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In this paper, we demonstrate the feasibility of using in situ Dynamic Light Scattering (DLS) to monitor counter-diffusion
crystallization experiments in capillaries. Firstly, we have validated the quality of the DLS signal in thin capillaries, which is
comparable to that obtained in standard quartz cuvettes. Then, we have carried out DLS measurements of a counter-
diffusion crystallization experiment of glucose isomerase in capillaries of different diameters (0.1, 0.2 and 0.3 mm) in order
to follow the temporal evolution of protein supersaturation. Finally, we have compared DLS data with optical recordings of
the progression of the crystallization front and with a simulation model of counter-diffusion in 1D.
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Introduction

The crystallization of any given protein [1,2,3] is a process that
can be outlined in three successive and interrelated stages. Firstly,
a purified solution of the target protein must be brought into a
supersaturated state [4], which is characterized by a ratio of
concentration-to-solubility higher than one. The rate at which
supersaturation is achieved is one of the most important
parameters in protein crystallization since it defines a very specific
temporal pathway through the phase diagram [5]. The supersat-
uration state can be achieved either immediately using the batch
technique [6], progressively by means of vapour-diffusion methods
[7,8] or continuously as with the counter-diffusion technique [9].
Secondly, at least one or more nucleation events will take place.
The nucleation step [5] can be understood as a process by which,
stochastically in space and time, a new phase with lower chemical
potential appears in solution. In other words, stable protein nuclei
are formed from a dynamical size distribution of density
fluctuations that are driven by the supersaturated state of the
solution. In the last step, crystal growth, the stable aggregates or
nuclei that have formed during nucleation start to grow at the
expense of the remaining protein in solution. The growth of
crystals consumes the protein, thereby reducing the supersatura-
tion value of the solution and driving the system back towards
equilibrium.

Control of the nucleation stage of a crystallization experiment is
crucial in order to obtain large quality crystals, representing a
more rational approach than the use of automated large-scale
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high throughput screening strategies. Indeed, the dynamics of
nucleation and cluster formation, which can be studied by several
techniques such as SAXS, SANS [10] or Dynamic Light
Scattering (DLS) [11], are currently a subject of much debate
[12,13]. In recent years, light scattering techniques [14,15] have
emerged as one of the most promising techniques to investigate
and monitor the behaviour of nucleating protein solutions. In
particular, DLS [16,17] has been used to obtain information
about the detailed physico-chemical processes that occur during
nucleation and early stages of crystallization [18,19,20,21] or to
screen for crystallization conditions [22,23] and crystallizability of
biological macromolecules [24,25]. While static light scattering
(SLS) provides detailed information on parameters such as the
average molecular weight and the second virial coefficient [17,26],
DLS yields data on the size distribution of protein aggregates and
can thus be used to follow protein aggregation in crystallizing
solutions [14,15]. Recently, it has been shown that DLS can also
be employed to determine interaction parameters [27,28] leading
to similar information as obtained by the second virial coefficient.
Hence the application of light scattering methods in standard
crystallization experiments (such as vapour diffusion [14,29,30,31]
or as described here: counter-diffusion) is a step forward towards
controlled and efficient crystallization of biological macromole-
cules.

The method of Counter-diffusion (CD) applied here has a long
history [32]. Already in 1972 F.R. Salemme showed that proteins
could be crystallized by free-interface diffusion within glass
capillaries [33]. CD is an excellent method to optimize crystalli-
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zation trials and to obtain high quality crystals because a large
number of conditions (ratio of precipitant/protein concentrations)
are continuously self-screened per capillary experiment [9].
Moreover, the use of small capillaries (0.1 mm inner diameter)
in counter-diffusion trials is a very attractive experimental option
since it saves protein sample; each capillary experiment only
requiring around 400 nanolitres of protein solution. Nonetheless,
the complex spatio-temporal evolution of supersaturation that
takes place during a counter-diffusion experiment [34] makes it
difficult to predict what is happening and to exert some degree of
control over it, which is not necessarily required for screening
purposes but desired for the purpose of improving crystal quality.
In this context, DLS would enable to follow the evolution of
counter-diffusion experiments # sifu in thin capillaries non-
invasively. In fact, DLS has already been used in combination
with other crystallization techniques such as vapour diffusion and
batch in commercially available crystallization plates owing to the
mntroduction of the SpectroLIGHT 500 instrument developed by
Nabitec GmbH [14]. In contrast, the application of DLS to
analyse capillary counter-diffusion experiments is more complex
since the volume in which to measure is relatively small (capillaries
of 0.1 mm diameter) and the optical properties of the thin glass are
more complex than those of quartz cuvettes or droplets.

The aim of this work is to demonstrate the feasibility of applying
DLS to monitor in situ the evolution of counter-diffusion
experiments in thin capillaries down to 0.1 mm of inner diameter
GCB-D [35]. We have selected Glucose isomerase from Strepto-
myces rubiginosus (EC 5.3.1.5.) for the crystallization experiments
because it is a well characterized, very stable enzyme [36] that has
been previously used in crystallization studies [37,38,39] and as a
standard marker in SAXS experiments [40], among other studies.
DLS data have been systematically obtained, analysed and
compared with video microscopy recordings of the evolution of
crystallization experiments along the capillaries. The experimental
results have also been compared with theoretical data calculated
by a programme simulating the diffusion-precipitation coupling
effect that controls the evolution of supersaturation inside the
capillary.

Results and Discussion

In situ DLS Measurements in Capillaries

The volume of solution analysed by the DLS system (crossing
space of laser and detector) has been previously estimated at
around 1 pL [14]. Such volume is equivalent to a sphere of
approximately 12.5 micrometres in diameter and should not be
neglected for measurements in 100 micrometres capillaries that,
on the other hand, are the most widely used because of its small
sample consumption (approximately 400 nL). Therefore, initially
it was necessary to establish whether it is possible to obtain a clean
DLS signal similar to that obtained in quartz cuvettes without any
special distortion due to the geometry of the capillary or the plastic
walls of the GCB-D. Different sets of DLS data of a protein
solution were taken in a quartz cuvette and capillaries of varying
diameters for comparative purposes. Three capillaries of 0.1, 0.2,
of 0.3 mm plus an extra capillary of 0.3 mm with agarose were
filled with a solution of glucose isomerase in its buffer and
subsequently punctured in GCB-D’s filled with 3 M ammonium
sulphate. A DLS measurement was taken at 30 mm from the open
end of the capillaries to make sure that the precipitant had not
reached that position. Then, a total of 15 DLS measurements at 2
seconds interval were taken for each capillary and the quartz
cuvette. The results of the size distributions obtained from the
DLS signal are shown in Figure 1.
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Figure 1C shows how the focus of the DLS laser beam fits inside
the capillary, being sufficiently away from the flares caused by the
reflection of the laser on the walls of the GCB-D, even for the
smallest 0.1 mm capillaries. In Figure 1A, all the series of
measurements exhibit monomodal size distribution, that is, there
is only one clear peak that corresponds to the hydrodynamic
radius of glucose isomerase in the buffer without precipitant.
Figure 1B shows the auto correlation functions (ACF) [17] of DLS
measurements within capillaries of 300, 200 and 100 um inner
diameter in comparison with an ACF derived by DLS measure-
ments in a quartz cuvette; although the signal-to-noise ratio is
slightly better in the cuvette than in capillaries, all ACFs are
comparable and show that valid DLS measurements can be taken
from thin capillaries. In summary, the results shown in Figure 1
validate the quality of DLS measurements in standard commercial
counter-diffusion devices even in the presence of low agarose
concentration.

DLS Monitoring of a Counter-Diffusion Crystallization
Experiment

After validating the use of DLS in capillaries, we set up a
crystallization experiment of glucose isomerase in a capillary of
0.1 mm and followed the evolution of size distribution of the
protein as a function of time and distance inside the capillary (see
Figure 2).

The start of the counter-diffusion experiment was set (time = 0)
when the open-end of the capillary is punctured in the precipitant
solution, moment at which the protein and precipitant start to
diffuse against each other. The precipitant moves faster than the
protein due to its smaller diffusion coefficient, approximately one
order of magnitude lower. As the precipitant diffuses along the
capillary, the solubility of the protein decreases and precipitation
takes place (see Movies S1 and S2).

Two distinct effects were observed in the calculated size
distribution of glucose isomerase. Firstly, there is a slight shift of
the hydrodynamic radius from 2 nm to approximately 5 nm
within the first 2-3 days after the start of the experiment, which is
associated to the formation of the glucose isomerase tetramer.
Secondly, at a certain point in time—that is different for each
measured position in the capillary—the peak of the protein in
solution disappears giving rise to a new broader peak at larger
diameters (100-1000 nm). The quick disappearance of the initial
protein peak is an indication of crystallization events [14] taking
place progressively later in time at larger distances from the
entrance of the capillary. Such observation is in agreement with
both the simulation results and the theoretical formation and
evolution of the advancing supersaturation wave [41] produced by
the continuous diffusion of the precipitant. Furthermore, the
irregular size distributions at larger hydrodynamic radii are a
result of the perturbation of the DLS signal due to the presence of
large aggregates.

As the distance of measurement from the open end of the
capillary gets bigger, the crystallization events are not so clearly
detected by DLS. This is because the processes of nucleation and
crystal growth at such positions occur at lower supersaturation
values. Since nucleation and crystal growth are the cause of the
depletion of the protein, we may conclude that at longer distances
within the capillary these processes are not fast and/or intense
enough to counteract the restoration of the consumed protein by
diffusion from the rest of the capillary. Nonetheless, the increase of
precipitant concentration due to diffusion is still observed from the
shift of the protein peak.

In order to compare DLS data with optical microscopy
observations, we prepared a counter-diffusion experiment under
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Figure 1. Comparison of DLS measurements in thin capillaries and a quartz cuvette. A) It shows an overlay plot of the radius distribution
of glucose isomerase in capillaries and a quartz cuvette; B) It shows an overlay of the auto correlation function from which the radius distribution
were derived; C) Picture showing the focus of the laser inside a 0.1 mm capillary and the scattering associated to the capillary-walls, which does not

affect the measurements.
doi:10.1371/journal.pone.0033545.g001

identical conditions and recorded the progress of the crystallization
process by registering the distance of the furthest observable crystal
from the entrance of the capillary at different times. Figure 3
illustrates how the disturbance observed in the size distribution at
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Figure 2. Pictures of the size distribution (X-axis) as a function of time (Y-axis) obtained from DLS measurements in a single
capillary. The number on the bottom right corner of each picture denotes the distance of the measurement in millimetres from the open end of the
capillary. Time is displayed in arbitrary units (a.u.), where each unit corresponds to 1/10 of a day. The picture at the bottom shows an overview of the

capillary and the position of the measurements (*) in the GCB-D.
doi:10.1371/journal.pone.0033545.9g002
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Figure 3. Comparison of data obtained from DLS measure-
ments, optical microscopy records and the numerical simula-
tion. The data at 18.7 and 24.5 mm have not been drawn because it
does not show disturbance of the size distribution. The green horizontal
line corresponds to original optical microscopy data plotted as ‘time vs
distance’ instead of ‘distance vs time’, using the same limits as those
used to plot the DLS and the simulation data. The axis of the original
optical microscopy data have not been drawn for clarity.
doi:10.1371/journal.pone.0033545.9g003

low, the perturbation of the DLS signal took a bit longer to be
detected.

We have compared the experimental DLS data with our
simulation software [42,43] that calculates supersaturation values
of the system in the capillary and its evolution as a function of
distance and time. The numerical code of the software takes into
account diffusion mass transport, nucleation and crystal growth in
one dimension, and depends upon some geometrical, physical and
chemical parameters, which have been described in the experi-
mental section. In Figure 3 we have plotted the duration of
conditions of relatively large supersaturation (6>1.5) at the
positions monitored by DLS. Since the probability of nucleation
depends on a power of the natural logarithm of supersaturation,
we would expect that nucleation would occur during the period in
which the system is supersaturated, followed by crystal growth that
could be detectable by DLS. However, our simulation calculates
the time interval where the system is supersaturated earlier than it
should according to DLS and optical observations. This discrep-
ancy may be due to the algorithm used, which does not take into
account the fact that the diffusion of protein molecules is affected
by the concentration of the precipitant. As a result, the diffusion
obtained by the simulation software proceeds faster than it should
and the system becomes supersaturated earlier than the detection
of crystal growth by DLS and optical microscopy in the physical
experiment. This information is very valuable as it could be used
to improve the simulation algorithm and make a more accurate
prediction of crystallization events.

All i all, we have developed a novel methodology that
combines i situ DLS with the capillary counter-diffusion
technique. The experimental results presented in this paper
validate the use of # siu DLS to monitor counter-diffusion
experiments in capillaries as small as 0.1 mm of inner diameter. In
fact, the quality of the DLS signal taken in capillaries is similar to
that obtained using standard quartz cuvettes. We have successfully
monitored a real counter-diffusion experiment in standard GCB-D
systems by @ siu DLS allowing us to detect perturbations
associated to crystallization events slightly before the appearance
of optically observable crystals, especially at capillary positions
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closer to the beginning of the experiment. Furthermore, the DLS
signal is sensitive to supersaturation changes inside the capillary,
through the increase of the apparent protein hydrodynamic radius,
which reflects the salt-dependent protein-protein interactions
[27,28].

The advantages of counter-diffusion for the crystallization of
proteins are well-known and multiple: i) Screening of crystalliza-
tion conditions is more efficient because several precipitants can be
tried in one single capillary in a wide range of supersaturation and
supersaturation rates (in practice this means that it is possible to
obtain sequentially amorphous precipitation, microcrystals and
crystals of the highest quality in a single capillary); ii) Cryo-
protectants, heavy atoms, ligands or any other additive can also be
diffused within the capillary/crystal in a mass transport diffusive
regime; 1ii) The crystals grown can be diffracted directly from the
capillary without further manipulation. The combination of i situ
DLS in capillary counter-diffusion experiments presented in this
paper adds two very important benefits. Firstly, it can provide
valuable information about the stability of the protein, which is
particularly useful for structural biologists. Secondly, capillary
counter-diffusion experiments can be optimised using DLS data
since it is possible to detect the nature of protein aggregates and
their propensity to trigger nucleation and, hence, to identify
whether one particular crystallisation condition is likely to produce
crystals (i.e. by increasing protein concentration) or not.

Materials and Methods

Set-up of Crystallization Experiments with Glucose
Isomerase

Glucose isomerase (EC 5.3.1.5) from Streptomyces rubiginosus is a
homotetramer in solution with a molecular weight of 173 kDa
[44]. Glucose isomerase was supplied by Hampton Research as a
crystal suspension in 6 mM Tris-HCI pH 7.0, 0.91 M (NH4)9SOu4,
1 mM MgSO,. The commercial product was extensively dialyzed
against a total volume of 1L of 0.1 M Na-HEPES/HCI
pH 7.0 per mL of protein. Final concentration of protein stock
solution was fixed at 50 mg/ml as determined by spectrophotom-
etry.

The crystallization condition employed by Carrel and co-
workers [44] to crystallize glucose isomerase (solved its structure at
149A) was slightly modified to fulfil the requirements of counter-
diffusion experiments [45] by increasing the original concentration
of ammonium sulphate from 0.7 M to 3.0 M. Hence, Granada
Crystallization Boxes-Domino (GCB-D) reactors [35] containing
ammonium sulphate (3.0 M) and Hepes (0.1 M) at pH 7.0 were
purchased from Triana S&T and used to set up the crystallization
experiments. The GCB-Ds are usually topped with a layer of
agarose gel for mechanical stability when the capillaries are
punctured (see Figure 4). Then, capillaries of 0.1, 0.2 and 0.3 mm
inner diameter were filled with protein stock solution. An extra
fourth capillary of 0.3 mm was filled with a mixture of protein
solution, buffer and 0.075% w/v low melting point agarose (AG-
LGT, Triana S&T). All DLS experiments were carried out at RT.

Set-up of the DLS Instrument

A SpectroLIGHT 500 instrument [14] from Nabitec GmbH was
used to carry out the DLS measurements. The instrument, which
is designed to simultaneously record images and take DLS
measurements of crystallization experiments in multiwell plates,
had to be adapted to the geometry of the capillaries (e.g. GCB-D,
see Figure S1) so that the plane of the incident and reflected beams
was perpendicular to the capillary axis. The fluctuation of intensity
of the scattered light was recorded by a photomultiplier tube, then
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Figure 4. Graphical representation of a typical counter-
diffusion experiment set-up in a GCB-Domino (Triana S&T).
The dimension of the GCB-Domino is approximately 70 mm high x
17.2 mm wide x 7.0 mm thick. The open end of the capillary allows the
precipitant (in blue) to diffuse against the much slower diffusive protein
solution, thereby inducing the precipitation of the latter. The capillaries
are kept in place by an agarose plug sitting at the top of the precipitant
solution. Each mark (*) shows a DLS measurement position, at 0.7, 2.2,
5.1,9.9, 11.8, 18.7 and 24.5 mm from the open end.
doi:10.1371/journal.pone.0033545.9g004

the autocorrelation function (ACF) [17] was calculated and
interpreted using the CONTIN algorithm [46]. The AFC values
obtained using CONTIN were evaluated with the SPECTRO
software developed by Nabitec GmbH.

Procedure for DLS Measurements Inside Capillaries

The crystallization experiment was set up as follows: firstly, each
capillary was loaded with protein solution; then one end of the
capillaries was sealed with wax and finally the open end was
punctured in the gel of the GCB-D. Immediately after, the box
containing the capillaries with protein solution was fixed inside the
DLS instrument (Figure S1). By means of the instrument’s optical
camera it was possible to record the coordinates both at the
beginning and at the end of the capillary so that the distance along
the capillaries could be converted into the coordinate system of the
motorized stage. The DLS signal was recorded in seven different
positions of the capillaries over time (see Figure 4 and Movie S1).

At the beginning of the measurements, minute displacements in
x, y and z directions were performed at each position to optimize
the DLS signal (optimized signal means: the largest count rate at
which a smooth ACF with high intercept could be obtained).
Subsequently, a series of measurements was set-up (a script was
written in Python and given as input to the autopilot of
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