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Abstract

Lung cancer is among the most lethal malignancies with a high metastasis and recurrence rate. Recent studies indicate that
tumors contain a subset of stem-like cancer cells that possess certain stem cell properties. Herein, we used Hoechst 33342
dye efflux assay and flow cytometry to isolate and characterize the side population (SP) cells from human lung cancer cell
line NCI-H460 (H460). We show that the H460 SP cells harbor stem-like cells as they can readily form anchorage-
independent floating spheres, possess great proliferative potential, and exhibit enhanced tumorigenicity. Importantly, the
H460 SP cells were able to self-renew both in vitro and in vivo. Finally, we show that the H460 SP cells preferentially express
ABCG2 as well as SMO, a critical mediator of the Hedgehog (HH) signaling, which seems to play an important role in H460
lung cancer cells as its blockage using Cyclopamine greatly inhibits cell-cycle progression. Collectively, our results lend
further support to the existence of lung cancer stem cells and also implicate HH signaling in regulating large-cell lung
cancer (stem) cells.
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Introduction

It has long been appreciated that most tumors are heteroge-

neous containing a spectrum of phenotypically different cell types.

Work in the past decade indicates that various human solid tumors

also contain functionally divergent tumor cells with subpopulations

possesing high tumorigenic potential and being able to reconstitute

the phenotypic and histologic heterogeneity of the parent tumor

when transplanted in immunodeficient mice. Such subsets of

tumor cells that possess enhanced tumorigenic capacity have been

operationally called tumor-initiating cells or cancer stem cells

(CSC), which have now been reported in most solid tumors [1,2].

Most CSCs have been identified, enriched, and purified using

either cell surface marker(s), among which CD44 and CD133 are

the most popular, or functional assays, which include side

population (SP) [3–6] and Aldeflour assays [7,8]. The SP strategy

was initially developed to enrich hematopoietic stem cells [3] and

is based on the ability of stem cells, which overexpress detoxifying

cell surface pumps ABCG2 and MDR1 (i.e., P-glycoprotein), to

efficiently efflux the cell-permeable dye Hoechst 33342 and

consequently, on dual wavelength FACS plot to present as a

Hoechst-negative population on the ‘side’ (or at the tail). The

Aldeflour assay, on the other hand, takes advantage of stem cells

overexpressing detoxifying enzymes aldehyde dehydrogenases

(ALDH) [7,8] and therefore, the CSC-enriched population can

more efficiently metabolize an experimental ALDH substrate to

release more fluorophore.

Lung cancer is the most lethal maligancy world-wide. Work in

the past several years indicates that both small-cell (SCLC) and

non-small cell (NSCLC) lung cancers contain stem-like cancer cells

[9–29]. As in most other tumors, ‘lung CSCs’ have been enriched

and purified using cell surface markers CD44 or CD133 or using

the two functional assays mentioned above. These lung CSCs have

been demonstrated to possess high clonal, clonogenic, and

frequently, tumorigenic potential and to be generally resistant to

therapeutic treatments. The lung cancer stem cells have been

reported in long-term cultures as well as in xenografts and primary

patient tumors. Of interest, a recent study using genetic mouse

models of lung cancer shows that lung tumors with different

genetic backgrounds have distinct CSC phenotypes [30], raising

the possibility that different patient lung tumors may have different

CSC phenotypes. Although the SP technique has been employed

to demonstrate CSCs in several lung cancer cell lines

[10,11,13,25], it is not known whether all patient tumor-derived

lung cancer cell lines possess a SP that is enriched in stem-like

cancer cells. Here we further address this question by using the

human large-cell large carcinoma line NCI-H460 (H460) and our

results reveal that H460 cells possess a SP that is enriched in

tumor-initiating cells.

Results and Discussion

Cultured human lung cancer cell line NCI-H460 has a SP
We first stained H460 cells with Hoechst 33342, which is

actively extruded by verapamil-sensitive ABC transporters in stem

cells [3]. When we observed the stained cells under a fluorescence

microscope, the majority of nuclei, as expected, appeared blue;

however, a small number of nuclei were negative for Hoechst

staining (Fig. 1, A and B; the arrows point to a Hoechst-negative
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cell). We then quantified the SP by dual wavelength flow

cytometry [3–6,10,11,13,25]. We detected, in multiple indepen-

dent H460 cultures, a SP of 3.8060.5% (n = 9), as illustrated in

Fig. 1C. Importantly, the SP was completely eliminated in the

presence of verapamil (Fig. 1D), a calcium-channel blocker and a

specific inhibitor of ABCG2 and MDR1 used in the clinical

treatment of lung cancer [31], indicating the specificity of the SP

we detected in H460 cells.

SP cells demonstrate high proliferative potential and can
self-renew

Up to now most stem-like cells have been demonstrated to

have an ability to form free-floating spheres in anchorage-

independent conditions [4–6,10,11,13]. Furthermore, CSCs have

been reported to possess a high proliferative potential. To

determine whether the H460 SP cells have similar CSC-

associated properties, we first cultured purified SP and non-SP

cells in serum-free condition (see Methods). We observed that the

H460 SP cells formed typical floating spheres with an efficiency

of 4.860.1% (Fig. 2A) whereas the non-SP cells mostly showed

adherent growth pattern (Fig. 2B) with much lower sphere-

forming capacity (0.860.3%). CCK-8 proliferation experiment

(see Method) also revealed higher proliferative potential in the SP

cells compared to the non-SP cells (Fig. 2C). When the primary

SP cell-derived spheres were dissociated and passaged, they

readily formed secondary spheres (data not shown). When

dissociated primary SP spheres were cultured in complete

medium containing fetal bovine serum (FBS) for one week, new

SP cells (6.260.8%) were detected with the majority cells being

non-SP cells (Fig. 3A). Again, the SP phenotype was completely

blocked in the presence of verapamil (Fig. 3B). These results

suggest that SP cells can self-renew in vitro.

The H460 SP cells demonstrate higher tumorigenicity
than corresponding non-SP cells

The gold standard for assaying CSC properties is to perform

limiting-dilution tumor transplantation experiments [1,2] and to

compare tumorigenicity, commonly measured by tumor inci-

dence, latency (i.e., the time between tumor cell implantation to

when tumors can first be palpated), growth rate (i.e., tumor

volume), and the endpoint tumor weight. We purified the H460

SP and non-SP cells and injected increasing numbers of cells in

Matrigel subcutaneously (s.c) into the nonobese diabetic/severe

combined immunodeficiency (NOD/SCID) mice (Fig. 4A). We

found that the SP cells overall showed higher tumorigenicity than

non-SP cells. For example, the SP cells regenerated tumors at the

lowest cell number (i.e., 5,000) implanted whereas the non-SP cells

did not regenerate any tumor at this cell dose (Fig. 4A). The SP

cells regenerated 6/6 tumors (i.e., 100%) whereas the non-SP cells

gave rise to 4/6 tumors (67%; P = 0.039, Chi-Square tests). In

addition, the SP cells established tumors with a shorter latency

than the corresponding non-SP cells (Fig. 4A; P = 0.007).

Furthermore, the H460 SP cell-derived tumors grew faster leading

to much larger tumors than non-SP cell derived tumors (Fig. 4A–

C; P,0.01). Histologically, the regenerated xenograft tumors had

morphological characteristics of the large-cell lung cancer. In

particular, the SP tumors displayed abundance of cells and mitotic

figures and showed evident capsular invasion (Fig. 4D, left). In

contrast, the non-SP tumors exhibited more necrotic areas

(Fig. 4D, right).

It was surprising and potentially interesting that the non-SP

cells, at 50,000 and 100,000, also regenerated tumors although the

tumors were smaller (Fig. 4B–C). Since the non-SP cells did not

form tumors at 5,000 cells (Fig. 4A), the easiest explanation would

be that the non-SP cell population might be contaminated with a

Figure 1. SP analysis in cultured H460 lung cancer cells. A–B, Hoechst staining of H460 cells. Note that although the majority of cells were
stained in the nucleus, some cells (indicated by arrows) apparently lacked nuclear Hoechst staining. C–D, SP phenotypes in the absence (C) or
presence (D) of verapamil.
doi:10.1371/journal.pone.0033358.g001
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small number of SP cells, which would give rise to tumors when

large numbers of non-SP cells were implanted. Alternatively, non-

SP cells might be able to ‘de-differentiate’ back to SP cells at a low

rate such that in vivo some non-SP cells were converted into SP

cells, which then gave rise to tumors. This latter scenario was

recently demonstrated by others in several cultured tumor cell

systems [32]. To begin exploring these different possibilities, we

analyzed the SP composition in both SP and non-SP cell derived

H460 tumors. We observed that the SP tumors contained

8.460.6% SP cells (Fig. 3C–D) whereas the non-SP tumors

contained 1.460.2% SP cells (Fig. 3E–F). Although these results

could not definitely distinguish contamination from conversion,

they did provide an explanation for why the non-SP cells still gave

rise to tumors – it was because the non-SP tumors contained SP

cells.

The stem cell markers ABCG2 and SMO are highly
expressed in SP cells

The SP phenotype in hematopoietic stem cells is mediated

primarily by ABCG2 with some involvement of MDR1 or multi-

drug resistance protein 1 [31]. Many CSC-enriched SP’s

overexpress ABCG2 [4,6]. We therefore analyzed ABCG2 mRNA

levels and observed that, compared to regular FBS-cultured

monolayer H460 cells (Fig. 5A, lane 1), both spheres (Fig. 5A, lane

2) and purified SP cells (Fig. 5A, lane 3) expressed significantly

increased ABCG2 mRNA levels whereas purified non-SP H460

cells virtually lacked ABCG2 expression (Fig. 5A, lane 4). Likewise,

the SP tumors (Fig. 5A, lane 7) also expressed higher levels of

ABCG2 than corresponding non-SP tumors (Fig. 5A, lane 8). A

quantitative presentation was shown in Fig. 5B.

Tumorigenic lung cancer cells including SP cells have been

shown to preferentially express self-renewal molecules such as Oct-

4, Nanog, Bmi-1, and c-Kit [14,16,17,22,29], Notch signaling

components [18,28], and Wnt/b-catenin [23]. Emerging evidence

suggests that the Hedgehog (HH) signaling pathway may also be

intimately involved in lung cancer development and progression

[33,34]. Activation of HH signaling requires the transmembrane

protein Smoothened (SMO) as a critical mediator of the HH

signaling [35] and ABCG2 may act in the upstream regulation of

the Hh signaling pathway to protect the stemness of the SP

compartment [36]. We therefore determined the mRNA levels of

SMO in the same set of samples that were used for ABCG2

analysis. Strikingly, very much like ABCG2, the SMO mRNA

levels were significantly elevated in H460 spheres, SP cells, and SP

cell-derived tumors (Fig. 5A–B). To our knowledge, this finding

may represent the very first to link SMO overexpression to CSC-

enriched lung cancer cells.

The SMO inhibitor Cyclopamine inhibits H460 cell
proliferation

HH signaling pathway has been implicated in the maintenance

of stem or progenitor cells in many adult tissues. This pathway

regulates cell proliferation, tissue polarity, and cell differentiation

during normal development. Importantly, abnormal HH pathway

activation, such as high-levels of SMO expression, may play a role

in the maintenance of the capacity of tumor stem cells, favoring

self-renewal, and proliferation of their progeny [36,37]. To

determine whether HH signaling plays a role in H460 cells, we

employed Cyclopamine, a steroidal alkaloid that inhibits SMO

activity. As a control for Cyclopamine, we used a structurally

Figure 2. Sphere formation and proliferative capacity of H460 SP and non-SP cells. A–B, Purified SP and non-SP cells were cultured in
serum-free medium in anchorage-independent conditions. The SP cells formed typical floating spheres within 4 days (A) whereas the non-SP cells
largely established adherent growth (B). C, The SP cells displayed higher proliferative ability than non-SP cells as determined by CCK-8 kit (P,0.05 for
all time points, Student t-test).
doi:10.1371/journal.pone.0033358.g002
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related alkaloid, Tomatidine, which does not affect SMO activity

and HH signaling. Compared to Tomatidine, Cyclopamine

appeared to reduce the low endogenous levels of SMO mRNA

(Fig. 5A, lanes 5 and 6). Compared to the vehicle control and

Tomatidine group, Cyclopamine dose- and time-dependently

inhibited the growth of H460 cells when used at 2–40 mmol/L

(Fig. 6A–E). Cell-cycle analysis demonstrated that Cyclopamine, at

20 mmol/L, time-dependently caused H460 cells to arrest in the

G1/S phase of the cell cycle (Fig. 6F). Specifically, Cyclopamine

treatment increased the G1 cells from ,71% at 24 h to ,93% at

96 h whereas decreased S-phase cells from 18% at 24 h to 2% at

96 h (Fig. 6F). At 96 h, slightly increased apoptosis (i.e., ,2%) was

also observed (Fig. 6F). It should be noted that both vehicle and

Tomatidine control groups also showed time-dependent increases

in G1-phase cells and time-related decreases in S-phase cells

(Fig. 6F), likely due to the fact that all cells were cultured for up to

96 h without replenishing media. Hence, exhaustion of growth

factors and nutrients caused partial cell-cycle arrest in the control

groups. Together, these results demonstrate that the HH signaling

is vital in H460 cells and blockade of HH signaling dramatically

causes cell-cycle arrest. Since SMO is preferentially expressed in

CSC-enriched SP and spheres(Fig. 5), we surmise that the HH

signaling imposes its effects likely on the lung CSCs.

In summary, in this study we present evidence that the H460

human large-cell lung carcinoma cell line contains a detectable SP.

Further, we show that the H460 SP cells harbor stem-like cells as

they can readily form anchorage-independent floating spheres,

possess great proliferative potential, and exhibit enhanced tumor-

regenerating capacity. Importantly, the H460 SP cells seem to be

able to self-renew in vitro (evidenced by replating sphere cells in

regular culture medium; Fig. 3A) and in vivo (evidenced by the SP

tumors containing a small percentage of SP cells with the majority

being non-SP cells; Fig. 3C). Finally, we show that the H460 SP

cells preferentially express ABCG2 as well as SMO, a critical

Figure 3. SP re-analysis in various samples. A–B, SP re-analysis when the SP spheres were disaggregated and dissociated cells cultured in
normal serum-containing medium for one week. C–D, SP re-analysis in the SP cell-derived tumors. E–F, SP re-analysis in non-SP cell-derived tumors. A,
C, E, without verapamil. B, D, F, with verapamil.
doi:10.1371/journal.pone.0033358.g003
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mediator of the HH signaling, which seems to play an important

role in H460 lung cancer cells as its blockage using Cyclopamine

greatly inhibits cell-cycle progression. Collectively, our results

provide further support to the presence of stem-like cancer cells in

cultured lung cancer cell lines and also implicate HH signaling in

regulating large-cell lung cancer (stem) cells.

Figure 4. High tumorigenicity in SP cells. A, Table presentation of the tumorigenic potential of H460 SP and non-SP cells. Three parameters of
tumorigenicity, i.e., tumor incidence, latency, and volume (*P,0.01) were shown. All animals were terminated (term.) 28 days after implantation. B,
The SP cells regenerated larger tumors than corresponding non-SP cells at every cell dose. C, Gross tumor images when tumors were harvested at day
28 after s.c. injection of the SP and non-SP cells into NOD/SCID mice. D, Representative HE-stained photomicrographs of SP and non-SP tumors.
doi:10.1371/journal.pone.0033358.g004
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Materials and Methods

Ethics statement
ALL experiments were conducted according to the Institutional

Ethical Guidelines. All animal-related studies were approved by

the Tongji University Institutional IACUC committee. NOD/

SCID mice (the permit number: SYXK20070005) at SPF level

were used for tumor cell implantation experiments in this study.

All other studies presented herein were investigator-initiated and

did not require approval from other regulatory bodies.

Cell lines and animals
Human large-cell lung carcinoma cell line NCI-H460 was

bought from the Shanghai Institutes for Biological Sciences, CAS

(Shanghai, China) and maintained in medium recommended by

ATCC. All media were supplemented with 1% penicillin/

streptomycin and 10% fetal bovine serum (FBS; Invitrogen-Life

Technologies). Cells were incubated in a humidified incubator at

37uC supplied with 5% CO2. Cells were routinely maintained in

75-cm2 tissue culture flasks (Corning Incorporated, USA) and

harvested using 0.25% trypsin when they were in logarithmic

phase of growth for SP analysis. The nonobese diabetic/severe

combined immunodeficiency (NOD/SCID) mice were purchased

from the Shanghai SLAC Laboratory Animal Co. Ltd.

SP analysis
The basic protocol was based on Goodell et al [3]. Briefly, the

NCI-H460 Cells were resuspended at 16106/mL in pre-warmed

DMEM (Invitrogen-Life Technologies). Hoechst 33342 dye was

added at a final concentration of 5 mg/mL in the presence or

absence of verepamil (50 mmol/L; Sigma) and the cells were

incubated at 37uC for 90 min with intermittent shaking. At the

end of the incubation, the cells were washed with ice-cold HBSS

(Invitrogen-Life Technologies), centrifuged down at 4uC, and

resuspended in ice-cold HBSS. Propidium iodide (Sigma) at a final

concentration of 2 mg/mL was added to the cells to gate viable

cells. The cell preparations were filtered through a 40-mm cell

strainer to obtain single cell suspension. Flow cytometric analyses

and sorting were performed on a Fluorescence Activated Cell

Sorter (FACS, Beckman Coulter Epics Altra).

Tumor cell implantation experiments
FACS-purified SP and non-SP H460 cells were mixted with

Matrigel (Becton Dickinson), and then subcutaneously (s.c) injected

into NOD/SCID mice. Groups of mice were inoculated with SP

cells or non-SP cells at 56103, 56104 and 16105, respectively.

Tumor growth was monitored on weekly basis and individual tumor

volumes were measured using a digital caliper and approximated

according to the formula V = 1/2ab2 (a being the long diameter and

b the short diameter of the tumor). At the end of experiments, mice

were sacrificed after 4 weeks and tumors harvested, measured, and

photographed. The internal organs such as lung and liver were

carefully observed for metastasis nodules and tumor sections were

scrutinized under the microscope. Finally, tumors were also digested

to make single-cell suspension for SP re-analysis.

Sphere formation assays in serum-free cultures
The SP and non-SP cells were cultured in serum-free DMEM-

F12 (Invitrogen-Life Technologies), supplemented with 20 ng/mL

epidermal growth factor (EGF), 10 ng/mL basic fibroblast growth

factor (bFGF), 5 mg/mL insulin (all from Sigma). Cells (1000/well)

were plated in 96-well culture dishes in 200 mL of growth medium

and 20 mL of medium per well was added every 2 days. The

number of spheres (W.150 mm) for each well was evaluated after

5 days of culture.

RT-PCR analysis
Cells were harvested and total RNA was extracted and prepared

for RT-PCR by using a PrimeScriptTM RT-PCR Kit (Takara,

Kyoto, Japan). Cycle parameters for ABCG2, SMO, and GAPDH

cDNAs were 30 sec at 94uC, 30 sec at 58uC (for ABCG2 and

GAPDH) or 55uC (for SMO), and 45 sec at 72uC for 35 cycles,

respectively. The primers for RT–PCR were as follows: ABCG2

(F) 59-CACCTTATTGGCCTCAGGAA-39, ABCG2 (R) 59-

CCTGCTTGGAAGGCTCTATG-39, SMO (F) 59-TTACCTT-

CAGCTGCCACTTCTACG-39, SMO (R) 59-GCCTTGGCA-

ATCATCTTGCTCTTC-39, GAPDH (F) 59-ACGACCACTTT-

GTCAAGCTC-39, and GAPDH (R) 59-GGTCTACATGGCA-

ACTGTGA-39.

Cell proliferation Assay
Cell proliferation assays were performed using the Cell

Counting Kit-8 (CCK-8, Dojindo, Kumamoto, Japan). Cells were

plated in 96-well plates at 56104 cells per well and cultured in the

growth medium. Cyclopamine and Tomatidine (all from Sigma)

were added, respectively, at a concentration of 20 mmol/L and

appropriate growth medium was added in control samples. CCK-

8 was added in each well at 24, 48, 72 and 96 h, and, after an

additional 4-h culture, the absorbance of each well was

determined and growth curve was plotted. The cell-cycle profiles

were analyzed by flow cytometry.

Statistical analysis
Data were generally presented as the mean 6 S.D and statistical

differences between experimental groups were analyzed by

Figure 5. RT-PCR analysis of ABCG2 and SMO mRNA levels. A,
Representative RT-PCR gel images. M, marker; lane 1, NCI-H460 cells
normally cultured in serum-containing medium; lane 2, the H460
spheres; lane 3, purified SP cells; lane 4, purified non-SP cells; lane 5, the
Tomatidine control group; lane 6, the Cyclopamine experimental group;
lane 7, SP tumors; lane 8, non-SP tumors. B, Quantitative presentation of
ABCG2 and SMO mRNA levels as determined by densitometry (P,0.001,
except ABCG2 mRNA lane 6 vs. lane 8 and SMO mRNA lane 1 vs. lane 5
and lane 4 vs. lane 6).
doi:10.1371/journal.pone.0033358.g005
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Student’s t-test, one-way ANOVA, or linear regression using

statistical software SPSS11.5 and according to the nature of data

analyzed. A P,0.05 was considered statistically significant in all

cases.
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Figure 6. Cyclopamine inhibits H460 cell proliferation. A–C, Representative photomicrographs of H460 cells 72 h after treatment with vehicle
control (A), Tomatidine (B), or Cyclopamine (C). Original maginifications: 6200. D, Cyclopamine dose-dependently inhibited H460 cell proliferation
(P,0.05; one-way ANOVA). E, Time course of Cyclopamine inhibition of H460 cells (P,0.05, one-way ANOVA). Cyclopamine was used at 20 mmol/L. F,
Effects of Cyclopamine on the cell cycle of H460 cells.
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