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Abstract

In the model organism E. coli, recombination mediated by the related XerC and XerD recombinases complexed with the
FtsK translocase at specialized dif sites, resolves dimeric chromosomes into free monomers to allow efficient chromosome
segregation at cell division. Computational genome analysis of Helicobacter pylori, a slow growing gastric pathogen,
identified just one chromosomal xer gene (xerH) and its cognate dif site (difH). Here we show that recombination between
directly repeated difH sites requires XerH, FtsK but not XerT, the TnPZ transposon associated recombinase. xerH inactivation
was not lethal, but resulted in increased DNA per cell, suggesting defective chromosome segregation. The xerH mutant also
failed to colonize mice, and was more susceptible to UV and ciprofloxacin, which induce DNA breakage, and thereby
recombination and chromosome dimer formation. xerH inactivation and overexpression each led to a DNA segregation
defect, suggesting a role for Xer recombination in regulation of replication. In addition to chromosome dimer resolution and
based on the absence of genes for topoisomerase IV (parC, parE) in H. pylori, we speculate that XerH may contribute to
chromosome decatenation, although possible involvement of H. pylori’s DNA gyrase and topoisomerase III homologue are
also considered. Further analyses of this system should contribute to general understanding of and possibly therapy
development for H. pylori, which causes peptic ulcers and gastric cancer; for the closely related, diarrheagenic
Campylobacter species; and for unrelated slow growing pathogens that lack topoisomerase IV, such as Mycobacterium
tuberculosis.
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Introduction

Crossovers between circular monomeric chromosomes generate

dimers and interlocked (catenated) structures that cannot segregate

properly at cell division [1]. Bacteria with circular chromosomes

generally contain site-specific tyrosine Xer recombinases that act

at cognate dif sites near where replication terminates and that

resolve chromosome dimers to free monomers [1,2]. Deletion of dif

or inactivation of a xer recombinase gene causes formation of

abnormally partitioned nucleoids and cell filamentation in E. coli

type model organisms [3]. Cell filamentation results from SulA-

mediated inhibition of cell division, is induced in the SOS response

to DNA and chromosome breakage [4]. Chromosome dimer

resolution in most bacterial species, including E. coli, is mediated

by two related recombinases, XerC and XerD, that function as a

pair of heterodimers and that target a 28-bp dif site. The dif site is

presented to the Xer complex by the FtsK DNA translocase

protein. FtsK is anchored at incipient cell division septa, and

interacts with a set of oriented and highly repeated 8 bp named

KOPS sequences (FtsK-orienting polar sequences). The E. coli

chromosome’s dif region is rich in KOPS sites, which are in

opposite orientation on each side of the dif site. Orientation-

specific KOPS recognition and asymmetry in the KOPS

distribution direct FtsK-chromosome interactions to effectively

guide presentation of dif to the XerC-XerD complex for

recombination. FtsK interacts specifically with the XerD compo-

nent of the XerCD complex and with several other proteins

including Topoisomerase IV, which are likely to be important for

efficient, well-regulated chromosome separation and segregation

[2,5,6]. Many thousands of topological links arise as circular

chromosomal DNAs are unwound during replication [7]. In E. coli

interlocked (catenated) chromosomes are resolved efficiently to
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monomers by topoisomerase IV [8], which is essential [9],

primarily because of its high capacity to resolve interlocked

chromosomes, and thereby allow efficient chromosome segrega-

tion, apace with rapid cell division [8]. Of note, DNA gyrase

(responsible for DNA supercoiling) and Xer recombination may

play secondary roles in decatenation [7,8,10]. This is illustrated by

the ability of E. coli’s XerCD-dif-FtsK system can substitute for

topoisomerase IV [11] to remove catenane links between circular

DNAs in vitro without topoisomerase IV [11]; and the suppression

of a temperature sensitive (conditional lethal) topoisomerase IV

mutation by XerCD-dif recombination in E. coli producing an

engineered FtsK protein with no septum anchor (FtsK50C) that is

thus soluble in the cytoplasm [7]. This Xer-mediated resolution of

catenated DNAs entails multiple interconversions of catenated

monomers and knotted dimers, removing a link at each step.

Xer/dif recombination systems have been detected computa-

tionally in many phyla [12,13] including Proteobacteria [14],

Firmicutes [15,16] and Archae [17,18]. Our in silico analyses

revealed that more than 85% proteobacterial species contain a

conventional E. coli-type system in which related XerC and XerD

recombinases act as heterodimers on cognate dif sites, with each

Xer protein having a distinct role. However, Helicobacter pylori, the

gastric pathogen implicated in peptic ulcer disease and gastric

cancer, was inferred to contain just a single Xer recombinase,

which was named XerH, as do the related Campylobacters, which

cause diarrheal disease, and all other members of H. pylori’s epsilon

subgroup of Gram negative proteobacteria [14]. Single Xer

recombinase systems were also found in the Gram positive

Streptococci and Lactococci (XerS) [15] and in Archaea (XerA)

[17,18]. ftsK homologues are found in nearly all eubacterial species

including the epsilon proteobacteria and Streptococci and

Lactococci. Interestingly, several slow growing bacterial patho-

genic genera, including Helicobacter, Campylobacter and Mycobacteri-

um, lack parC and parE topoisomerase IV subunit genes [19].

Further complicating inferences about XerH action in the case of

H. pylori, many strains contain a second divergent xer recombinase

gene, xerT, generally within a large TnPZ transposon [20,21].

Although its encoded XerT protein is needed for transposon

excision and conjugative transfer, and probably also functions as a

transposase, the possibility of XerT collaborating with XerH for

chromosome resolution (as with XerC and XerD in E. coli) also

merited testing.

The experiments presented here demonstrate site-specific

recombination at H. pylori difH sites, and show that it requires

XerH, FtsK and an intact difH sequence, but not XerT, and bring

into focus the need to learn how catenanes are processed in the

many other slow growing human pathogens that, like H. pylori, lack

topoisomerase IV.

Materials and Methods

Bacterial strains and culture conditions
The H. pylori strains and plasmids used in this study are listed in

Table S1. Streptomycin resistant rpsL-mutant strains were used for

transformation with the difH repeat (rpsL-cat containing) cassette

[22,23]. H. pylori strains were routinely grown at 37uC under

microaerobic conditions on Columbia blood agar (CBA) plates

containing 5% horse blood and Dent’s antibiotic supplement

(Oxoid). When appropriate, antibiotic selection in H. pylori was

carried out by supplementing media with chloramphenicol,

streptomycin, and/or kanamycin at final concentrations of

10 mg/ml. Escherichia coli DH5a was grown in Luria-Bertani broth.

When necessary, antibiotics were added to the following final

concentrations: ampicillin, 100 mg/ml; kanamycin, 50 mg/ml; and

chloramphenicol, 20 mg/ml. H. pylori cultures were incubated at

37uC in sealed jars using the AnoxomatTM MarkII system (Mart

Microbiology B.V., The Netherlands) after one atmosphere

replacement using the following gas composition N2:H2:CO2,

85:5:10.

Oligonucleotides.
The oligonucleotides used in this study are listed in Table S2

Assays of difH site recombination
To test if the putative 40-bp H. pylori dif sequence (difH)

ATTTAAAAGTTTGAAAAGTGCAGTTTTCATAACTAAAT

GA) was functional, a recombination assay was developed using a

cassette containing both selectable (cat) and counterselectable (rpsL)

genes, rpsL-cat (streptomycin susceptibility, chloramphenicol resis-

tance, respectively), flanked by difH sites [22,24,25]. This cassette

was generated by PCR amplification from genomic DNA

containing rpsL-cat using primers DifHPF and DifHPR, which

contain direct repeats of difH and BamHI restriction sites near their

59 ends. A control cassette containing 40 bp of sequence unrelated

to difH was generated with primers NondifF and NondifR. These

PCR products were cloned as described [26] to create plasmids

pHInt_difH-RCAT-difH and pHInt_nondif-RCAT-nondif. Con-

structs were sequenced using primers SEQdifF and SEQdifR to

ensure that difH and ‘nondif’ sequences were intact. Natural

transformation of a derivative of H. pylori strain 26695 made

resistant to streptomycin by mutation in its normal rspL gene

(called 26695Str) with pHInt_difH-RCAT-difH and pHInt_non-

dif-RCAT- nondif [26] was used to place these cassettes in the H.

pylori chromosome between genes HP0203 and HP0204 (strains

26695Str HP0203-4::difH-RCAT and 26695Str HP0203-4::nondif-

RCAT, respectively). Chromosomal DNAs from the resulting

chloramphenicol-resistant transformants were checked for strep-

tomycin sensitivity (which is dominant to resistance in rpsLmut/

rpsLWT partial diploids). These transformants and their descen-

dants were also checked for correct insertion of the difH repeat

cassette and for recombination at difH sites by PCR using primers

0203F and 0204R. Additionally, chloramphenicol-resistant trans-

formants were subcultured on streptomycin-containing agar when

needed to select for or to quantify rates of loss of the cassette.

Chromosomal DNAs of representative streptomycin-resistant,

chloramphenicol-sensitive derivatives were sequenced to confirm

recombination at difH sites as diagrammed in Figure 1.

Due to the low difH recombination rates in the HP0203-

HP0204 intergenic region, the difH repeat cassette was also placed

at the ureAB locus for further studies. Synthetic sequences

containing direct repeats of wild-type or mutant difH sites

separated by a BglII restriction site and flanked with BamHI sites

were synthesized and cloned into plasmid pMA-RQ from Geneart

(AG Regensburg, Germany) (mutant difH sequences shown in

Table S1). A BamHI fragment containing the rpsL-cat cassette was

cloned into BglII digested plasmids pDifWT, pDifM1, pDifM2,

and pDifM3 (Table S1) to give rpsL-cat flanked with WT or

mutated difH sequences in pDifWT-RC, pDifM1-RC, pDifM2-

RC, pDifM3-RC respectively (Table S1). These difH flanked

DNAs were excised with BamHI and cloned into plasmid pUreAB

[27], a pBluescript-derived plasmid containing regions of homol-

ogy for chromosomal replacement of [or insertion between] the

ureA and ureB (urease) genes. This resulted in plasmids pUre-

AB_DifWT-RC, pUreAB_DifM1-RC, pUreAB_DifM2-RC and

pUreAB_DifM3-RC, which were used for transformation of H.

pylori strain 26695Str to create 26695Str ureAB::difHWT-RC,

ureAB::difHM1-RC, ureAB::difHM2-RC and ureAB::difHM3-RC.

Using primers UreABF and UreABR, chromosomal DNA of the

Xer Recombination and Genome Integrity
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resulting chloramphenicol-resistant transformants was checked for

the correct insertion of the difH repeat cassette and for difH

recombination at the ureAB locus.

H. pylori mutants used to assess H. pylori xerH and xerT
roles in difH recombination

xerH is the only xer recombinase gene found in every H. pylori

genome, although many strains, including 26695 (used here), also

contain another xer family gene, xerT [21]. Strain 26695Str

derivatives with null mutations in these xer genes were constructed

in order to test each gene’s role in dif site recombination.

xerH::rpsL-cat and xerT::rpsL-cat insertion mutant constructs were

generated by PCR with overlapping primers [28,29]. Briefly, for

xerH (HP0675), DNAs flanking and including much of this gene

were amplified from 26695 genomic DNA using primers

XerHrcat1 and XerHrcat2, and XerHrcat3 and XerHrcat4,

respectively; and the rpsL-cat cassette was amplified using primers

XerHrcat5 and XerHrcat6. Nested primers XerHrcat7 and

XerHrcat8 were used for splicing overlap extension (SOE) PCR

to generate a DNA segment containing rpsL-cat inserted within the

HP0675 ORF, which would be suitable for transformation. The

same strategy, using primers XerTrcat1 through XerTrcat8, was

used to generate xerT::rpsL-cat mutant of the xerT gene (HP0995).

Natural transformation of H. pylori strain 26695Str with these

products yielded 26695Str xerH::rpsL-cat and 26695Str xerT::rpsL-cat.

Figure 1. XerH/difH site-specific recombination assay in Helicobacter pylori. (A) Schematic depiction of XerH excision assay. The difH repeat
cassette, consisting of streptomycin susceptibility-chloramphenicol resistance genes (rpsL-cat) flanked by difH sequence, was introduced into the H.
pylori 26695Str (WT) genome by natural transformation and homologous recombination between genes HP0203 and HP0204 or in place of genes
ureA and ureB. Recombination at difH sites leads to excision of rpsL-cat and one difH sequence, detectable by a PCR fragment 1.5 kb smaller than that
from parental difH repeat cassette containing DNA. A cassette with nondif sequence flanking rpsL-cat served as a negative control. (B) Results of difH
recombination assay in H. pylori 26695Str (WT) with 40 bp difH direct repeats or 40 bp nondif DNA direct repeats at the HP0203-HP0204 locus. With
each of these cassettes, two independent clones were tested by diagnostic PCR. The 2.1 kb and 3.6 kb PCR products come difH recombinant and
parental (difH repeat containing) DNAs, respectively. Lane C, control from wild-type H. pylori without difH repeat cassette. (C) difH recombination
frequencies for difH repeat cassette located at HP0203-HP0204 or ureAB loci. Cells were grown on non-selective media for two or four days, re-
streaked for single colonies, and ,100–200 colonies were tested for retention or loss of rpsL and cat genes by replica plating to streptomycin and to
chloramphenicol containing media. Experiments were performed in triplicates; horizontal bars indicate means and standard deviation.
doi:10.1371/journal.pone.0033310.g001
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DNAs of transformants were checked for correct allelic insertion

by PCR. Simple unmarked xerH and xerT deletion alleles (DxerH

and DxerT) were then made by SOE PCR. Briefly, for xerH, 1-kb

DNA segments flanking HP0675 were PCR amplified using

primers XerHdel1 and XerHdel2, and XerHdel3 and XerHdel4,

and fused in a second SOE PCR using nested primers XerHdel5

and XerHdel6. The DxerT allele was made similarly with primers

XerTdel1 through XerTdel6. H. pylori strains containing

xerH::rpsL-cat and xerT::rpsL-cat constructs were transformed with

corresponding simple deletion DNAs, streptomycin resistance was

selected, and transformants were screened for loss of chloram-

phenicol resistance and further checked by PCR. This resulted in

strains 26695Str DxerH and 26695Str DxerT.

To assess the role of XerH and XerT in difH recombination,

these DxerH and DxerT strains were transformed with pHInt_difH-

RCAT-difH to give 26695Str DxerH; HP0203-4::difH-RCAT and

26695Str DxerT; HP0203-4::difH-RCAT; or with pUreAB_DifWT-

RC to give 26695Str DxerH; ureAB::difHWT-RC and 26695Str

DxerT; ureAB::difHWT-RC (difH flanking rpsL-cat at the ureAB locus).

Chloramphenicol-resistant transformants were selected, and then

assayed for difH site recombination by appearance of streptomycin

resistance and loss of chloramphenicol resistance and by PCR.

Complementation of DxerH mutation
The xerH (HP0675) ORF was amplified from 26695 genomic

DNA using primers XerHF and XerHR and the product was

cloned downstream of the strong ureA promoter of pTrpA-up

(Table S1) using NdeI and SalI restriction sites to create pTrpA-

upXerH. Transformation of strain 26695Str DxerH with pTrpA-

RC yielded 26695Str DxerHrecip, which was in turn transformed

with pTrpA-upXerH to create strain 26695Str xerH comp, (DxerH

complemented with highly expressed xerH gene at the chromo-

somal trpA locus, under ureA promoter control). Chromosomal

DNAs of the resulting transformants were checked by PCR for

correct allelic replacement at trpA and to verify that the cloned

xerH gene was not at the normal chromosomal xerH locus. Two

independently generated 26695Str xerH comp clones were then

transformed with pUreAB_DifWT-RC to give 26695Str xerH

comp; ureAB::difHWT-RC (difH flanking rpsL-cat at the ureAB locus).

Chloramphenicol-resistant transformants were selected and as-

sayed for recombination events at difH sites.

Construction of H. pylori mutants used to assess
susceptibility to DNA damage

SOE PCR was used to generate a ruvC::rpsL-cat construct. For

ruvC (HP0877), 1-kb DNA segments flanking HP0877 were

amplified from 26695 genomic DNA using primers RuvCrcat1

and RuvCrcat2, and RuvCrcat3 and RuvCrcat4 respectively; and

the rpsL-cat cassette was amplified using primers RuvCrcat5 and

RuvCrcat6. Nested primers RuvCrcat7 and RuvCrcat8 were used

to generate a ruvC::rpsL-cat containing SOE PCR product. Natural

transformation of the H. pylori strain 26695 with the final SOE

PCR products was performed to create 26695Str DruvC.

make a recG knockout mutant, two 1-kb DNA fragments

upstream and downstream of the HP1523 ORF were amplified

using primers RecGkan1 and RecGkan2, and RecGkan3 and

RecGkan4 and fused by SOE PCR using primers RecGkan1 and

RecGkan4, creating unique EcoRI and BamHI restriction sites.

The final PCR product was blunt end cloned into pHSG576 [30]

to give pHRecG. The aphA cassette, conferring kanamycin

resistance (KanR), was cloned into EcoRI and BamHI digested

pHRecG, creating a nonpolar replacement of recG, pHRecG-Km.

This plasmid was used for 26695Str transformation to create

26695Str DrecG.

Several attempts to construct the DNA segment to make a recA

knockout by SOE PCR failed. Therefore, in vitro transposition was

used to insert the rpsL-cat cassette into recA. The HP0153 ORF was

amplified by PCR, using primers RecAF and RecAR, and cloned

into pGEMT-Easy (Promega, Madison, WI) to create pRecA. In

vitro transposition of a segment containing rpsL-cat flanked by ends

of phage Mu into pRecA was done using MuA transposase

(Finnzymes, Finland, F-750) to generate a library of pRecA-RC

clones. H. pylori strain 26695Str was transformed to chloramphen-

icol resistance using this plasmid library to generate 26695Str

recA::mu-rpsL-cat. Chromosomal DNA was isolated from transfor-

mants, and insertion of the mu-rpsL-cat-mu cassette into ORF

HP0153 was confirmed by PCR. A similar strategy was used to

truncate the H. pylori ftsK homologue. Primers FtsKF and FtsKR

were used to amplify the HP1090 ORF and generate the ftsK

containing plasmid pFtsK. In vitro transposition of mu-rpsL-cat into

pFtsK generated a library of pFtsK-RC mutant DNAs which was

used in transformation to make strain 26695 ftsK::mu-rpsL-cat.

Transformants were characterised by PCR and DNA sequencing,

and one with an insertion at the 454th codon from ftsK’s 39 end was

identified.

Double and triple mutants were obtained by transforming

26695Str DxerH with PCR products containing ruvC::rpsL-cat to

create 26695Str DxerHDruvC; 26695Str DrecG with a recA::mu-rpsL-

cat-containing PCR product to create 26695Str DrecG recA::mu-

rpsL-cat; 26695Str DxerH, 26695Str ruvC::rpsL-cat and 26695Str

DxerHDruvC with pHRecG-Km to give 26695Str DxerHDrecG,

26695Str DruvCDrecG and 26695Str DxerHDruvCDrecG.

Construction of xerH and ruvC mutants in strain X47
To generate DxerH derivatives of X47 (which already contains

an rpsL streptomycin resistance allele), this strain was transformed

with genomic DNA from strain 26695str xerH::rpsL-cat. Genomic

DNA isolated from the resulting transformants was used as

template for PCR to confirm rpsL-cat insertion at xerH. A pool of

X47 xerH::rpsL-cat clones was transformed with the PCR product

obtained from 26695Str DxerH (unmarked deletion), with selection

for streptomycin resistance and chloramphenicol susceptibility.

Genomic DNA from the resulting X47 DxerH transformants was

used as template for PCR to confirm clean deletion of xerH, as

described for 26695.

To generate the ruvC mutant in X47 background, wild-type X47

was transformed with genomic DNA from strain 26695

DruvC::rpsL-cat. Genomic DNA isolated from the resulting

transformants was used as template for PCR to confirm rpsL-cat

insertion at the ruvC locus as described for 26695.

UV susceptibility assay
Fresh cultures of H. pylori, passaged the day before, were

suspended in PBS (pH = 7.2) and standardized to an OD600 = 2.

50 ml aliquots of bacterial suspension was placed into a single well

of a UV transparent 96 well plate (NUNC) and exposed to UV

light at 312 nm using the TFX-35M transluminator (LifeTechnol-

ogies, Carlsbad, CA) at a distance of 45 cm for 0 to 75 sec. Serial

dilutions of irradiated cells were plated onto CBA plates and

incubated at 37uC for four days. Colonies were counted and

percent survival was calculated. UV susceptibility experiments

were repeated at least three times on two independent clones for

each H. pylori strain.

Xer Recombination and Genome Integrity
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DNA content analysis by Fluorescence Activated Cell
Sorting (FACS)

The DNA content analysis was performed as described [31].

Briefly, H. pylori cells were grown on blood agar plates and

inoculated in BHI medium containing 10% Newborn Calf Serum

(NCS) at OD600 = 2 and incubated in 100 ml in 96 well plate

overnight (18 h) with shaking at 100 rpm. The bacteria were

collected by centrifugation, the pellet was resuspended in 300 ml

PBS and added to 900 ml PBS with 4% paraformaldehyde and

samples were incubated 15 min at room temperature. The

bacterial pellet was washed with PBS, resuspended in 100 mg/ml

RNase A and 2 mg/ml Hoechst 333421 (Sigma) in PBS and

incubated for 10 min at 37uC. The bacterial pellet was washed

and resuspended in PBS. The analysis was performed with a

Becton Dickinson FACSCanto II Flow cytometer.

Oxidative stress susceptibility assay
Susceptibility to oxidative stress using 2 mM and 20 mM

paraquat was tested on Columbia agar plate using the disc method

as described [32].

Antibiotic Sensitivity Testing
Wild-type, DxerH mutant and xerH complemented strains were

inoculated on Columbia agar plates. A single E-test strip (AB

Biodisk) was placed in the centre of each plate and the plates were

incubated at 37uC for 6 days. The minimal inhibitory concentra-

tion (MIC) for ciprofloxacin was determined according to the

manufacturer’s instructions.

Growth curves
Fresh cultures, passaged the day before, were resuspended in

BHI. 5 ml of BHI containing 10% NCS and Dent (Oxoid) was

inoculated with 100 ml of a stock inoculum standardized to

OD600 = 2. Growth studies were performed without any prior

adaptation of H. pylori strains to liquid media. Growth was

measured every 4 to 12 h for up to 40 h. Each experiment was

done in duplicate and repeated at least twice.

Electron microscopy
H. pylori grown on Columbia agar were collected and washed in

PBS (pH 7.4), prefixed in 2.5% glutaraldehyde in PBS buffer for

1 h, and then rinsed in PBS. After post-fixation in 1% osmium

tetraoxide (in PBS), samples were dehydrated through ascending

gradient of ethanol and then critical-point dried using carbon

dioxide. Samples were sputter coated with palladium (4 nm) and

examined using a SEM (Zeiss 1555 VP SEM) at 3 KV and a

working distance of 6 mm.

Phylogeny of the single Xer recombinases
Phylogenetic analysis of the Xer recombinase proteins was

performed with MEGA version 4 [33]. Sequences were aligned

with ClustalW, and the phylogeny was built using the Neighbor-

Joining method [34].

Experimental Infection of Mice
Helicobacter free C57BL/6J mice were purchased from the

Animal Resource Centre (Perth, Western Australia). Studies were

performed with approval from the UWA Animal Ethics

Committee (approval no. 07/100/598). Each eight-week-old

mouse was orogastrically inoculated with approximately 109

CFUs of H. pylori harvested from an overnight agar plate culture

into BHI broth. Colonisation of mice inoculated with X47 wild-

type or its DxerH mutant was evaluated 2 weeks after challenge as

described [29].

Results

The difH sequence undergoes site-specific recombination
in H. pylori

An excision assay in H. pylori strain 26695 was designed to

mimic chromosome dimer resolution (Figure 1A) and to test the

ability of the recently identified difH site [14] to undergo site-

specific recombination. This assay used a DNA segment with

direct repeats of difH flanking rpsL and cat genes, which confer

susceptibility to streptomycin and resistance to chloramphenicol,

respectively. In our first tests this ‘‘difH repeat’’ cassette was

inserted in the H. pylori chromosome between genes HP0203 and

HP0204, which is about 525 kb from the normal difH site (Figure

S1). A negative control strain contained an equivalent cassette, but

with 40-bp of other DNA (‘nondif’) in place of difH at this same

chromosomal location. In PCR tests, each of two bacterial clones

containing the difH repeat cassette yielded two DNA fragments:

2.1 kb, expected of recombination between difH sites; and 3.6 kb,

the full-length cassette (not recombinant at difH sites) (Figure 1B),

whereas clones containing the nondif repeat cassette yielded only

the 3.6 kb PCR product (Figure 1B). This outcome indicates that

difH sites placed at a new chromosomal locus can undergo site-

specific recombination.

difH recombination at the HP0203-HP0204 locus was also

characterised by restoration of streptomycin resistance, which

results from loss of the rpsL (susceptible) allele (difH recombina-

tion), or from rare gene conversion between the added rpsL gene in

this cassette and the resistant allele at the normal chromosomal

rpsL locus [22]. Under our conditions, no (,0.1%) streptomycin

resistant colonies were obtained when the 40 bp yeast DNA

(‘nondif’) sequence flanked the rpsL-cat cassette. In contrast, many

streptomycin resistant colonies were obtained in strains in which

difH flanked rpsL-cat. All of these streptomycin resistant colonies

were chloramphenicol sensitive. PCR confirmed that streptomycin

sensitive clones still contained the full-length difH repeat cassette

and that rpsL-cat was absent from streptomycin resistant clones. As

expected, DNA sequencing confirmed that a single difH ‘‘scar’’

sequence had been retained in these streptomycin resistant,

chloramphenicol sensitive excisants, (Figure 1 and data not

shown). The frequency of XerH recombination at difH sites at

the ureAB locus (about 647 kb from difH site; Figure S1) was also

evaluated using this difH repeat cassette. Cells were grown for 2

and 4 days in non-selective medium (no chloramphenicol),

streaked out for single colony isolates, and 100–200 colonies were

then tested for streptomycin/chloramphenicol resistance/suscep-

tibility phenotypes. Figure 1C shows that the difH recombination

frequency is significantly higher for the cassette placed at ureAB

than at HP0203-HP0204 after 4 days culture. We conclude that

the chromosomal position of paired difH sites affects the frequency

of recombination between them.

difH site recombination requires the single XerH
recombinase

xerH was the only xer recombinase gene identified computa-

tionally in every fully sequenced genome of the Campylobacterales

order, which includes the genus Helicobacter [14]. However, many

H. pylori strains also contain another xer-like recombinase gene

named xerT (named for its association with the TnPZ transposon)

[20,21]. In frame deletions were made in both xerH and xerT to test

each of them for possible roles in difH site-specific recombination.

Using the difH repeat cassette at the ureAB locus and our PCR
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assay, we found that xerH deletion blocked difH recombination,

whereas xerT deletion did not (Figure 2A). In addition, no excision

was detected in the DxerH mutant by testing ,200 colonies for the

emergence of streptomycin resistant, chloramphenicol sensitive

colony phenotypes after 2 and 4 days growth on non-selective

medium, whereas the isogenic DxerT mutant strain has undergone

as much recombination as the xer-wild-type strain, or possibly

more, after 2 and 4 days incubation (Figure 2B).

Complementation of the DxerH allele with an intact xerH gene

under a strong urease promoter (where it is probably over-

expressed) restored difH site-specific recombination (Figure 2C).

Indeed, the high level of the small PCR product in XerH

complemented strains (difH recombination product; .80% of

total) suggested that the amount of XerH protein per cell may be

tightly controlled, and that increased XerH protein markedly

increased the excision frequency, at least for difH at ectopic sites.

The plasmid used to introduce the difH repeat cassette into the

H. pylori chromosome (pHInt_difH-RCAT-difH) did not undergo

difH site recombination in E. coli (data not shown), indicating that

E. coli’s own XerC and XerD recombinases do not process difH;

this was as expected, given difH and E. coli dif sequence divergence

(Table 1 and [14]). However, expression of XerH in E. coli

promoted excision at difH sites in 10% of this plasmid population

(estimate based on plasmid restriction enzyme digest profile; data

not shown). Taken together, our results indicate that recombina-

tion between difH sites is mediated by just one Xer recombinase

without other species-specific factors and that XerH may be

limiting, at least for difH sites far removed from their normal

location. They further suggested that XerT might inhibit XerH,

since more difH recombination was seen in the DxerT strain than in

its wild-type parent (Figure 2B), although further testing is needed

to learn if the stimulation seen in a DxerT strain reaches statistical

and thus biological significance.

Point mutations in difH sequences that block XerH-
mediated recombination

Before performing a mutational analysis of the difH, the

nucleotide frequency at each position was calculated over 50 bp

from 24 epsilon proteobacterial species to establish a consensus

sequence (Table 2, Table S3). This revealed that difH consists of

two highly conserved regions (position 17 to 23 and 29 to 34)

separated by a variable region (position 24 to 26 and 28) and two

other highly conserved positions, 10 and 14 (Figure 3A). In

addition, positions 17 to 22 and 29 to 34 are always in a

palindrome (inverted repeat), whereas positions 13, 23, 28, and 38

are not (Figure 3B). Thus, the difH sequence can be viewed as two

matched domains flanking a unique 6 bp central region.

difH point mutations were made and tested for their ability to

undergo difH recombination in H. pylori when at the ureAB locus.

PCR tests showed that replacement of G by C in palindrome

position 18 or of the four As by four Ts in palindrome positions 19

to 22 each abolished difH recombination in each of two

independent clones (Figure 4A, lanes difH M1 and difH M2). difH

recombination also seemed to be reduced by a C to G mutation at

the non-palindromic but highly conserved position 23, although

this mutation’s effect seemed leaky (very weak excisant PCR

product; Figure 4A, lane difH M3). In confirmation, tests for the

appearance of streptomycin resistant clones showed that the difH

M2 mutation abolished difH recombination, and that the difH M3

mutation caused a severe impairment of recombination (161% for

difH M3 vs. 962% for difH–wild-type after 4 days incubation on

non-selective medium; Figure 4B).

Figure 2. XerH is required for recombination at difH sites
whereas XerT is not. PCR-based difH recombination was assayed in H.
pylori 26695Str (WT) and isogenic derivatives harbouring the difH repeat
cassette after growth on non-selective media, essentially as in Figure 1.
Two independent transformant clones of each strain were tested. The
PCR product from control DNA (lane C), which did not have a difH
repeat cassette, is slightly smaller than the product reflecting difH
recombination because it does not contain the single copy of difH that
remains after recombination (See Figure 1A). (A) Tests of difH
recombination in WT and DxerH and DxerT derivatives, harbouring difH
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FtsK is required for XerH recombination
The presence of an ftsK homologue (HP1090) in H. pylori suggested

that XerH action might require the FtsK DNA translocase, much as

does XerC/D action in E. coli. To test the role of H. pylori’s putative

FtsK translocase protein, we deleted the 39 terminal 1212 bp of the

2580 bp ftsK gene to generate a strain whose FtsK protein is

truncated, and missing the c regulatory domain that in the E. coli

mediates FtsK interaction specifically with XerD, and not with the

related XerC recombinase, for XerC/XerD mediated dif recombi-

nation [2]. Our mutant protein retains the N-terminal membrane

anchor domain, which is essential for viability [35]. No difH

recombination was detected by PCR in an H. pylori strain containing

our mutant ftsK gene and the difH repeat cassette at the ureAB locus

(Figure 5). We conclude that XerH mediated recombination

between difH sites depends on FtsK in H. pylori, even for difH sites

far from the normal difH locus (Figure S1), and despite H. pylori’s use

of a single Xer-type recombinase.

repeat cassette at the ureAB locus. (B) Tests of difH recombination in
WT, DxerH, and DxerT derivatives, harbouring difH repeat cassette at the
HP0203-HP0204 locus strains. (C) Tests of difH recombination in WT,
DxerH and DxerH complemented with a highly expressed xerH gene
using strains with the difH cassette at the ureAB locus.
doi:10.1371/journal.pone.0033310.g002

Table 1. Consensus difH sequence obtained from complete H. pylori genomes.

H. pylori strains difH sequences

35A AAAATTCATTTAGTTATGAAAACTACACTTTTCAAACTTTTAAATCTAAC

51 AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCAAAC

52 ATTTTCTTGTTAGTTATGAAAACTACACTTTTCAAACTTTTAAATCTAAC

83 AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCAAAC

908 AAATCTATTTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCAAAC

2017 AAATCTATTTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCAAAC

2018 AAATCTATTTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCAAAC

26695 TAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCAAAC

B8 AAATCTATTTTAGTTATGAAAACTATACTTTTCAAACTTTTAAATCCAAC

B38 TAATCTATTTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAGTCAAGC

Cuz20 AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCTAAC

F16 AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCAAAC

F30 AAAATTCATTTAGTTATGAAAACCGCACTTTTCAAACTTTTAAATCTAAC

F32 AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCTAAC

F57 AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAATTTTTAAATCTAAC

G27 AAATCTCTTTTAGTTATGAAAACTGCACTTTTCAAACTTTTAACTCTAAC

Gambia94/24 AAATCTATTTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCAAAC

HPAG1 AAATCTCTTTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAGTCAAAC

India7 AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCAAAC

J99 AAATCTCTTTTAGTTATGAAAACTACACTTTTCAAACTTTTAAATCAAAC

Lithuania75 AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAGATCAAAC

P12 AAAATTCATTTAGTTATGAAAACTGCAATTTTCAAACTTTTAAATCAAAC

PeCan4 AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCTAAC

Puno135 AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCTAAC

Puno120 AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCTAAC

Sat464 AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCTAAC

Shi470 AAAATTCATTTAGTTATGAAAACTACACTTTTCAAACTTTTAAATCTAAC

SJM180 AAATCTATTTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAGTCAAGC

SNT49 AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCAAAC

SouthAfrica7 TAATTTATTTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCAAAC

v225d AAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCTAAC

---------***************--*-********-*****--**-*-*

H. pylori difH consensus(1) WWWWYYHWKTTAGTTATGAAAACTRYAMTTTTCAAAYTTTTARVTCHARC

------------**----*-**------**-*---*--*-----------

E. coli dif consensus(2) -----------GGTGCGCATAATGTATATTATGTTAAATC----------

(1)difH sequences were retrieved from H. pylori complete genome sequences downloaded from the National Center for Biotechnology Information (http://www.ncbi.
nlm.nih.gov).
(2)Blakely GW, Davidson AO, Sherratt DJ (1997) Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD. J Mol Biol 265: 30–39.
doi:10.1371/journal.pone.0033310.t001
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Table 2. Consensus difH sequence obtained from 24 epsilon proteobacteria species.

Species(1) difH sequences(2)

Campylobacteraceae

Arcobacter: Arcobacter butzleri
RM4018

AAATATTAATTAGTATTGAAAACTATAATTTTCAAATAAAATATAATAAA

Arcobacter nitrofigilis
DSM 7299

ATATATTAATTAGTATTGAAAACTATAATTTTCAAACTAAATATAGTTTT

Campylobacter: Campylobacter coli
RM2228 (uncompl.)

ATTAATTATTTTGTATTGAAAACTATAATTTTCAAACTTTTATATTTATA

Campylobacter
concisus
13826

TTTATATATTTTGTATTGAAAACTATAATTTTCAAATTGATATTTTAAAA

Campylobacter curvus
525.92

TTTTTATATTTTGTATTGAAAACTATAATTTTCAAATTAATATTTATTTT

Campylobacter fetus
subsp.
fetus 82-40

TTTTATTATTTTGTATTGAAAACTATAATTTTCAAACTATTATGAATTCT

Campylobacter gracilis
RM3268 (uncompl.)

TCTAGATATTCTATATTGAAAACTATAATTTTCAAGTAAAAATTCAATAC

Campylobacter hominis
ATCC BAA-381

TAAATTATTTTATTTTTGAAAACTATAATTTTCAAACTTTTTTGTATTTT

Campylobacter jejuni
RM1221

ATTTATAATTTTGTATTGAAAACTGTAATTTTCAAACTTTTTTATATACA

Campylobacter lari
RM2100

TGTATATATTTTGTATTGAAAACTATAATTTTCAAACTATTATATTTATC

Campylobacter rectus
RM3267 (uncompl.)

TTTTGCTATTTTGTATTGAAAACTGTAATTTTCAAATAAATATCGATACC

Campylobacter showae
RM3277 (uncompl.)

TTTTGCTATTTTGTATTGAAAACTATAATTTTCAAATAAATATTTATATC

Campylobacter upsaliensis
RM3195 (uncompl.)

TTTTATAATTTTGTATTGAAAACTATAATTTTCAAACTTTTATTAAAACT

Sulfurospirillum: Sulfurospirillum
deleyianum
DSM 6946

CAACTTCATTAATTATTGAAAACTAAAATTTTCAAAATTACATAGTTATA

Helicobacteraceae

Helicobacter: Helicobacter
acinonychis str. Sheeba

AAAAATAGTTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCAAAC

Helicobacter canadensis
MIT 98–5491 (uncompl.)

TTCTAATATTTTGTATTGAAAACTATAATTTTCAAACTTTTATTTTTAAC

Helicobacter cinaedi
CCUG 18818 (uncompl.)

TAACATAATTTAGTTATGAAAACTATACTTTTCAAACTTTTTTCCATTAT

Helicobacter
hepaticus ATCC 51449

GTGTTTGAATTAGTTATGAAAACTATACTTTTCAAACTTTTTTATCTCAA

Helicobacter mustelae 12198 TAGTAAAATTAAGTTATGAAAACTGTAATTTTCACTAAAATAAATTTTTC

Helicobacter pullorum
MIT 98–5489 (uncompl.)

ACTCTATATTTTGTATTGAAAACTATAATTTTCAAACTTTTTTTGAAGGA

Helicobacter pylori
26695

TAAATTCATTTAGTTATGAAAACTGCACTTTTCAAACTTTTAAATCAAAC

Helicobacter winghamensis
ATCC BAA-430 (uncompl.)

TCTATCATTTTTGTATTGAAAACTATAATTTTCAAACTTTTTTGTTTCTT

Wolinella: Wolinella succinogenes
DSM 1740

GTATCTCATTTAGTATTGAAAACCATAATTTTCAAACTCATAATTGAATC

Nitratiruptor Nitratiruptor sp.
SB155-2

CCATATTTATTAGTATTGAAAACTATAATTTTCAAACTTTTATTTTTGTT

CONSENSUS(3)
TTTTaTTATTTTGTATTGAAAACTATAATTTTCAAACTTTTATtTaTAtc

(1)Uncompleted genome sequences were noticed as ‘‘uncompl.’’.
(2)Nucleotides in bold characters are common to all 24 difH sequences.
(3)If the nucleotide frequency represents more than 50%, the nucleotide is written in upper case letters; otherwise, the nucleotide is written in lower case letters.
doi:10.1371/journal.pone.0033310.t002
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In E. coli FtsK guides chromosomal translocation and

presentation of dif to the Xer complex by a set of asymmetric

KOPS sequences (59-GGGNAGGG) whose distribution is skewed

toward dif and the replication terminus and polarized (most on

leading DNA strand during bidirectional chromosome replica-

tion). Although this octamer is also abundant in H. pylori genomes,

we think it is unlikely to serve as KOPS for H. pylori’s FtsK protein

because its genomic distribution is neither skewed near difH nor

highly polarized. The only H. pylori octamer mimicking E. coli’s

KOPS in its distribution is 59-AGTAGGGG-39 (Figure S1). This

octamer was identified earlier by Hendrickson and Lawrence in

their survey of many bacterial genomes [6] as a putative

chromosome ‘‘architecture imparting sequence’’ for H. pylori. In

accord with their view, we propose that it serves as H. pylori FtsK’s

guide for difH presentation, its KOPS sequence.

Slight growth defect, UV and ciprofloxacin susceptibility,
and resistance to oxidative stress of DxerH mutant

Light and scanning electron microscopy indicated that loss of

xerH did not cause filamentation in H. pylori equivalent to that

caused by loss of xerC or xerD in E. coli (Figure 6A and 6B). The

DxerH mutant grew less well than its wild-type parent did

(Figure 6C), as did a derivative of this DxerH strain complemented

by a highly expressed intact xerH gene (Figure 6C). These

outcomes suggest that XerH levels are regulated – that either

too much or too little can be deleterious.

Studies in E. coli showing that xerC inactivation exacerbated the

moderate UV susceptibility that is caused by a ruv-deficiency [36]

prompted us to test if xerH inactivation affects H. pylori’s UV

susceptibility. Figure 6D shows that xerH inactivation caused UV

sensitization, albeit less extreme than that caused by recA or ruvC

inactivation, and that normal UV resistance was restored to a

DxerH mutant by complementation with a functional xerH gene.

Inactivation of xerH in a DruvC mutant did not affect this strain’s

normally very high UV sensitivity, whereas enhanced UV

sensitivity was observed in a DrecG mutant with increased

recombination [37] compared to either mutant alone

(Figure 6D). The DrecA DrecG or DruvC DrecG double and DxerH

DruvC DrecG triple deletion strains had the same phenotype as

DrecA or DruvC single deletion strains (data not shown). Two failed

attempts to obtain a DrecA derivative of a DxerH strain prevented

assessment of UV sensitivity in the absence of both xerH and

Figure 3. difH sequences. (A) difH consensus sequence and nucleotide variability for difH sequences from 24 epsilon- proteobacterial species
(Table 2). If a given nucleotide is present in more than 50% of species it is written in upper case; if not, the most frequent nucleotide is in lower case.
The nucleotide variability at each position was defined as 1–f, where f is the frequency of the most frequent nucleotide. (B) Palindromicity was
analysed by comparing the 50-nt difH sequence with its inverted complementary counterpart in the 24 epsilon-proteobacterial species (Table 2).
When a nucleotide was found both in difH and in the reverse complementary sequence, a value of 1 was given to the position. Next, the values for
the 24 difH sequences for each position were added together to give the n value. The palindromicity frequency (fpal) was then estimated as: fpal = n/
24, with 24 being the number of difH sequences analysed. A fpal value of 1 given to a nucleotide position means that the nucleotide is always part of
a palindrome.
doi:10.1371/journal.pone.0033310.g003
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RecA-mediated generalized recombination. Deletion of sequences

encoding the FtsK gamma (probable XerH interaction) domain

caused moderate UV sensitization, almost as much as that caused

by DxerH itself (Figure 6E). Ciprofloxacin induces DNA double-

strand breaks that are repaired by RecA- and RuvABC-mediated

homologous recombination [38].The DxerH mutant was more

sensitive to ciprofloxacin than wild-type (Table 3) despite H. pylori’s

functional recA and ruvABC genes. This suggested a function other

than DNA repair for XerH (e.g., dimeric and catenated

chromosome resolution). The complemented xerH mutant (over-

expressing XerH) was more resistant to ciprofloxacin (Table 3),

again indicating a function other than DNA repair. Finally, the

oxidative stress resistances of DxerH and DftsK mutant H. pylori

were similar to that of wild- type, as were DrecA, DruvC and DrecG

mutant strains (Figure S2). This outcome indicates that XerH

recombination is not needed for base pair excision repair in H.

pylori. Since the generalized recombination that UV, recG deletion

and ciprofloxacin promote should result in formation of dimeric

and catenated chromosomes, we suggest that failure to resolve

such topological structures underlies the DxerH and DftsK mutant

phenotypes. We propose that Xer recombination resolve chromo-

some dimers in H. pylori and speculate a role of XerH/difH in

chromosome decatenation.

Impaired chromosome segregation in DxerH mutant
As noted above, an inability to resolve chromosome dimers and

catenated chromosomes should block chromosome segregation at

cell division. The lack in H. pylori of homologues of parC and parE,

which in E. coli encode the two subunits topoisomerase IV,

suggested that XerH-mediated recombination might also be used

for chromosome decatenation. To test this idea, the DNA contents

of wild-type, DxerH mutant and complemented DxerH mutant

strains were analysed by flow cytometry after staining of DNA with

Hoechst dye, much as in other studies of the hobA chromosome

replication initiation gene [39]. This showed that DxerH mutant

cells contained more DNA on average than their wild-type parents

did (Figure 7). In order to specifically test that XerH could perform

decatenation, uncomplicated by chromosome dimers, which arise

by generalized (RecA-mediated) recombination, we would have

needed a DrecA DxerH double mutant. However, as noted above,

we were unable to construct this double deletion strain.

We also note that the DNA contents of XerH complemented

cells, which have increased XerH activity, was higher than those of

isogenic wild-type cells (Figure 7). This suggests that excess XerH

protein stimulates initiation of chromosome replication, or

conceivably, that it interferes with chromosome segregation

(reminiscent of that seen when XerH protein is absent). Taken

together, these results suggest that DxerH mutants do not undergo

efficient chromosome segregation, that they accumulate subpop-

Figure 4. XerH-mediated recombination at mutant difH sequences. (A) The four A’s in positions 19 to 22 of the difH sequence were changed
to T’s (empty stars), the G in position 18 was changed to C (black star) and the C in position 23 was changed to G (grey star). PCR tests were carried
out as in Figure 1 on a clone harbouring WT difH repeats and two clones harbouring each mutant difH sequence (same sequence in each copy of difH)
as indicated by the stars, difH M1, difH M2 and difH M3. No PCR product reflecting difH recombination was detected in difH M1, difH M2 mutants,
whereas a weak band reflecting difH recombination was detected in the two clones with difH M3 sequences. Underlined nucleotides were found in a
palindrome in all species studied. (B) difH recombination frequencies for WT difH and the difH M1, difH M2 and difH M3 mutant sequences carried out
as in Figure 2B. Experiments were performed in triplicate; horizontal bars indicate means and standard deviations.
doi:10.1371/journal.pone.0033310.g004

Figure 5. H. pylori FtsK is required for XerH-mediated
recombination. Recombination at difH sites was scored as in
Figure 2A in H. pylori 26695Str (WT) and its derivative containing a C
terminal deletion in ftsK, in each case with the difH repeat cassette at
the ureAB locus.
doi:10.1371/journal.pone.0033310.g005
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ulations, one with multiple (dimeric and perhaps entangled)

chromosomes, and one without chromosomal DNA. A chromo-

some segregation defect is in line with a failure to resolve dimeric

and catenated chromosomes, structures that Xer recombination

can resolve in E. coli [7].

XerH is needed for gastric colonisation
The DxerH mutant’s apparent defect in chromosome segrega-

tion and lack of severe growth phenotype in vitro prompted us to

test if xerH is needed by H. pylori in its gastric mucosal

environment. The DxerH allele, and for comparison, a DruvC

allele, were transformed into strain X47, which colonizes mice

robustly. C57BL/6J mice were inoculated orogastrically with

mixtures of these mutant strains and their isogenic X47 wild-type

parent; the mice were sacrificed two weeks later and gastric

mucosal levels of H. pylori were assayed by bacterial culture.

Compared to the robust stomach colonization observed for wild-

type H. pylori (WT), the DxerH mutant did not colonize mice at all

(Figure 8). Interestingly, the DruvC mutant, which exhibits a more

severe DNA repair defect, did colonise mice, although with a 5-

fold lower bacterial load than wild-type (Figure 8). The inability of

the DxerH mutant to survive in the gastric niche contrasts with

DruvC mutant colonization, and further supports the idea that

XerH is not involved in DNA repair, but rather in chromosome

maintenance such as chromosome dimer resolution and possibly in

chromosome unlinking. This, in turn, suggests that the slow

growing H. pylori depends on a unique chromosome replication

and maintenance machinery to thrive in its special gastric niche.

Discussion

The present study confirmed our computational prediction [14]

that H. pylori uses just one dedicated tyrosine recombinase, XerH,

for site-specific recombination at a cognate chromosomal dif site

(difH) – not a pair of distinct proteins akin to XerC and XerD

tyrosine recombinases of E. coli and most other eubacterial species.

For our experiments, we constructed a cassette with direct repeats

of difH sites flanking counterselectable and selectable genes (rpsL

and cat, respectively) and placed this ‘‘difH repeat’’ cassette at

Figure 6. Phenotypes of H. pylori recombination mutants. (A) and (B) Electron micrographs. WT and DxerH mutant cells were fixed with
glutaraldehyde and processed for scanning electron microscopy. Both WT and DxerH mutant cells displayed the characteristic curved rod
morphology; in contrast to Dxer mutant E. coli, none were filamentous. (C) Growth curves of H. pylori in liquid medium. Cells were grown in BHI liquid
medium supplemented with 10% NCS in microaerobic conditions with agitation. The optical densities (OD600 nm) of WT, DxerH and complemented
strains were measured in triplicate for up to 40 h. (D) UV sensitivity of WT and recombination mutant H. pylori. Cells were exposed to UV light as
described in the methods and viable colony forming units (survival) was determined. Each test was repeated at least three times; standard deviation
is indicated. (E) UV sensitivity of WT and ftsK mutant H. pylori determined as in part D.
doi:10.1371/journal.pone.0033310.g006

Table 3. Ciprofloxacin susceptibility of H. pylori strains.

Strains MIC (mg/ml)1

Median2

WT 0.125

DxerH 0.079

xerH complemented 0.250

(1)Minimum inhibitory concentration.
(2)95% confidence interval based on the Wilcoxon signed rank test of eight
independent experiments.
doi:10.1371/journal.pone.0033310.t003
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arbitrarily chosen H. pylori chromosomal locations. difH recombi-

nation was detected by loss of the rpsL-cat segment, as scored by

bacterial phenotype or PCR. Deletion of xerH blocked recombi-

nation between difH sites in the H. pylori chromosome; and

conversely, xerH expression promoted recombination between

them in a plasmid in E. coli. The related XerT recombinase,

present in many but not all H. pylori strains [14], was not needed

for difH recombination. This fits with XerT’s usually being

associated with a widespread conjugative transposon, but not a

fixed component of every H. pylori genome [20,21]. Single Xer

proteins are also used for recombination at cognate dif sites in

Lactococci [15], Streptococci [15] and related Gram positive

genera [16], and in Archaea [17,18], but they are distinct

phylogenetically from H. pylori’s XerH and XerT (Figure 9).

Our DxerH mutant H. pylori exhibited a general DNA

segregation defect. No typical filamentation was observed during

normal growth (Figure 6), as in E. coli xerC or xerD or dif site mutant

strains [40], or under UV stress (data not shown). This discrepancy

may be explained by H. pylori’s lack of an SOS response and E. coli-

type cell division inhibitor (SulA), which is induced by the DNA

breakage [4] that occurs when cell division proceeds without

chromosome dimer resolution. Alternatively, the lack of filamenta-

tion in H. pylori DxerH mutant might be ascribed to H. pylori’s much

longer doubling time (3–4 hours) and small genome size (one-third

E. coli’s). Although E. coli chromosome replication takes some

40 min, rapidly growing E. coli (20 min generation time) can

undergo multifork replication. In consequence, rounds of

replication can initiate in one cell cycle, finish in the next cell

cycle, and still allow segregation in which each daughter cell

receives at least one complete genome. There should be no such

need for multifork replication in H. pylori, with its small genome

size, and leisurely growth rate. We propose that these features

underlie the lack of filamentation in DxerH mutant H. pylori.

Deletion of xerH in H. pylori caused: (i) a slight growth defect in

liquid culture (Figure 6C), as is typical of Dxer mutants of E. coli

[40] (ii) a markedly increased sensitivity to DNA breakage

inducing and homologous recombination stimulating UV irradi-

ation (Figure 6, D and E), and ciprofloxacin (Table 3), (iii) an

increased UV sensitivity of a DrecG mutant [37]; (iv) increased

cellular DNA content (Figure 7), which we interpret as a defect in

chromosome segregation; and (v) an inability to colonize mice

(Figure 8). Overexpression of xerH in our complementation

experiments also increased the level per cell. This unexpected

finding suggests a role of XerH in regulation of DNA replication/

segregation and merits further study. We also found that an intact

FtsK DNA translocase protein was needed for difH recombination

(Figure 5), presumably for effective difH site presentation to H.

pylori’s XerH recombination complex at the end of each DNA

replication cycle, and much as expected based on E. coli results

[2,16,17,41,42,43,44]. Xer recombination likely depends on and is

regulated by cognate FtsK proteins in all eubacterial species,

although, curiously not in Archaea, since they lack obvious ftsK

genes [2,16,17,41,42,43,44]. Deletion of H. pylori FtsK’s cytoplas-

mic domain, including its putative c segment, which probably

interacts with XerH, led to a loss of difH site recombination. This

implies FtsK-XerH interaction for coordinated control of

chromosome dimer resolution and segregation to daughters at

cell division. Our finding of XerH-dependent difH recombination

in E. coli raises the possibility of low level FtsK-independent

recombination in H. pylori as in Vibrios [43] or lack of FtsK-Xer

interaction specificity as observed in Streptococci [41].

The importance of the wild-type difH sequence was confirmed

by finding that each of our several difH sites mutations interfered

with difH recombination (Figure 4). difH’s short inverted repeats,

which flank a small central unique sequence spacer, have a slight

asymmetry (e.g., left arm positions 10 and 14) that is well

conserved among epsilon proteobacteria (Figure 3A). We speculate

that this asymmetry could be used to determine the time and place

of the FtsK-XerH complex’s DNA cleavages: first on one difH

strand, and then the other – reminiscent of the sequential

cleavages by the phylogenetically distinct single XerS recombinase

[41], and formally equivalent to the different roles and timing of

action of E. coli’s XerC and XerD proteins in its heterodimeric

recombinase [45]. Our computational analysis further identified

the sequence 59-AGTAGGGG, whose polarized clustering near

difH make it a prime candidate for H. pylori’s KOPS; this octamer

had also been noted earlier, and was formally proposed as a

chromosome ‘‘architecture imparting sequence’’, but without

suggesting a molecular terms [6]. H. pylori’s putative KOPS

diverges markedly from E. coli’s KOPS octamer (Figure S1), a

feature that should encourage comparison of FtsK-KOPS binding

and associated interactions in these two species.

Figure 7. Impaired chromosome segregation in DxerH mutant.
The X and Y axes indicate the relative Hoechst fluorescence units and
number of H. pylori cells, respectively. Dotted vertical lines indicate
genome equivalents. The main fluorescent signal of wild-type H. pylori
was considered as one genome equivalent, as described [39].
doi:10.1371/journal.pone.0033310.g007

Figure 8. XerH is needed for gastric niche colonization. H. pylori
X47 wild-type (WT) and isogenic DxerH and DruvC mutants were used
to inoculate five to ten eight-week old C57BL/6J mice. Mice were
sacrificed and colonisation levels in stomachs were measured as
described in the methods. Data is presented as a scatter plot with each
point representing the CFU count of one mouse stomach, and the solid
line the geometric mean 6 standard deviation for each group (WT,
DxerH, and DruvC).
doi:10.1371/journal.pone.0033310.g008
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The reason for our inability to delete recA in a DxerH mutant

strain is unclear, but might suggest a second important role for

difH recombination. For example, many thousands of topological

links created by unwinding and replication of double stranded

circular DNAs must all be removed for proper chromosome

segregation at cell division. The great majority of such links are

removed in E. coli by topoisomerase (Topo) IV, which interacts

with and is stimulated by FtsK. However, H. pylori seems to lack

this essential enzyme: it has no close homologues of the Topo IV

encoding parC and parE genes [19], and thus must use some other

enzyme system. The possibility that XerH/difH recombination

could allow H. pylori to avoid a chromosome decatenation

dilemma is suggested by findings of E. coli XerC/D and dif-

dependent (although inefficient) DNA decatenation in vitro; and by

the in vivo XerC- and XerD-dependent suppression of a

temperature sensitive (conditional lethal) Topo IV mutation when

mutant soluble form of FtsK is overproduced [7]. We think that

the case for XerH-mediated decatenation in H. pylori would be

strengthened if it were shown that this suppression reflects

fulfilment of Topo IV’s functions by a more effective XerC/

XerD/FtsK complex, not just FtsK-mediated stabilization of an

impaired (temperature sensitive) Topo IV [11]. It is interesting in

this context, that obvious parC and parE (Topo IV) homologues are

found in Lactococci and Streptococci, which also use just a single

Xer recombinase, these Gram positive species do not challenge

our conventional understanding of how chromosomes are

decatenated [19] in the way that H. pylori does. As a third case,

Archaea, use just a single Xer recombinase (XerA) but lack

obvious homologues of parC and parE and ftsK [17]. Assuming that

they will have developed yet another solution to the decatenation

problem, valuable insights should emerge from detailed compar-

isons of daughter chromosome separation and chromosome

integrity maintenance in diverse microbial species. One possible

solution emerges from finding of higher decatenase activity in the

DNA gyrases of M. tuberculosis and M. smegmatis than of E. coli

[46,47].

Although we can speculate that H. pylori chromosome

decatenation is mediated by iterated round of XerH action on

difH, we can also imagine DNA gyrase-mediated decatenation in

H. pylori. This would be in accord with our DxerH strain’s increased

susceptibility to the gyrase inhibitor ciprofloxacin (Table 3), and E.

coli DNA gyrase’s low efficiency decatenation of linked circular

DNAs in vitro (superimposed on its very efficient DNA negative

supercoiling). As a final alternative, we can also imagine H. pylori’s

topoisomerase III (HP0116) mediating sufficient decatenation, by

extrapolation from Topo III’s activity in E. coli [48].

The analyses presented here suggest many valuable experiments

for future studies, bringing into focus the need to learn how

catenanes are processed in the many other slow growing human

pathogens that, like H. pylori, lack topoisomerase IV. Particularly

informative should be further molecular genetic and enzymologic

analyses of H. pylori’s XerH, DNA gyrase and TopoIII, in the

context of this pathogen’s small genome size and leisurely growth

rate. The lessons learned should be applicable to the understand-

ing, diagnosis and therapy for diverse pathogens and conditions:

H. pylori itself, and peptic ulcer disease and gastric cancer; the

closely related Campylobacters and associated diarrheal diseases;

and equally, unrelated pathogens such as Mycobacterium tuberculosis,

which chronically infects many millions of people worldwide, also

without obvious genes for Topoisomerase IV.

Figure 9. Phylogeny of archaeal and bacterial single-Xer recombinases. Species are representative of their respective taxonomic groups.
XerC and XerD from E. coli and XerT from H. pylori were included in the study as reference. Amino acid sequence alignments were performed using
Clustal W. The phylogenetic analyses, using the Neighbour-Joining method [34] were conducted in MEGA4 [33]. The percentage of replicate trees in
which the associated taxa clustered together in the bootstrap test (1000 replicates) is shown next to the branches. The bootstrap consensus tree is
taken to represent the evolutionary history of the taxa analysed. For each species, the accession number is indicated as well as the number of amino
acid residues composing the recombinase.
doi:10.1371/journal.pone.0033310.g009
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Supporting Information

Figure S1 Positions of putative KOPS sequences and other
features in the H. pylori 26695 genome sequence. The H. pylori

26695 genome sequence was scanned for the octameric AGTAGGGG

sequences that had been implicated computationally as likely to affect

chromosome architecture [6] (A), and for the GGGNAGGG octamer

that constitutes the KOPS sequence of E. coli [49] (B). The circular H.

pylori genome is presented here as a linear structure, with ends

corresponding to its origin of bidirectional replication. The AG-

TAGGGG and GGGNAGGG octamers are represented by red and

blue plain diamonds, respectively. Also indicated are the locations of

xerH and difH, and the HP0203-HP0204 and ureAB loci at which we

had placed difH repeat cassette.

(TIFF)

Figure S2 Sensitivity of H. pylori mutants to oxidative
stress. Sensitivity to oxidative stress was evaluated in a disk assay

using 2 mM or 20 mM of paraquat on blood agar plates that had

previously been streaked for confluent growth with either mutant

or wild-type cells as indicated. Following a 3–4 day incubation

period, the clear zones surrounding the disks were measured.

Experiments were repeated three times and standard deviation is

indicated.

(TIF)

Table S1 Plasmids and bacterial strains used in this
study.

(PDF)

Table S2 Oligonucleotide primers used in this study.

(PDF)

Table S3 Nucleotide frequency (%) and consensus difH
sequences from 24 epsilon-proteobacterial species chro-
mosomes.

(XLS)
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