lotka-

Volterra competition [41]. It has been used to explore the

possibility of sympatric speciation under conditions of environ-

mental, demographic and resource stochasticity [42,43]. What is

important here is the driving role of competitive uncertainty, k, on

the occurrence of sympatric speciation in the presence of transient

variation arising from non-negligible mutation sizes. Our analysis

demonstrates how k affects the distance in trait space between

adjacent potential niches, allowing phenotypic variation to lead to

disruptive selection. Low k values result in distances between

niches that are too large to be crossed by transient types, while

high k values result in either no differentiation, or in stochastic
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extinction. As with the effects of competitive uncertainty on species

packing, intermediate k values are key in explaining adaptive

radiation in competitive communities with competition-coloniza-

tion tradeoffs.

These results are of particular relevance given the growing

recognition that both ecological and evolutionary theory’s focus on

the long-term, or the asymptotic behaviour of systems may be

undermining an appreciation of the more transient dynamics or

processes that are involved in structuring natural communities

[44]. What is striking in our results is the impact of uncertainty in

an ecological process (i.e. competition) on the onset of an

evolutionary process like speciation. Future work should generalize

results presented here to sexually reproducing populations and

explore the importance of competitive uncertainty for the

evolution of assortative mating and sympatric speciation [29].

Conclusions
Incorporating a continuous competition function that acknowl-

edges the probabilistic nature of competitive exclusion between

species was found to enable standard metapopulation models to

predict the evolutionary assemblage of competitive communities.

Intermediate values of competitive uncertainty maximize biodi-

versity in open metacommunities, and allow sympatric speciation

and adaptive radiation through the persistence of transient

phenotypes in metacommunities that are closed to immigration.

The degree of competitive uncertainty has a biological basis in the

intra-specific variability of competitive ability present in natural

populations. We have demonstrated how such a probabilistic

interpretation of competitive interactions can allow a generalized

metapopulation theory to serve as a viable framework for studying

the evolutionary assembly of competitive guilds and the evolution

of life-history tradeoffs.

Methods

Stochastic simulations
Simulations provided a stochastic and individual based model

version of the mean-field equation (2). Simulations were conducted

on a 65,536 (2566256) cell lattice with periodic boundary

conditions, where individual cells represented habitat patches,

and where each available habitat site in the landscape could be

potentially occupied by at most one individual at a time. Since in

Equation (2), x represents the fraction of available habitat, the

number of cells in the lattice that were made available for

colonization or occupancy by individual organisms during

simulations was simply 65,536x.
Community dynamics. All the cells in the lattice were

updated asynchronously at each time-step to approximate a

continuous time process. Although we implemented continuous

time dynamics, we refer to 1 time step as 65,536 randomly selected

cell updates. Updating cells involved allowing for colonization of

new sites, and for mortality within already occupied sites.

Individual mortality in our model was a result of death

occurring in an occupied cell at a rate d, or as the result of

competitive displacement by a newly arriving colonizer.

Colonization involved individuals in the landscape dispersing

new colonizers to randomly selected sites at a rate b. The success

of a new colonizer establishing itself depended on whether the new

site was empty (in which case, the probability of establishing was

equal to 1), or whether it was already occupied (in which case the

probability of competitively excluding the current resident and

establishing itself was Ci,j in Equation (2)).

Evolutionary dynamics. Each possible ‘species’ or strain in

our model was defined by a single trait value between 0 and 1

corresponding to colonizing ability, b. The phenotype space, or

trait gradient, between 0 and 1 was evenly divided into N values

(N = 1000 for all simulations). Mutation size along the trait

gradient was implemented using a Poisson distribution defined by

m, the average distance in trait value away from the parent’s

phenotype for every successful bout of reproduction. Using this

distribution we determined the number of discrete steps away from

the parent along the trait gradient a new colonizer’s phenotype

will be after every bout of reproduction or colonization. In our

simulations m ranged from 0.0095*(1/N) (high average mutation)

to 0.001*(1/N) (low average mutation).

In simulations where immigration of new species was allowed,

species were introduced from the low competitive/high colonizing

end of the trait gradient at regular intervals of 50 000 time-steps.
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Appendix S1 Adaptive dynamics of a two-species sys-
tem. Solution for the singular strategies of two-species system.
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Appendix S2 Evolutionarily singular strategy for an n-
species system. Demonstration of how the joint singular

strategy of an n-species system will approach the zero-abundance

threshold for large k values.
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Figure S1 Solutions for coevolving species pair. Graph-

ical depiction of the possible solutions for the system of nonlinear

equations described by (A3a) and (A3b) in Appendix S1 when

k = 10, d = 0.6 and habitat availability of x̂x = 0.654. Solutions to

the system of equations are represented by the intersection of the

curves described by the two equations. Each possible solution is a

set of paired values of b1 and b2 representing a coalition of

strategies. In the example shown here only points a and b represent

biologically realistic solutions. Points c and d give values for b1 and

b2 that entail biologically unrealistic abundance values – i.e.

negative abundances. Since points a and b are equivalent solutions,

with just the values for the two strategies reversed, there only exists

one possible singular strategy, ba
* = (b1

*, b2
*), in the example

depicted here. The solution for point a estimated using a

numerical algorithm solver was found to be b* = (b1
*,

b2
*)&(0:385,0:775).
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