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Abstract

Background: Rapamycin is an attractive approach for the treatment and prevention of HCC recurrence after liver
transplantation. However, the objective response rates of rapamycin achieved with single-agent therapy were modest,
supporting that rapamycin resistance is a frequently observed characteristic of many cancers. Some studies have been
devoted to understanding the mechanisms of rapamycin resistance, however, the mechanisms are cell-type-dependent and
studies on rapamycin resistance in HCC are extremely limited.

Methodology/Principal Findings: The anti-tumor sensitivity of rapamycin was modest in vitro and in vivo. In both human
and rat HCC cells, rapamycin up-regulated the expression and phosphorylation of PDGFRb in a time and dose-dependent
manner as assessed by RT-PCR and western blot analysis. Using siRNA mediated knockdown of PDGFRb, we confirmed that
subsequent activation of AKT and ERK was PDGFRb-dependent and compromised the anti-tumor activity of rapamycin.
Then, blockade of this PDGFRb-dependent feedback loop by sorafenib enhanced the anti-tumor sensitivity of rapamycin in
vitro and in an immunocompetent orthotopic rat model of HCC.

Conclusions: Activation of PI3K/AKT and MAPK pathway through a PDGFRb-dependent feedback loop compromises the
anti-tumor activity of rapamycin in HCC, and blockade of this feedback loop by sorafenib is an attractive approach to
improve the anti-tumor effect of rapamycin, particularly in preventing or treating HCC recurrence after liver transplantation.
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Introduction
Hepatocellular carcinoma (HCC) is the second most frequent

cause of cancer death in men and the sixth leading cause of cancer

death in women [1]. Liver resection is still the mainstay of treatment

for HCC and provides the consistent long-term survival. However,

the resectability is limited by tumor extent, location, or underlying

liver dysfunction, with only a minority of HCC being potentially

resectable. All these leave liver transplantation rather than liver

resection as the only potentially curative option, which increase the

possibilities of HCC resection for patients with nonresectable tumor

or severe hepatic failure. Despite the total hepatectomy and liver

replace, recurrence and metastasis remained the major obstacles to

more prolonged survival after liver transplantation for HCC [2].

Thereby, novel therapeutic strategies to prevent recurrence after

liver transplantation are needed.

As a mammalian target of rapamycin (mTOR) inhibitor,

rapamycin is clinically used as an immunosuppressive drug to

prevent graft rejection after liver transplantation. Meanwhile,

rapamycin has also shown anticancer properties in vitro and animal

models [3,4,5]. Because the development and recurrence of cancer

are among the most serious side effects of traditional immuno-

suppression [6], rapamycin may be an effective alternative to

conventional calcineurin inhibitor-based therapies in high-risk

patients, particularly in HCC patients undergoing liver transplan-

tation. It has already been reported that rapamycin-based

immunosuppression is associated with increased survival or

recurrence-free survival after liver transplantation for HCC in

many studies [7,8].

Although rapamycin and its analogs show anti-tumor activity

across a variety of human cancers, rapamycin resistance is a

frequently observed characteristic of many cancers and cancer cell

lines [9,10]. Some studies have been devoted to understanding the

mechanisms of resistance of rapamycin [9,10], however, these

mechanisms do not necessarily account for all instances of
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rapamycin resistance and studies on HCC are extremely limited.

Only a study showed that the mechanisms of rapamycin resistance

in hepatic cells involved alterations of signaling downstream from

mTOR and that the mechanisms were highly heterogeneous [11].

Thus, a better understanding of mTOR signaling and the

mechanisms of rapamycin resistance will lead to more optimal

targeting of this pathway for enhancing the therapeutic efficacy in

preventing and treating tumor recurrence after liver transplanta-

tion for HCC.

Thus, in this study, we explored the molecular mechanisms of

rapamycin resistance in vitro and in an immunocompetent

orthotopic rat HCC model, and found that the blockade of

associated signaling feedback stemming by sorafenib could

overcome rapamycin resistance in HCC.

Materials and Methods

Reagents and cell lines
Rapamycin was purchased from Sigma Aldrich for in vitro

experiments, and from Wyeth for in vivo experiments. Sorafenib

(BAY 43–9006, Bayer Pharmaceutical Corporation) was dissolved

in sterile DMSO for in vitro experiments, and in Cremophor EL

(Sigma) and 95% ethanol (50:50) for in vivo experiments. DMSO

was added to cultures at 0.1% (v/v) final concentration as a vehicle

control. Primary antibodies, AKT and phosphorylated AKT (p-

AKT; S473); ERK1/2 and phosphorylated ERK1/2 (p-ERK1/2;

T202/Y204); PDGFRb and phosphorylated PDGFRb (p-

PDGFRb; Y1021) were purchased from Cell Signaling Technol-

ogy. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was

purchased from Millipore. Anti-mouse CD31 mAb was purchased

from BD Pharmingen. Human or rat PDGFRb small interfering

RNA (siRNA), control siRNA, were obtained from Shanghai

GenePharma Co. (Shanghai, P.R.China).

Two human HCC cell lines, HCCLM3 and HepG2 (ATCC),

and a rat HCC cell line, Morris hepatoma 3924A (MH3924A)

cells (German Cancer Research Center Tumor Collection) [8],

were maintained in high-glucose DMEM supplemented with 10%

heat-inactivated fetal bovine serum, L-glutamine, 100 units/ml

penicillin, and 100 mg/ml streptomycin. Cell lines were cultured at

37uC in a humidified incubator in 5% CO2.

MTT assay
The effects of rapamycin or sorafenib on HCC cell growth were

determined with the 3-[4,5-dimethylthiazol-2-yl]-2,5–diphenylte-

trazoliumbromide (MTT) assay. Cells were seeded into 96 - well

flat-bottom plates (26103/well) and cultured for 24, 48, or 72 h in

medium supplemented with different concentration of rapamycin

or sorafenib (6 wells/dose), and each experiment was repeated at

least three times. After treatments, cells were incubated with MTT

(20 ml/well) at 37uC for 4 h, and then 200 ml DMSO was added.

The absorbance of individual wells was determined at 570 nm.

Determination of apoptotic cells
Cells treated with different concentrations of rapamycin or

sorafenib for 36 h were collected. Cells were then treated with 5 ml

of Annexin V-FITC solution and PI (1 mg/ml; BD PharMingen,

San Jose, CA). Dual parameter flow cytometric analysis was

performed to determine the percentage of apoptotic cells (Annexin

V alone-positive cells), necrotic cells (PI-positive cells), or viable

cells (staining negative for Annexin V and PI).

Western blot analysis
Western blot analysis was performed as previously described

[5]. Briefly, total cell lysates were prepared, and proteins were

separated by SDS-PAGE, followed by transfer to polyvinylidene

difluoride membrane. The membranes were washed, blocked, and

incubated with the specific primary antihuman antibodies against

p-AKT (1:1000), AKT (1:1000), p-ERK1/2 (1:1000), ERK1/2

(1:1000), p-PDGFRb (1:1000) and PDGFRb (1:1000), or GAPDH

(1:5000), followed by incubation with horseradish peroxidase-

conjugated secondary antibodies. Proteins were detected by

enhanced chemiluminescence assay (Pierce-Thermo Scientific).

Quantitative reverse transcription-polymerase chain
reaction (qRT-PCR)

Cells were plated and treated with rapamycin or sorafenib. The

cells were harvested after 24 h, and total RNA was extracted with

Trizol Reagent (Invitrogen) according to the manufacturer’s

protocol. Total RNA was reverse transcribed with RevertAidTM

first-strand cDNA synthesis kit (Fermentas). Human and rat

PDGFRs mRNA levels were determined by qPCR using SYBR

Premix Ex Taq (TaKaRa, Dalian, China) and normalized to

human and rat b-actin respectively, using the primers shown in

Table S1. Relative gene expression was calculated with the 2-DCt

method.

PDGFRb silencing by siRNA
PDGFRb siRNA and negative control mismatch sequences

were transfected into LM3, HepG2 and MH cells using

LipofectamineTM 2000 (Invitrogen) according to the manufactur-

er’s instructions. The following sense and anti-sense siRNA strands

were used: PDGFRb (human) GAG GGU GAC AAC GAC UAU

ATT (sense), UAU AGU CGU UGU CAC CCU CTT (anti-

sense); PDGFRb (rat) GCC AAU GGC AUG GAA UUC UTT

(sense), AGA AUU CCA UGC CAU UGG CTT (anti-sense).

After 72 h, cells were lysed, and protein was analyzed by Western

blot.

Animal experiments
Male ACI rats (Harlan Inc., Indianapolis, IN, 200–220 g) were

maintained in laminar-flow cabinets under specific pathogen-free

conditions and a 12-h dark-light cycle. The animals were cared for

and handled according to recommendations of the NIH guidelines

for care and use of laboratory animals. The Shanghai Medical

Experimental Animal Care Committee approved the experimental

protocol. Intrahepatic tumor implantation with Morris Hepatoma

fragments was performed under aseptic conditions as previously

described [4].

The rats were randomly assigned to four groups (each group,

n = 9): untreated vehicle group, rapamycin treatment group,

sorafenib treatment group, and rapamycin combined sorafenib

treatment group. Treatment was initiated on day 10 after tumor

implantatio when all groups had tumors averaging 400 mm3,

which was demonstrated in our preliminary experiment. Rapa-

mycin (2 mg/kg) or sorafenib (30 mg/kg) was given (orally, once

daily) in 500 ml by gavage in single agent-treated group. The mice

treated with both rapamycin and sorafenib was administered by

using the same schedule for each drug as described for the single

treatment. The dosage of rapamycin or sorafenib is based on

dosages commonly used in murine models [4,5]. All control mice

received an equal volume of carrier solution by gavage.

Tumor growth was monitored each week by ultrasonography

from day 17 after tumor implantation as described previously [4].

Ultrasound scans were performed using a commercially available

GE Voluson E8 unit. Tumor volume was calculated in cubic

millimeters by multiplying the transverse, anteroposterior, and

longitudinal dimensions of the masses. The rats were sacrificed at
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day 38 after tumor implantation. At necropsy, tumor volume was

calculated as V = p/66length6width6height. Lung and lymph

node metastasis, as well as peritoneal seeding, were denoted as the

visually positive tumor nodules (Fig. S2). For RT-PCR and

Western blot analysis, tumor tissues were homogenized in tumor

lysis buffer. For immunohistochemical staining, tumors were fixed

in paraformaldehyde for 24 h and embedded in paraffin for

sectioning.

Immunohistochemical PCNA staining for tumor cell
proliferation

Paraffin-embedded tissue sections of all tumors were prepared

and were labeled first with a proliferating cell nuclear antigen

(PCNA)-specific monoclonal mouse antibody (DAKO A/S),

followed by staining with a HRP-antimouse immunoglobulin

antibody (DAKO A/S). The color reaction was visualized with

diaminobenzidine, and tissues were counterstained with Mayers

hematoxylin. The Proliferation Index was determined by PCNA

immunostaining and calculating the number of PCNA-positive

cells per total number of cells (hematoxylin-positive plus PCNA-

positive cells) in 5 randomly selected fields at 6200.

Detection and quantitation of apoptosis
The terminal deoxynucleotidyl transferase-mediated dUTP nick

end labeling (TUNEL) method was based on the specific binding

of terminal deoxynucleotidyl transferase to the 39-OH ends of

DNA, ensuring the synthesis of a polydeoxynucleotide polymer.

For this purpose, the In Situ Cell Death Detection kit-Peroxidase

(Roche) was used according to the manufacturer’s directions.

The capture of the photographs and measurement of positive

staining density were as described previously [5]. Briefly, the tissue

sections were viewed at 6200 magnification and images were

captured. The Apoptosis Index was determined by counting at

least 1,000 cells in 5 randomly selected fields,using Image-Pro Plus

v6.0 software (Media Cybernetics, Silver Spring, MD).

Immunohistochemistry
Tissue sections (4-mm) were stained with hematoxylin and eosin

for histologic analysis and with the specific primary antihuman

antibodies against p-AKT, p-ERK and CD31 for immunohisto-

chemistry. The tissue sections were viewed at 6200 magnification

and images were captured. Five fields per section were analyzed,

excluding peripheral connective tissue and necrotic regions. For

expression intensity of p-AKT and p-ERK, the integrated

absorbance and the area in a photograph were measured using

Image-Pro Plus v6.0 software (Media Cybernetics, Inc.). A

uniform setting of color segmentation was loaded for counting

the integrated absorbance of all the pictures, and the mean p-AKT

or p-ERK density was calculated as the product of the integrated

absorbance/total area. For the microvessel density (MVD),

sections were stained with CD31 antibody and a diaminobenzi-

dine reaction system for immunohistochemical assessment of

tumor microvessels in five randomly selected fields at 2006
magnification. The average number of microvessels was calculat-

ed. For the microvessel count, any brown-stained endothelial cell

or endothelial cell cluster that was clearly separated from adjacent

microvessels, tumor cells, and connective elements was counted as

one microvessel, irrespective of the presence of a vessel lumen.

Statistical analysis
Statistical analysis was performed with SPSS 16.0 software

(SPSS, Chicago, IL). Measurement values were expressed as the

mean + standard error of the mean (SEM). Student’s t test, x2 test

and Fisher’s exact test were used as appropriate. Two-tailed p-

values,0.05 was judged to be significant.

Results

The anti-tumor sensitivity of rapamycin in HCC
In this study, we first examined the sensitivity of rapamycin on

the growth and metastasis of HCC.

The HCC cell lines HepG2, HCCLM3, and MH3924A were

incubated for 24, 48, and 72 h with rapamycin (0.5–1000 ng/ml).

As showed in Fig. 1A, the growth of the above HCC cells were

inhibited by rapamycin (minimum effective concentration,

100 ng/ml in HepG2, 10 ng/ml in HCCLM3, and 50 ng/ml in

MH3924A for 24 h). However, the growth inhibition rate

increased slightly and the maximal growth inhibition rate was

only 34.07%, 28.38% and 43.88%, respectively, even cells were

incubated with very high concentration of rapamycin (1000 ng/

ml) for 72 h. In addition, following 24 h treatment, we showed

that rapamycin induced apoptosis in HCC cells (Fig. 1B).

However, even cells were incubated with 1000 ng/ml rapamycin,

the maximal apoptosis rate was only 25.24%, 6.46% and 28.91%,

respectively (basal apoptosis rate, 12.00%, 3.37% and 11.33%,

respectively).

We further investigated the anti-tumor effect of rapamycin in an

immunocompetent orthotopic rat model of HCC as described

previously [12]. As shown in Table 1, although the growth rate of

rapamycin-treated tumors was decreased relative to controls,

rapamycin treatment alone did not suppress lung metastasis,

lymph node metastasis, peritoneal seeding and bloody ascites

effectively compared with the vehicle control group (P.0.05 for

all).

Collectively, these data suggested that the anti-tumor sensitivity

of rapamycin in HCC was modest.

Effects of rapamycin on PDGFR expression and
phosphorylation in vitro

Protein kinases are major regulators of most cellular signaling

pathways. Among them, receptor tyrosine kinases (RTKs), such as

platelet-derived growth factor receptor (PDGFR), play pivotal

roles in promoting cellular growth and proliferation by transduc-

ing extracellular stimuli to intracellular signaling circuits. Previous

data showed that in Tsc12/2 and Tsc22/2 cells, loss of Tsc1/

Tsc2 activated mTOR and down-regulated PDGFR expression;

inhibition of mTOR by rapamycin restored PDGFR expression

and subsequently enhanced phosphatidylinosital 3-kinase (PI3K)/

AKT activation, which reversed the impaired tumor formation by

Tsc12/2 and Tsc22/2 cell lines [13,14]. Given these, we

hypothesized that paradoxical up-regulation of PDGFR by

rapamycin would also occur in tumor cells, which may impair

anti-tumor activity of rapamycin in HCC.

We found that rapamycin (50 ng/ml) significantly up-regulated

the mRNA expression level of PDGFRb after 24 h treatment. In

contrast, the mRNA expression level of PDGFRa remained stable

during the 24 h treatment (Fig. 1C). Furthermore, we confirmed

that the expression and phosphorylation of PDGFRb were up-

regulated by rapamycin in a time and dose-dependent manner as

assessed by western blot analysis (Fig. 1D). While this drug at

50 ng/ml, up-regulation and activation of PDGFRb were evident

as early as 2 h after treatment and lasted for 24 h in all HCC cell

lines (Fig. 1D). These suggested that PDGFRb, instead of

PDGFRa, was a major negative-regulation target of rapamycin

in HCC. Thus, paradoxical up-regulation of PDGFRb may

impair anti-tumor activity of rapamycin in HCC.

PDGFRb Feedback Loop on Rapamycin Resistance
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Activation of PI3K/AKT and MAPK pathway through a
PDGFRb-dependent feedback loop is involved in
rapamycin resistance in vitro

Two of the most important downstream signaling cascades of

PDGFRb are the Ras/Raf/MEK/extracellularsignal-resgulated

kinase (ERK) and the PI3K/AKT/mTOR pathways. We next

investigated whether up-regulation of PDGFRb by rapamycin

would induce the phosphorylation of AKT and ERK.

As shown in Fig. 2A, there were marked augments in AKT and

ERK activation in a time and dose-dependent manner in response

to both rapamycin and PDGF (50 ng/ml), which corresponded

with rapamycin-induced PDGFRb activation as assessed by

western blot analysis. In contrast, total AKT and ERK expression

levels were not affected. These results demonstrated that there

were significant up-regulations of AKT and ERK phosphorylation

in HCC cells in response to both rapamycin and PDGF.

Figure 1. Effects of rapamycin on PDGFR expression and phosphorylation in vitro. A, Rapamycin inhibited cell proliferation, however, the
growth inhibition rate increased slightly even cells were incubated with very high concentration of rapamycin (1000 ng/ml) for 72 h, as assessed by
the MTT assay. B, Rapamycin induced apoptosis in HCC cells following 24 h treatment, however, the maximal apoptosis rate was only 25.24%, 6.46%
and 28.91%, respectively. C, Rapamycin significantly up-regulated the mRNA expression level of PDGFRb but not PDGFRa. After 24-h rapamycin
treatment (50 ng/ml), PDGFRa and PDGFRb mRNA levels were analyzed by qRT-PCR. D, The expression and phosphorylation of PDGFRb were up-
regulated by rapamycin in a time and dose-dependent manner as assessed by Western blot analysis. HCC cells were treated with 50 ng/ml rapamycin
for different times or with different concentration of rapamycin for 6 h. Three separate experiments were performed in each study. Data are
expressed as mean 6 SE; *P,0.05, Student’s t test (versus vehicle).
doi:10.1371/journal.pone.0033379.g001

Table 1. The combination therapy enhanced suppression of tumor growth and metastasis in a rodent model of HCC.

Group (n = 9)
Tumor volume
(mm3) Tumor weight (g)

Lung metastasis
(%)

Lymph node
metastasis (%)

Bloody ascites
(%)

Peritoneal seeding
(%)

Vehicle 12486.6762536.88* 13.2262.17* 9/9(100)# 6/9(66.7)# 5/9(55.6)# 5/9(55.6)#

Rapamycin 5550.906645.96* 6.4760.75* 7/9(77.8)# 6/9(66.7)# 4/9(44.4) 2/9(22.2)

Sorafenib 2375.976312.47* 3.2360.28* 5/9(55.6)# 3/9(33.3) 0/9(0) 0/9(0)

Combination 788.896155.37 1.1260.14 0/9(0) 0/9(0) 0/9(0) 0/9(0)

NOTE: Intrahepatic tumors, lung and lymph node metastasis, bloody ascites, as well as peritoneal seeding in rats were evaluated on day 38 following orthotopic
implantation of MH tumor fragments. Treatment with either vehicle or indicated drug (n = 9 per group) started on day 10 after tumor implantation. Tumor sizes were
presented by both volume in cubicmillimeters and weight in grams (mean 6 SE). Lung and lymph node metastasis, as well as peritoneal seeding, were denoted as the
visually positive tumor nodules (the percentages were indicated in parentheses).
*P,0.05, Student’s t test (versus combination group).
#P,0.05, Fisher’s exact test (versus combination group).
doi:10.1371/journal.pone.0033379.t001
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To clarify whether paradoxical phosphorylation of AKT and

ERK were PDGFRb-dependent, we further exposed HCC cells to

PDGFRb-targeted siRNA, and found that siRNA targeted

knockdown of PDGFRb resulted in dephosphorylation of AKT

and ERK significantly (Fig. 2B). Similarly, although in response to

PDGF, in HCC cells exposed to PDGFRb-targeted siRNA (HCC-

siRNA-PDGFRb), rapamycin (50 ng/ml for 6 h) did not up-

regulate phosphorylation of AKT and ERK prominently (Fig. 2B),

suggesting that PDGFRb-dependent feedback loop may play an

important role in rapamycin-induced AKT and ERK phosphor-

ylation in HCC.

Furthermore, we assessed the sensitivity of rapamycin on tumor

growth and apoptosis in HCC-siRNA-PDGFRb cells. Our data

showed that the growth inhibition rate and apoptosis rate

increased significantly in HCC-siRNA-PDGFRb cells compared

with those in controls (P,0.05 for all, Fig. 2C and 2D). The

PDGFRb-dependent feedback loop was therefore suggested to be

responsible for rapamycin resistance in HCC.

Blockade of PDGFRb-dependent feedback loop by
sorafenib enhances the anti-tumor sensitivity of
rapamycin in vitro and in an immunocompetent
orthotopic rat HCC model

Sorafenib, is a multikinase inhibitor with activity against

PDGFRb and Raf/MEK/ERK signaling pathway. As shown in

Fig. S1A and S1B, sorafenib alone inhibited the basal expression

of PDGFRb, as well as the phosphorylation of AKT and ERK

significantly. We next evaluated whether sorafenib could decon-

struct PDGFRb-dependent feedback loop and subsequently

enhance the anti-tumor sensitivity of rapamycin.

In response to both sorafenib (5 mM for 24 h) and rapamycin,

the mRNA level expression of PDGFRb was significantly

decreased in HCC cells (Fig. 3A). As confirmed by western blot

analysis, up-regulated expression and phosphorylation of

PDGFRb were also significantly inhibited by sorafenib in vitro

(Fig. 3B and 3C). In parallel with PDGFRb inhibition, rapamycin-

Figure 2. Activation of PI3K/AKT and MAPK pathway through a PDGFRb-dependent feedback loop compromises the anti-tumor
activity of rapamycin in vitro. A, Rapamycin induced AKT and ERK phosphorylation in a time and dose-dependent manner in response to both
rapamycin and PDGF. HCC cells were exposed to both 50 ng/ml rapamycin and 50 ng/ml PDGF for different times, or to different concentration of
rapamycin and 50 ng/ml PDGF for 6 h. Proteins were analyzed by Western blot. B, PDGFRb silencing by siRNA inhibited phosphorylation of AKT and
ERK in response to both rapamycin and PDGF. HCC cells were exposed to PDGFRb-targeted siRNA, and then treated with both 50 ng/ml rapamycin
and 50 ng/ml PDGF for 6 h. C, D, PDGFRb-siRNA significantly enhanced the anti-tumor activity of rapamycin in vitro. HCC-siRNA-PDGFRb cells were
incubated with different concentration of rapamycin. The growth inhibition rates were assessed by the MTT assay after 48 h treatment, while the cell
apoptosis rates were analysed after 24 h treatment. Three separate experiments were performed in each study. Data are expressed as mean 6 SE;
*P,0.05, Student’s t test (versus mock treated with same concentration of ranpamycin).
doi:10.1371/journal.pone.0033379.g002
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induced phosphorylation of AKT and ERK were reduced by

sorafenib in a time and dose-dependent manner (Fig. 3B and 3C),

suggesting that sorafenib was with significant activities against

rapamycin-induced phosphorylation of PDGFRb, AKT and

ERK. Furthermore, when HCC cells exposed to PDGFRb-

targeted siRNA, the activity of sorafenib against rapamycin-

induced AKT phosphorylation was attenuated evidently (Fig. 3D),

suggesting that this inhibition role on AKT phosphorylation may

be PDGFRb-dependent. Collectively, these results suggested that

sorafenib could effectively deconstruct the PDGFRb-dependent

feedback loop and subsequently inhibite phosphorylation of both

AKT and ERK in vitro.

To determine whether that targeted therapy of combining

rapamycin with sorafenib showed synergistic anti-tumor effect, we

developed experiment to test the consequences of sorafenib

individually or together with rapamycin mediated antitumor

effects. Our data showed that treatments of these cells with

sorafenib alone showed significant growth inhibition and cell

apoptosis (Fig. S1C and S1D). Moreover, the combination of

rapamycin (50 ng/ml) with sorafenib (1, 5, 10 mM) showed more

significant greater effects than rapamycin or sorafenib alone in

inhibiting the growth and inducing apoptosis of these HCC cells

(Fig. 3D and 3E).

We further investigated the anti-tumor effect of rapamycin

alone and in combination with sorafenib in vivo. The combination

therapy showed not only a much stronger suppression of tumor

growth rate, but also significant inhibition of tumor metastasis, in

comparison with both single agent-treated groups (Table 1 and

Figure 3. Blockade of PDGFRb-dependent feedback loop by sorafenib enhances the anti-tumor sensitivity of rapamycin in vitro. A,
As shown by qRT-PCR, sorafenib significantly inhibited the mRNA expression level of PDGFRb in vitro. Cells were treated with rapamycin (50 ng/ml)
alone or in combination with sorafenib (5 mM) for 24 h. B, C, Sorafenib significantly inhibited rapamycin-induced expression and phosphorylation of
PDGFRb, as well as AKT and ERK activation in a time and dose-dependent manner. HCC cells were exposed to both 5 mM sorafenib and 50 ng/ml
rapamycin for different times, or to different concentration of sorafenib and 50 ng/ml rapamycin for 6 h. Proteins were analyzed by Western blot. D,
PDGFRb-siRNA significantly attenuated the activity of sorafenib against rapamycin-induced AKT phosphorylation. Cells were exposed to PDGFRb-
targeted siRNA, and then treated with 50 ng/ml rapamycin alone or in combination with 5 mM sorafenib for 6 h. E, F, The combination of rapamycin
with sorafenib showed more significant greater effects than rapamycin or sorafenib alone in inhibiting the growth and inducing apoptosis of these
HCC cells. cells were incubated with both rapamycin (50 ng/ml) and sorafenib (2, 5, 10 mM), the cell apoptosis rates were analysed after 24 treatment,
while the growth inhibition rates were assessed after 48 h treatment. Three separate experiments were performed in each study. Data are expressed
as mean 6 SE; *P,0.05, Student’s t test (versus rapamycin alone).
doi:10.1371/journal.pone.0033379.g003

PDGFRb Feedback Loop on Rapamycin Resistance
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Fig. 4A). As shown in Fig. 4B and 4C, rapamycin significantly

up-regulated the expression and phosphorylation of PDGFRb, as

well as the phosphorylation of AKT and ERK in vivo, suggesting

that the PDGFRb-dependent feedback loop also occurs in vivo

and plays an important role in rapamycin resistance in this

rat model. When in combination with sorafenib, rapamycin-

induced activation of PDGFRb, AKT and ERK were also

significantly inhibited as were in vitro results (Fig. 4B and 4C).

More significant tumor necrosis in the combination treatment

group was visualized by hematoxylin-eosin staining (Fig. 4D). As

assessed by PCNA and TUNEL staining, combination treat-

ment showed more significant effects than rapamycin or

sorafenib alone in inhibiting tumor cell proliferation and inducing

apoptosis of HCC cells (P,0.05 for all; Fig. 4D). An additional

effect on tumor angiogenesis was also observed in the group that

received both drugs. The combination therapy showed signifi-

cantly fewer tumor vessels than both single agent-treated groups

(Fig. 4D).

Figure 4. Inhibition of tumor growth and metastasis by rapamycin alone or in combination with sorafenib in an immunocompetent
orthotopic rat HCC model. Rats with MH tumors were treated with vehicle, rapamycin (2 mg/kg/d), sorafenib (30 mg/kg/d) or combination (both
rapamycin and sorafenib) starting on day 10 after tumor implantation. A, The combination therapy showed a significantly stronger suppression of
tumor growth rate in comparison with both single agent-treated groups. Tumor growth was monitored each week by ultrasonography from day 17
after tumor implantation. B, C, RT-PCR, Western blot analysis and immunohistochemistry showed that rapamycin significantly up-regulated the
expression and phosphorylation of PDGFRb, as well as the phosphorylation of AKT and ERK. In combination with sorafenib, rapamycin-induced
activation of PDGFRb, AKT and ERK were significantly inhibited as were in vitro results (magnification, 6200). D, Significant tumor necrosis in the
combination treatment group was visualized by hematoxylin-eosin staining (magnification, 640). As shown by PCNA and TUNEL, combination
treatment also showed more significant greater effects than rapamycin or sorafenib alone in inhibiting tumor cell proliferation and inducing
apoptosis of HCC cells (magnification, 6200). The combination therapy also showed significantly fewer tumor vessels than both single agent-treated
groups(magnification, 6200). Data are expressed as mean 6 SE; *P,0.05, Student’s t test (versus rapamycin treatment group).
doi:10.1371/journal.pone.0033379.g004
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Discussion

The immunosuppressive and antitumor effects of rapamycin

share a common mechanism of action, thus rapamycin may be an

attractive approach for the treatment and prevention of HCC

recurrence after liver transplantation. However, the objective

response rates of rapamycin achieved with single-agent therapy

were modest, supporting that rapamycin resistance is also a

frequently observed characteristic of HCC.

Previous studies have shown mechanisms of rapamycin

resistance include mutations in FKBP12 and constituents of the

mTOR pathway, including S6K1, 4E-BP1, p27kip1, PP2A-related

phosphatases [9,10]. Currently, it is increasingly apparent that

mTORC1 pathway is embedded in a network of signaling cross-

talks and feedbacks, and rapamycin treatment leads to different

signaling responses which may affect its effectiveness in different

cell types. In general, it is believed that rapamycin inhibites

mTORC1 leading to PI3K/AKT pathway activation through an

S6K1-dependent feedback loop in human cancer [15]. Another

study showed that rapamycin-induced mitogen-actived protein

kinase (MAPK) activation occured in both normal cells and cancer

cell lines and that feedback loop depended on an S6K-PI3K-Ras

pathway [16]. Recently, studies identified rapamycin-mediated

inhibition of PHLPP (PH domain leucine-rich repeats protein

phosphatase) expression through a mTOR-dependent compensa-

tory feedback loop may contribute to rapamycin resistance in

colon cancer cells [17]. Although substantial body of work has

been devoted to understanding the mechanisms of rapamycin

resistance, these mechanisms are cell-type-dependent and do not

necessarily account for all instances of rapamycin resistance. The

mechanisms of rapamycin resistance in HCC are extremely

unknown and mandate specific investigation.

The PDGFR is a member of the family of transmembrane

receptors with kinase activity and widely recognized as potential

targets for anticancer therapeutics [18]. Tumor growth can be

promoted through PDGFR by autocrine PDGF stimulation, by

overexpression or hyperactivation of PDGFR, or by PDGF

stimulation of angiogenesis within the tumor [19]. Previous data

showed that inhibition of mTOR by rapamycin up-regulated

PDGFR expression in Tsc12/2 and Tsc22/2 cells, and

subsequently enhanced PI3K/AKT activation, which reversed

the impaired tumor formation by Tsc12/2 and Tsc22/2 cell

lines [13,14]. In this study, our finding that rapamycin significantly

up-regulated the expression and phosphorylation of PDGFRb in

HCC cells was partly consistent with these prior studies, whereas

the expression of PDGFRa was not affected by rapamycin,

suggesting that only PDGFRb, instead of PDGFRa, was the major

negative-regulation target of mTOR and paradoxical up-regula-

tion of PDGFRb may contribute to rapamycin resistance in HCC.

It remains uncertain precisely how desactivated mTOR up-

regulated PDGFR expression. Previous data suggested that up-

regulation of PDGFR likely occured due to increased transcription

and/or mRNA half-life [14]. The PDGFRb promoter is

controlled by NF-Y and receives input from Myc, Sp1, and p73

[20,21,22], suggesting potential roles for these proteins as

intermediates in transcriptional promotion consequent to mTOR

desactivation. As S6K is significantly dephosphorylated down-

stream of mTOR and directly contributes to increased IRS

activation in response to rapamycin, it is possible that S6K

desactivation may directly target some of these regulators of

PDGFR expression, leading to increased transcription [23].

PDGFRb achieves its effects due to activation of various

intracellular signaling pathways. Here, we demonstrated that there

were major up-regulations of AKT and ERK phosphorylation in

HCC cells in response to both rapamycin and PDGF. Using

siRNA-mediated PDGFRb knockdown, we clarified that the

PI3K/AKT and the Ras/Raf/MEK/ERK pathways were the

specific downstream signaling cascades of PDGFRb in HCC cells

treated with rapamycin. Previously, rapamycin has been reported

to lead to PI3K/AKT and MAPK pathway activation through an

S6K1-dependent feedback loop in normal cells, as well as in other

cancer cells [10,11]. In this study, our data further extended these

findings by indicating that activation of PI3K/AKT and MAPK

pathway depended on the paradoxical up-regulation of PDGFRb
in HCC. To the best of our knowledge, this study is the first to

demonstrate that activation of PI3K/AKT and MAPK pathway

through a PDGFRb-dependent feedback loop plays an important

role in rapamycin resistance in HCC. The identification of this

feedback-signaling network will lead to more optimal targeting for

the systemic therapy of HCC [24].

As a multikinase inhibitor, sorafenib has shown anti-tumor

activity by decreasing ERK and PDGFRb activation [25], as well

as AKT phosphorylation [12] in a group of human malignancies.

We found that sorafenib could effectively inhibite phosphorylation

of both AKT and ERK in a PDGFRb-dependent manner, and

subsequently enhance the anti-tumor sensitivity of rapamycin in

vitro and in an immunocompetent orthotopic rat HCC model.

Consistent with several recent publications regarding the syner-

Figure 5. The PDGFRb-dependent feedback loop compromises
the anti-tumor activity of rapamycin in HCC. In HCC, PDGFRb is
the major negative-regulation target of mTOR. Rapamycin paradoxically
up-regulates the expression and phosphorylation of PDGFRb, then
subsequently induces activation of PI3K/AKT and MAPK pathway. This
PDGFRb-dependent feedback loop compromises the anti-tumor activity
of rapamycin, and blockade of this feedback loop by sorafenib
enhances the anti-tumor sensitivity of rapamycin.
doi:10.1371/journal.pone.0033379.g005
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gistic anti-tumor activity of rapamycin and sorafenib [5,26,27],

our findings further demonstrate a novel mechanism that sorafenib

enhances the anti-tumor effect of rapamycin through blockade of

this PDGFRb-dependent feedback loop.

We have already shown that rapamycin-based immunosuppres-

sion is associated with increased survival or recurrence-free surviva

after liver transplantation for HCC [28,29]. Rencently, partial

success of mTOR inhibitors including rapamycin alone or in

conjunction with sorafenib also supports the pivotal role of mTOR

signalling in the treatment of hepatic and extra-hepatic hepato-

carcinoma recurrence after liver transplantation [30,31]. Our

findings provide a better understanding of the mechanisms of

rapamycin resistance which may lead to more optimal targeting of

this feedback stemming for the prevention and treatment of tumor

recurrence after liver transplantation for HCC. However, these

warrants further investigation in clinical randomized trials.

In conclusion, our findings confirmed that activation of PI3K/

AKT and MAPK pathway through a PDGFRb-dependent

feedback loop compromises the anti-tumor activity of rapamycin

in HCC. Moreover, the combination of rapamycin and sorafenib

exerts synergistic anti-tumor activity against tumor recurrence and

metastasis through blockade of this feedback loop (Fig. 5). Our

findings provide a rational basis for combination strategy of

rapamycin and sorafenib to maximize the HCC response,

particularly in preventing or treating HCC recurrence after liver

transplantation.

Supporting Information

Figure S1 Effects of sorafenib alone on the growth and
apoptosis of HCC cells in vitro. A, Sorafenib inhibited the

basal expression of PDGFRb. After 24-h sorafenib treatment

(5 mM), PDGFRb mRNA level was analyzed by qRT-PCR. B,

Sorafenib inhibited AKT and ERK activation, as assessed by

Western blot. HCC cells were exposed to different concentration

of sorafenib for 6 h. C, Sorafenib alone inhibited cell proliferation

in time and dose-dependent manners, as assessed by MTT assay.

D, Sorafenib induced apoptosis in HCC cells following 24 h

treatment. Three separate experiments were performed in each

study. Data are expressed as mean 6 SE; *P,0.05, Student’s t test

(versus vehicle).

(TIF)

Figure S2 Representative photos of transplanted tumor,
regional invasion and lung metastasis. Arrows point to the

transplanted tumor or metastatic focus.

(TIF)

Table S1 Sequence of primers for RT-PCR.
(DOC)
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