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Abstract

Molecular classification of diseases based on multigene expression signatures is increasingly used for diagnosis, prognosis,
and prediction of response to therapy. Immunohistochemistry (IHC) is an optimal method for validating expression
signatures obtained using high-throughput genomics techniques since IHC allows a pathologist to examine gene
expression at the protein level within the context of histologically interpretable tissue sections. Additionally, validated IHC
assays may be readily implemented as clinical tests since IHC is performed on routinely processed clinical tissue samples.
However, methods have not been available for automated n-gene expression profiling at the protein level using IHC data.
We have developed methods to compute expression level maps (signature maps) of multiple genes from IHC data digitized
on a commercial whole slide imaging system. Areas of cancer for these expression level maps are defined by a pathologist
on adjacent, co-registered H&E slides, allowing assessment of IHC statistics and heterogeneity within the diseased tissue.
This novel way of representing multiple IHC assays as signature maps will allow the development of n-gene expression
profiling databases in three dimensions throughout virtual whole organ reconstructions.
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Introduction

Disease-associated changes in gene expression patterns identi-

fied by genomics and proteomics technologies often require

validation by a corroborating method for several reasons. First,

discovery-phase experimental data may be confounded by

specimen heterogeneity. High throughput genomics and proteo-

mics technologies typically rely on the solubilization of tissue

samples into liquid protein or nucleic acid preparations. While

the assumption is often made that the samples are pure

representations of a uniform disease process, each sample is

actually composed of varying mixtures of diseased and non-

diseased tissue constituents [1]. Further, there may be heteroge-

neous biomarker expression within the diseased component of a

specimen, as exemplified by intratumoral heterogeneity in the

expression of prognostic biomarkers in breast cancer [2,3]. In

clinical laboratories, assays that rely on tissue homogenization

(sometimes referred to as ‘‘grind and bind’’ assays) [4] have

largely been replaced by antibody-based cell staining methods

that are scored in a way that accounts for heterogeneity [5].

Second, initial biomarker studies may be performed using

methods not widely available, highly technically complex, or

with slow test turn-around times making them clinically

suboptimal [6]. Third, despite their exceptional utility in the

discovery phase of experimentation, data obtained using

genomics and proteomics technologies requires validation due

to data quality problems beyond the issue of tissue heterogeneity,

including misidentification of nucleic acid probes on gene

expression microarrays [7,8], non-specificity of probes [9], and

essentially unavoidable false-positive discovery rates associated

with massive multiple hypothesis testing [10]. Appropriately

powered studies to validate initial results of genomics and

proteomics studies often are lacking [6,11].

Among validation methods, IHC offers important advantages

for translational and clinical research. IHC is performed in the

context of histologically interpretable tissue sections such that

gene expression may be evaluated in specific cells (e.g., carcinoma

cells versus background stromal and benign epithelial cells), or

sub-cellular areas (nuclear versus cytoplasmic versus membrane)

[12] at the protein level under direct microscopic visualization by

a pathologist. Multiple proteins can be measured on closely

spaced adjacent tissue sections, which are often cut at 4 mm

thickness, or approximately one-third the diameter of a malignant

cell [13], such that the relationship of multiple IHC targets can
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be analyzed on the same cell populations concurrently. Further,

IHC is amenable to high-throughput validation of IHC targets in

large numbers of patient samples utilizing tissue microarray

techniques. Importantly, validated IHC assays are suitable for

implementation as clinical tests since they are optimized for the

standardized method of tissue handling (typically immersion of

tissues in buffered formalin at specified time intervals followed by

processing into paraffin blocks) that are universally applied to

tissue samples in clinics, procedure rooms, radiology suites,

operating rooms, and pathology laboratories [14,15]. Indeed, it

has become a norm for molecular signatures identified by gene

expression profiling technologies to be implemented in clinical

laboratories as multigene IHC assays, with results reportable

within the rapid turn-around times expected by clinicians and

patients. In the example of diffuse large B-cell lymphoma,

prognostic biomarkers that distinguish tumors of germinal center

versus activated B-cell subtypes were initially identified by RNA

expression microarray methods [16,17,18], and later validated at

the protein level by IHC and clinically implemented as IHC

panels with results available within a one day turnaround time

[19,20,21].

Application of a gene expression signature to patient specimens

may involve the weighted summation of gene expression data to

generate a positive or negative ‘‘vote’’ toward a relevant outcome

[22], such as diseased versus non-diseased, one malignant tumor

type versus another type, prognosis of aggressive versus non-

aggressive clinical behavior of a tumor, and prediction of response

to therapy versus non-response. The magnitude of expression of

each gene comprising a signature is typically associated with a

weighting factor derived from validation data that (a) is signed

(positive or negative) depending on whether the gene is up-

regulated or down-regulated with respect to the outcome of

interest, (b) has a magnitude related to the degree to which a

gene’s expression is associated with the outcome of interest, and (c)

may correct for differences in overall immunohistochemical

staining intensity among different genes comprising the signature.

A simple n-gene ‘‘voting’’ classifier within a tissue region of

interest, S(~rr), may be given as

S(~rr)~
Xn

i~1

wi|gene(~rr)i, ð1Þ

where the vector~rr denotes the spatial dimensions of the region of

interest, wi is the weighting factor, and gene(~rr)i is the expression

level measured for each of n-genes. It should be emphasized that

IHC assays, because they are performed on tissue sections in

which architectural features are retained, allow examination of

heterogeneity of n-gene expression signatures across diseased tissue

areas. Thus, IHC preserves a spatial aspect of data that would be

lost upon tissue solubilization for standard proteomic and genomic

assays.

Although studies utilizing n-gene classifiers indicate that IHC

biomarker expression signatures hold high promise in routine

clinical practice [23], there is currently a paucity of available

methods to summate the weighted expression of multiple IHC

markers across pathologist-annotated diseased tissue areas. In

recent years, numerous manufacturers have developed whole slide

imaging (WSI) systems that convert glass slides into diagnostic

quality digital images that are readily accessible via network-

connected computers and can provide extensive features for

annotation and analysis [24]. WSI has been used in clinical

practice and teaching, including primary pathologic diagnosis

[25], second opinion consultation via telepathology [26], creation

of teaching archives [27], and quality assurance [28]. WSI has

been extensively used in research applications ranging from

detailed measurement of histologic landmarks [29,30] to quanti-

tative IHC [31]. We have developed methods integrated with a

WSI system to generate n-gene IHC expression profiles across

tissue areas electronically annotated by a pathologist on whole-

slide images. For purposes of illustration, we demonstrate the

utility of these methods by generating a putative four-gene

signature of prostate cancer aggressiveness in a representative

prostatectomy tissue block and investigate the registration

accuracy and its impact on calculated signature mapping values

in 10 prostate cancer-containing blocks of prostatectomy tissue

from unique subjects.

Materials and Methods

Genes selected
We performed IHC studies for four gene products whose

expression levels are known to be related to patient outcomes in

prostate cancer (PCa): up-regulated expression of the tumor cell

proliferation marker Ki-67 (Online Mendelian Inheritance in Man

[OMIM] [32] designation: MKI67), the marker of neuroendo-

crine tumor cell differentiation neuron-specific enolase (OMIM:

ENO2), and the microvascular marker CD34 have been

associated with poor prognosis [33,34,35,36,37,38,39,40], whereas

down-regulated expression of prostate specific acid phosphatase

(PSAP; OMIM: ACPP) is associated with higher tumor grade [41]

and unfavorable pathologic features in prostatectomy specimens

that follow diagnoses of PCa on transurethral resections [42]. It

should be stressed that these markers were chosen simply to

illustrate the developed methods and because of their availability

for the automated immunostainer; we do not mean to suggest that

the expression signature of these gene products constitutes a

validated prognostic signature.

IHC assays
After obtaining written consent from research subjects and

approval from the University of Minnesota Institutional Review

Board, unstained adjacent 4 mm sections of formalin-fixed

paraffin-embedded prostate tissue were cut from 10 prostatecto-

my blocks representing 10 unique subjects and PCa of different

histologic grades. One section was stained with hematoxylin and

eosin (H&E) and, using an automated immunostainer (Ventana

Medical Systems, Tucson, AZ), adjacent sections were stained

with primary antibodies, washed, and then a brown precipitate

was developed at sites of primary antibody binding through use of

a peroxidase-conjugated second step antibody and a 3,3-

diaminobenzidine (DAB) reagent (Bond Polymer, Leica, Rich-

mond, IL). For all ten cases, primary antibodies directed against

the protein products of MKI67 (antibody clone MM1, Leica

Microsystems, Bannockburn, IL), CD34 (QBend/10, Ventana)

and ACPP (clone PASE/4LT, Cell Marque, Rocklin, CA) were

used as they represent a wide range of staining intensities from

relatively low to medium to high, respectively. In one additional

case, used to demonstrate the creation of a four-gene signature

map, a fourth IHC slide was generated with primary antibodies

directed against the protein product of ENO2 (clone BBS/NC/

V1-h14, Covance, Princeton, NJ). IHC slides, and a final

negative control section in which primary antibody incubation

was omitted, were counterstained with hematoxylin. All slides

were cover-slipped. The negative control sections were visually

inspected by the study pathologist (SCS) who validated the

absence of DAB signal.

N-Gene Protein Expression Maps
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Whole Slide Imaging
Slides were scanned at 206 magnification (0.560.5 mm2 pixel

resolution) using a WSI instrument (ScanScope CS, Aperio, Vista,

CA) fitted with a 206/0.75 Plan Apo objective lens (Olympus,

Center Valley, PA). Images were saved in SVS format (Aperio)

which is essentially a TIFF compressed with JPG2000. Images

were saved on a server equipped with server software (Image-

Server, Aperio) and retrieved using file management software

(Spectrum, Aperio). Pathologist-annotated tumor regions were

drawn using a pen tablet screen (Cintiq 21UX, Wacom, Kazo-shi,

Saitama, Japan) on whole slide images viewed at high resolution

using the Aperio system’s annotation software (ImageScope 10,

Aperio). Regions of cancer were separately labeled with their

Gleason Grade (e.g. 3+3, 3+4, etc.) within different virtual planes

(‘‘layers’’) of the reference slide image file.

Generating Signature Maps
A software interface, which will be referred to as SigMap, was

written in the Java programming language [43] to generate IHC

signature maps (see Table 1 for glossary of terms) through a

multistep process described below and detailed in Figure 1. Upon

launching SigMap, existing WSI thumbnails and annotations in an

XML format were downloaded. From the list of available images,

the user selected the reference image (an H&E-stained slide image

in this example), the IHC slides to be analyzed, and the analysis

algorithm macro to be used for the antibody markers of interest

(Figure 2). The default algorithm, Positive Pixel Count (v9,

Aperio), was configured to detect the fraction of pixels that exceed

pre-set (user-adjustable if desired) weak, moderate, and strong

threshold limits in the brown colorimetric channel. If desired,

other analysis macros available to the user within Spectrum could

be selected from a drop-down menu. If present for a particular

reference slide, pathologist annotations were also downloaded for

subsequent sub-region analysis. Communication with ImageServer

for downloading annotations and imaging data is accomplished

using an HTTP GET/POST protocol provided by Aperio [44]

which also allows SigMap to initiate slide analysis using pre-

existing algorithms (Algorithm Framework, Aperio).

After downloading, the whole-slide IHC images were each

registered to the reference image (the H&E stained slide image in

this example) through a two-step process involving coarse manual

alignment followed by an automatic fine registration using a

software module called TurboReg [45,46]. During the first step in

image alignment, each IHC slide was brought into rough

alignment with the reference slide. Visually guided manipulations

were used to flip and rotate each IHC slide so that it was in rough

alignment with the reference image (Figure 3). TurboReg software

then automatically completed the registration process by mini-

mizing the mean location error through rigid body transforma-

tions (i.e. translations and rotations) (Figure 4).

Table 1. Glossary of Terms.

Reference slide Digitized slide on which annotations are drawn

IHC slide Digitized IHC-stained slide (adjacent section relative to reference slide)

IHC score Quantified IHC data at a single grid region of an image

IHC map 2D representation of IHC scores across an IHC slide

IHC signature score Multiple IHC scores summated to represent quantified IHC data at a single grid region of an image

IHC signature map Multiple IHC scores representing n-gene protein expression across the annotation area of the reference slide

doi:10.1371/journal.pone.0033520.t001

Figure 1. The workflow for generating signature maps. The
steps to generate a signature map take place on the host computer
running the interface software (labeled as SigMap) and on Aperio’s
ImageServer (labeled as Aperio). The location at which each step is
performed is defined to the left of each step. After digitizing both the
reference H&E and IHC data on the Aperio system, the data are
downloaded to SigMap. This data may include pathologist annotations
(i.e. capsule and graded areas of cancer in the case of the prostate). A user
defined grid (G) is then defined in SigMap on the coordinate space of the
reference (H&E) data. The inverse of the transformation (Ti

21) required to
register each IHC image (IHCi) to the H&E is used to match G to the full
resolution IHCi data as it exists on Aperio’s ImageServer. The transformed
grid, Ti

21 (G), defines regions from which IHC values are determined
(using the pre-selected algorithm) and combined to form IHC maps. The
transformation of the IHC maps after downloading to SigMap, Ti(Mapi),
places each in the coordinate space of the reference image allowing
them to be combined into a signature map (S) using Equation 1.
doi:10.1371/journal.pone.0033520.g001

N-Gene Protein Expression Maps
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After registration, a virtual grid of user-defined resolution was

made on the reference image using SigMap (Figure 5). In this

example, a grid with a resolution of 0.25 by 0.25 mm2 was used.

Grid locations outside of the tissue boundary were discarded, and

SigMap was further set to discard grid locations outside of

annotation regions as determined by the Monte Carlo method

[47], in which random points (an adjustable number, by default

500 points) within each grid location were generated and tested for

whether they resided within an annotated area. If a threshold (an

adjustable percentage, by default 50%) of these points were within

the annotated area, the grid location was retained, and if not, the

grid location was discarded. Adjustment to require inclusion of

more points would lower the threshold for discarding grid locations,

and thus only retain grid locations further interior to annotations.

Additionally, the pathologist could review the IHC slides and mark

(using a ‘‘negative pen tool’’ function in ImageScope) areas of any

slide image (reference or IHC stained) that lacked diagnostic tissue,

contained artifact, etc.; SigMap would remove these negatively

selected regions from the analysis for all stains.

Using the inverse of the previously saved transformations

determined from the image alignment process, the retained grid

locations generated on the reference H&E image were trans-

formed to the native orientation of each full resolution IHC

stained image. The transformed grid locations were written to a

file in Aperio’s annotation XML format and attached to each IHC

slide by uploading to ImageServer. At each grid location, the

intensity of each IHC stain was computed (termed an IHC score)

using Positive Pixel Count as the selected analysis algorithm. The

IHC scores across an entire grid were used to generate IHC maps

after transforming back to match the reference H&E orientation.

Using gene-specific weighting values, weighted IHC scores for

the n-genes were summated across all IHC stains at the same grid

location (termed an IHC signature score) using Equation 1. In this

study, the magnitude of the weights for MKI67, EN02, CD34 and

ACPP were calculated to normalize the mean IHC score for each

stain from the regions of annotated cancer across all subjects, and

the sign of each weight reflected whether published studies cited

above suggest that these proteins are up- or down-regulated in

aggressive (relative to non-aggressive) PCa. IHC signature scores

were displayed as a two dimensional representation oriented to the

reference tissue section (termed an IHC signature map). After

completing this process, output files were recorded into a specified

folder, the grid created by SigMap was removed and the original

pathologist annotations were restored on ImageServer.

Figure 2. The main SigMap program window. Within the main program window the user selects the reference H&E image (designated ‘‘Select
H&E’’), the IHC images, and the analysis macro to be used. The Aperio Positive Pixel Count algorithm was employed in this example using default
threshold settings (designated as ‘‘Default Brown Staining PPC’’). If desired, threshold settings may be adjusted by navigating to the algorithm
settings menu by selecting ‘‘Set Algorithm Settings’’.
doi:10.1371/journal.pone.0033520.g002

N-Gene Protein Expression Maps
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When generating the IHC maps and IHC signature maps, the

process alternated between Aperio and SigMap software environ-

ments. Processes which required the full resolution data

(0.560.5 mm2), such as defining regions of disease and algorithm

analysis, were performed on Aperio, whereas downsampled data

were used within SigMap for registration, grid definition and

signature map generation. There were two reasons to separate the

tasks in this manner. First, performing image manipulations in the

WSI system would be highly computationally intensive, since the

uncompressed images averaged 5.4 GB for the ten cases in this

study whereas the size of the 0.56 images used in SigMap were an

average size of 3.4 MB (20620 mm2). Second, the functionality to

register digitized slides and create signature maps did not exist on

WSI systems. Thus SigMap performed manipulations on the lower

resolution data in SigMap and imposed manipulations on the high

resolution source data via transformed analysis grids applied in the

Aperio system.

Assessment of Registration Performance
In order to evaluate the performance of the signature mapping

software and the effect of registration errors on IHC map and IHC

signature map statistics, gold standard registrations were per-

formed using Photoshop (version CS5 Extended, Adobe, San Jose,

CA). This optimal registration was accomplished by visually

matching each IHC image to its reference H&E image with

particular attention to the regions of annotated cancer. These pre-

registered data were uploaded onto the Aperio server and

signature mapping was performed as described above but without

any additional registration steps. These data are referred to as the

benchmark data and, for the purposes of this study, represent the

best registration achievable. The same cases were also processed

with SigMap with the slides in their native scanned orientations,

allowing the user and TurboReg to register the digitized IHC to

the reference H&E data as described in the methods section

(referred to as the native data).

Three IHC slides for each of 10 cases were used to assess

registration performance and the impact on generated IHC

Signature values over regions of annotated cancer. To quantify the

registration accuracy, five landmarks, distributed across the image,

were placed on each native IHC image and at corresponding

spatial locations on the reference H&E based on prevalent

anatomic features. The error was assessed for each IHC image

by calculating the vector distance between the reference H&E and

native IHC image in all 150 resulting pairs of landmarks using

standard tools in Photoshop. The vector lengths between the

reference and native landmarks were recorded as the registration

error (in micrometers).

The generated IHC signature scores were produced for each

annotated region of cancer. Box plots indicating minimum, first

quartile, median, third quartile and maximum values of the

signature scores from each annotated cancer region were used to

display IHC signature score data for both the benchmark and the

native data.

Results

Signature Map Generation
The IHC scores across the entire grid shown in Figure 5 were

used to generate IHC maps for all four genes after transforming

back to match the reference H&E orientation (Figure 6). IHC

Figure 3. SigMap’s registration window. Shown is the registration window in which the user performs rough alignment of each IHC slide (the
section stained with antibody directed against ACPP illustrated to the right) to the reference slide (H&E stained section illustrated to the left).
Manipulations may include clockwise or counterclockwise rotations in 90 degree increments, or vertical or horizontal flipping to achieve rough image
alignment prior to launching TurboReg which is done by selecting ‘‘OK’’.
doi:10.1371/journal.pone.0033520.g003
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signature scores were calculated using Equation 1 across all grid

locations and the results of all processed grid locations were

displayed as an IHC signature map (Figures 6 and 7). The weights

used for generating the signature map were 21.0, 19, 4 and 4 for

ACPP, CD34, MKI67 and ENOS, respectively. The weights for

ACPP, CD34 and MKI67 were generated using all annotated

cases while the weight for ENOS was derived from the single case

for which that stain was performed.

The approximate time to generate a signature map depends on

the number of IHC slides included, the complexity of the required

annotations and the area over which IHC scores are to be

generated. The total time to generate the IHC signature map

shown in Figure 7 was approximately 64 minutes: 35 minutes to

digitize 5 slides; 4 minutes to annotate the reference H&E;

2 minutes to connect to the server, select slides, stains and analysis

algorithms in SigMap; 1 minute for registration and grid

generation; 20 minutes to analyze of for all 4 IHC slides

(5 minutes per slide); and 1 minute for generating final results.

Registration Analysis
The error calculated for all 150 landmark pairs, color coded by

protein, is shown in the histogram in Figure 8. Stains had similar

skewed error distributions with (median mm, maximum mm) values

of (114, 317), (88, 350), and (94, 398) for MKI67 (low intensity

stain), (CD34 medium intensity staining) and ACPP (high intensity

staining), respectively. Median errors of 88–114 mm correspond to

6–7 cell diameters, and the maximal error of 398 mm corresponds

to 27 cell diameters, assuming a malignant PCa cell diameter of

15 mm [13]. There was no apparent relationship between staining

intensity and error in registering IHC images with reference H&E

images.

Effect of Registration Method on Signature Map Data
To evaluate the effect of registration method on IHC signature

maps, IHC signature maps were generated for 10 cases using a

benchmark method and compared with IHC signature maps

generated using the SigMap method of initial manual course

registration followed by TurboReg fine registration. Data for IHC

signature scores within 11 annotated cancer regions were available

for these ten cases (one case had two distinct areas of cancer in the

reference H&E image), and are presented in Figure 9 as box plots

for the benchmark (blue) and the native (red) IHC signature values

from these regions. The signature scores from the native data,

which underwent the registration procedure of SigMap, closely

match the optimally registered results from the benchmark data.

Therefore, registration error associated with manual course

registration followed by TurboReg fine registration appears to

have essentially no impact on signature scores within annotated

regions of cancer.

Discussion

Methods to generate maps of n-gene biomarker signatures

within pathologist-annotated tissue regions were developed by

combining the functionality of a Java software interface, SigMap,

with that of a commercial digitization platform, Aperio. By itself,

the Aperio system provides diagnostic quality digitization,

annotation tools and analysis functionality, but there was no way

to combine multiple IHC and H&E data sets. Signature maps, as

described in this paper, provide a unique insight into the spatial

distribution of gene signatures which has the potential to extend

the research and diagnostic potential of immunohistochemistry

studies.

Figure 4. Alignment results using TurboReg. (A) Image of H&E-stained reference section image. (B) Image of section stained for ACPP
previously brought into rough alignment with reference image by user. (C) Image of section stained for ENO2 previously brought into rough
alignment with reference image by user. (D) Monochromatic images of A–C generated for purposes of overlay illustrations. (E) TurboReg translated
and rotated (angle fiA) the image of ACPP-stained section until a mean location error was minimized. (F) Similarly, TurboReg translated and rotated
(angle fiB) the image of ENO2-stained section to minimize mean location error between this image and the reference H&E-stained image. The final
registered IHC image is overlaid on the reference H&E image in the bottom of panels (E) and (F). Values for translations and rotation determined by
TurboReg along with the initial coarse registration steps were stored in the software for later use in transforming grid locations from the reference to
the IHC images when generating IHC and signature maps.
doi:10.1371/journal.pone.0033520.g004
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Factors Affecting Signature Map Generation
There are several factors which can potentially impact the

signature scores generated by SigMap including the weights used

for combining the multiple IHC datasets, consistency of IHC

staining and the analysis algorithm used for generating the IHC

score, variability in annotating cancer regions and the accuracy

of the registration procedure. In this study, while the magnitude

of the weighting factors were simply used to normalize the mean

expression level of each IHC marker, the polarity of the weights

reflected published data regarding whether each protein would

be expected to be up- or down-regulated in aggressive (versus

non-aggressive) prostate cancer. In clinical application, the sign

and magnitude of each weighting factor would be determined

through a validation study correlating expression levels with an

outcome variable, and then weighting factors would be applied

uniformly across all patient samples to allow cross-case

comparisons.

Staining consistency, stain quantification and annotation

variability may also impact the reliability of IHC signature scores.

To minimize the potential impact of variable staining and

quantification, an automated immunostainer and antibodies

optimized for use on that platform were used in this study.

However, in general, staining consistency and quantification

algorithms would need to be validated before clinical use. While

not investigated in the current study, it is expected that between

pathologists, the margins of annotated regions of cancer may vary.

The potential impact of this variability on summary statistics for

annotated regions requires subsequent study.

Registration Methods
The effect of registration on the generation of signature scores

was explicitly tested in this study. The rigid registration strategy

used in the current implementation of SigMap is very basic. This

approach minimizes the mean-square difference between the

Figure 5. Generation of an IHC Map. (A) Reference H&E-stained section. (B) Pathologist annotations drawn in XML markup format using a pen
tablet screen. In this example, prostate cancer of Gleason sum score 3+3 is outlined in green, score 3+4 is outlined in yellow and 4+3 is outlined in
red. (C) IHC Map overlaid the annotated image with a grid with dimensions 0.2560.25 mm2. (D) Grid squares that were within pathologist annotated
areas were retained. (E) Contours of the annotated regions at the resolution of the analysis grid registered to the ACPP image. (F) The intensity of
ACPP staining within each grid location in (F) was determined by using the results of the Positive Pixel Count algorithm (default settings) multiplied
by the assigned weighting factor. The weighted value for each grid square was termed an IHC score. The two-dimensional depiction of IHC Score
values was termed an IHC Map.
doi:10.1371/journal.pone.0033520.g005
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reference H&E and the IHC images using translations and

rotations. Using the mean-square difference to optimize the

registration process assumes that the spatial distributions and

signal intensities between the images are similar for best results.

Although the digitized slides are converted to greyscale before

registration, the distribution of signal intensities can vary widely

between the H&E and various IHC datasets. Despite this fact, this

registration method performed well as the overall anatomic

structure apparently dominates the registration yielding excellent

results. This can be appreciated by the median registration errors

of 99 mm as determined from the control points between the

benchmark and the native datasets. This registration error is

smaller than the grid resolution of 250 mm used to generate the

presented signature maps, which likely explains the negligible

Figure 6. Generation of an IHC Signature Map. Displayed values of the IHC maps and IHC signature maps are in relative units (r. u.). (A) IHC Map
for ENO2, shown in red since the weighting factor was positively signed (higher expression is associated with aggressive disease) and thus higher
expression was shown as more intense red. (B) IHC Map for CD34 (also shown in red due to positively signed weighting factor). (C) IHC Map for MKI67
(also shown in red due to positively signed weighing factor). (D) IHC Map for ACPP, shown in blue since the weighting factor was negatively signed
(higher expression is associated with non-aggressive disease) and thus higher expression was shown as more intense blue. (E) The weighted sum of
IHC Scores (termed an IHC Signature Map) were projected in grid squares across annotated tumor areas of Gleason scores 3+3, 3+4, and 4+3 outlined
in green, yellow and red, respectively.
doi:10.1371/journal.pone.0033520.g006
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impact on the generated IHC scores, and IHC signature scores

reported in Figure 9.

The image alignment method could be further improved by

automating the process and by potentially implementing deform-

able registration methods to address tissue compression and

stretching which occurs when making slides. For example, Cooper

et al. have demonstrated an automatic non-rigid, feature-based

strategy to register histological sections with different stain types

[48]. However, it is unclear how such methods would perform

when large rotational differences are present or when IHC sections

are flipped with respect to the reference H&E.

While alternative registration strategies are possible within

SigMap, there are some limitations as to what can be realized on

the Aperio system. Each grid location on Aperio must be defined

by a series of straight edges which connect at vertices. Therefore, if

deformable registration strategies are used to match the IHC data

to the reference H&E, the subsequent grid made from these

transformations could only be approximated. In general, these

transformations should also be invertible.

Processing time
Most of the total time required for generating signature maps is

spent on processes which run in the background. Out of the

64 minutes it took to generate the signature map in Figure 7,

35 minutes were spent scanning the H&E and IHC slides and

20 minutes on analysis which is performed on the ImageServer.

The amount of pathologist time is minimal and limited to the time

required to annotate the digitized H&E (approximately 4 minutes

per slide), while the other laboratory staff time to setup slides for

scanning and run SigMap is minimal (approximately 10 minutes).

Newer WSI imaging platforms are several-fold faster than the

study instrument. Further, the analysis time on the ImageServer

could be greatly reduced by either fully utilizing multi-core

processing or GPU acceleration since the process to analyze the

IHC score within each grid location is highly parallelizable.

Potential Role of IHC Signature Maps
N-gene expression profiling has broad applicability in anatomic

pathology as new diagnostic, prognostic, and predictive protein

biomarker panels are developed to individualize approaches to

patient care. Compared to single gene models, multigene

expression profiles of cancer and other complex diseases may

Figure 7. Four-gene IHC signature map. The IHC signature map is
displayed in relative units (r. u.), projected against a black background
to illustrate the four-gene signature map in each pathologist-annotated
area (tumor areas of Gleason sum scores 3+3, 3+4, and 4+3 outlined in
green, yellow and red, respectively).
doi:10.1371/journal.pone.0033520.g007

Figure 8. Registration errors between the IHC and H&E images. Registration errors between each of the 3 IHC datasets registered to the
reference H&E data for all 10 subjects. The error estimate is based on the vector distance between landmarks placed on the same anatomic features
present in the registered IHC and reference H&E slides. The histogram contains 5 measurements for each of 3 IHC datasets for 10 cases resulting in a
total of 150 error estimates. The histogram shows the stain dependent errors for ACPP (blue), MKI67 (red) and CD34 (green).
doi:10.1371/journal.pone.0033520.g008
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more accurately classify disease, prognosticate clinical outcome,

and predict response to therapy. In prostate cancer, numerous

publications have identified n-gene molecular signatures that are

correlated with biochemical failure versus non-failure following

prostatectomy [49,50,51,52,53,54].

Validation of n-gene expression signatures may be best

performed using IHC. Several recent papers suggest that n-gene

expression profiling assessed at the protein level by IHC are

amenable to large-scale, tissue microarray-based validation

studies, which yield similar tumor sub-typing as multigene

signatures assessed by molecular (qRT-PCR or microarray)

methods [55,56]. IHC has been used to validate the association

of gene expression profiles in prediction of cancer patient response

to treatment [57], and prognosticating risk of metastasis [23,58]

and other outcome measures [59]. Once validated, IHC-based

assays may be rapidly deployed as clinical tests [19,20,21] on

standardly fixed and processed tissue sections, with rapid (typically

same-day) turn-around times optimal for clinical practice.

Formalin fixation and paraffin embedding of tumor tissues have

been recently reinforced by the College of American Pathologists

and the American Society of Clinical Oncology as being reliable

for generating reproducible intra- and inter-laboratory measure-

ments of gene expression levels [14,15].

Alternatives to using signature maps for multigene signature

analysis include laser capture microdissection of tissue sub-regions

followed by solubilization of captured tissues for multigene

molecular analysis [60]. However, the signature maps constructed

by SigMap much more directly addresses gene expression in tissue

sub-regions without need for tissue microdissection and allow the

assessment of expression heterogeneity. Another alternative is

immunofluorescence, which allows staining with multiple anti-

bodies, each labeled with a distinct fluorescent marker [61,62].

Signature maps are superior to immunofluorescence results for

two reasons. Routine colorimetric IHC with hematoxylin

counterstaining allows bright-field determination of tissue archi-

tecture under pathologist direct visualization that is superior to

dark field methods used in immunofluorescence [63,64]. Further,

whereas special optimization procedures often needed to multiplex

fluorescently-labeled antibody assays, SigMap allows signature

determination from multiple, routine, single antibody staining

assays.

The benefits of evaluating biomarker expression under direct

microscopic visualization in the context of histologically inter-

pretable tissue sections, rather than ‘‘grind and bind’’ methods

such as those used in most biochemical experiments including

most genomics and proteomics methods, is perhaps best

illustrated by the history of estrogen receptor (ER) quantitation

in breast cancer. Although ER quantification was initially

performed by solubilizing snap-frozen tumor tissue and then

using tissue extracts in biochemical ligand binding assays (LBA),

IHC assays rapidly replaced biochemical assays. IHC allows the

pathologist to restrict analysis only to visualized tumor cells (small

ER-positive tumors may otherwise yield false-negative LBA

results due to damping of signal by abundant benign background

tissue elements), is less expensive, is amenable to standardized

tissue handling methods, and allows direct correlation with other

molecular markers assayed on adjacent sections (reviewed in

references [65,66,67]).

Figure 9. IHC signature scores from 11 annotated regions of cancer from 10 subjects. The benchmark (blue) and native (red) data for the
same region are shown immediately adjacent to each other for comparison. For each region, the minimum, 1st quartile, median, 3rd quartile and the
maximum values are shown. The data are sorted first by grade and then by the median of the benchmark data within each grade.
doi:10.1371/journal.pone.0033520.g009
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Assessment of the degree of heterogeneity of single-gene or

multigene signature expression within diseased tissue areas is an

additional strength of signature maps. Heterogeneity in HER-2

amplification occurs in 5–30% of breast cancer tumors [68] and

there is also considerable spatial heterogeneity in HER-2 protein

expression, particularly among cases with equivocal (2+) overall

staining [69]. There is data to suggest that this heterogeneity may

be clinically important: 2–5% of women whose primary breast

tumors lacked definite HER-2 amplification or HER-2 protein (3+)

over-expression nevertheless had lymph node metastases that were

amplified/over-expressed [70], suggesting that small HER-2-

positive tumor subclones present in the primary tumor may evolve

to give rise to metastatic tumor growths. Signature maps will allow

the degree of spatial heterogeneity of single-gene expression and

multigene signatures across large tumor areas present on

pathologist annotated whole slides to be quantitatively assessed.

As such, these n-gene expression maps may be useful in studies

evaluating the potential importance of heterogeneity in patient

prognostic and predictive assays.

Finally, signature maps may be useful to develop multigene

expression signatures throughout virtually reconstructed whole

organs as they retain their spatial relationships to the H&E-stained

reference whole slide images. Using the developed methods,

transformations (flips, translations and rotations), needed to

assemble individual images into reconstructed whole organs,

may be mathematically applied to IHC signature maps in a

manner similar to the way such transformations are handled by

SigMap, such that three-dimensional multigene expression

signatures may be displayed in the spatial context of reconstructed

organ histology. Spatially co-registering virtual whole organ

reconstructions with preoperative in vivo anatomic and functional

imaging methods such as computed tomography (CT), positron

emission tomography (PET) and magnetic resonance imaging

(MRI) would then allow direct comparison in three dimensions

between features obtained by imaging and features including

multigene signatures obtained by pathologic evaluation. For

example, genes whose expression patterns are validated to be

highly significant for predicting disease aggressiveness could be co-

registered with imaging and used as a gold standard for identifying

imaging biomarkers that assess disease aggressiveness in vivo. This

would expand upon previous work in mouse models in which

spatially mapped gene expression data was overlaid on detailed

anatomic information [71,72].
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