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Abstract

Interventions on macrophages/foam cells to redirect intracellular cholesterol towards efflux pathways could become a very
valuable addition to our therapeutic arsenal against atherosclerosis. However, certain manipulations of the cholesteryl ester
cycle, such as the inhibition of ACAT1, an ER-resident enzyme that re-esterifies cholesterol, are not well tolerated. Previously
we showed that targeting perilipin-2 (PLIN2), a major lipid droplet (LD)-associated protein in macrophages, prevents foam
cell formation and protects against atherosclerosis. Here we have assessed the tolerance of PLIN2-deficient bone marrow
derived macrophages (BMM) to several lipid loading conditions similar to the found during atherosclerosis development,
including exposure to modified low-density lipoprotein (mLDL) and 7-ketocholesterol (7-KC), a free cholesterol (FC)
metabolite, in media with or without cholesterol acceptors. BMM isolated from mice that do or do not express PLIN2 were
tested for apoptosis (TUNEL and cleaved caspase-3), ER stress (CHOP induction and XBP-1 splicing), and inflammation (TNF-
a and IL-6 mRNA levels). Like in other cell types, PLIN2 deficiency impairs LD buildup in BMM. However, while most stress
parameters were elevated in macrophages under ACAT inhibition and 7-KC loading, PLIN2 inactivation was well tolerated.
The data support the safety of targeting PLIN2 to prevent foam cell formation and atherosclerosis.
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Introduction

Lipid-laden macrophages or foam cells are fundamental to the

formation and progression of atherosclerosis [1]. They play the

central role of removing the mLDL retained in the arterial intima

and, consequently, need to deal with a large influx of cholesterol.

The lipoprotein-derived cholesterol ester (CE) is hydrolyzed in the

lysosome and FC is released to the cytoplasm. Part of this FC can

be effluxed to extracellular acceptors such as apolipoprotein A1 or

high-density lipoprotein, but a large portion of it is re-esterified

and stored as CE in cytoplasmic LDs [2]. The fate of intracellular

cholesterol may influence the development of atherosclerosis, and

while re-esterification promotes foam cell formation and choles-

terol retention at the arterial wall, efflux facilitates reverse

cholesterol transport. Since cholesterol is effluxed as FC,

conceivably efflux can be enhanced by increasing the intracellular

FC/CE ratio. However, certain interventions aiming to prevent

CE accumulation as a strategy to increase efflux have actually

been detrimental. For example, cholesterol is re-esterified by

acetyl-CoA acetyltransferase1 (ACAT1) [3] and, therefore,

ACAT1 inhibition would be expected to protect against

atherosclerosis. Conversely, most evidence supports that decreas-

ing ACAT1 activity actually promotes atherosclerosis, which has

been attributed to side effects caused by excess of FC trafficking to

the ER membrane, including ER stress, increased synthesis of

proinflammatory cytokines, and macrophage death [4–7]. Hence,

the foam cell’s tolerance to other manipulations of the cholesteryl

ester cycle needs to be carefully evaluated.

LDs consist of a core of neutral lipid, mainly CE and

triglycerides, coated by a monolayer of phospholipids, FC and

proteins [8]. The most important structural proteins associated to

LDs are the members of the PAT family, named after Perilipin,

Adipose differentiation-related protein and Tail-interacting pro-

tein of 47 kDa [9]. In macrophages the main PAT protein is

PLIN2 (also known as ADFP, ADRP or adipophilin before an

unifying nomenclature was adopted) [10]. PLIN2 plays an

important role in lipid trafficking in macrophages. PLIN2

expression increases following lipid loading in several monocytic

cell lines and in primary macrophages [11–15]. In vivo, PLIN2

mRNA is upregulated in carotid endarterectomy specimens and in

atherosclerosis-studded arteries of apoE2/2 mice compared to

control healthy arteries [12,14]. PLIN2 overexpression in THP-1

macrophages increases lipid accumulation upon incubation with

acetylated (ac) LDL, while PLIN2 downregulation reduces it [14].

Peritoneal macrophages isolated from PLIN2-deficient mice

display less cytoplasmic LDs and decreased CE following

incubation with oxidized (ox) LDL or acLDL and, consistently,

foam cells in lesions of PLIN2 knockout mice contain less LDs

than those of their wild-type (WT) littermates [12]. Data from

cholesterol trafficking experiments support that, by facilitating CE

accumulation in LDs, PLIN2 hinders cholesterol efflux [12,14].

Previously we showed that PLIN2 deficiency protects apoE-

deficient mice against atherosclerosis [12]. Here we have studied

the response of BMM isolated from mice that do or do not express

PLIN2, in terms of apoptosis, ER stress and inflammation, to

multiple culture conditions that mimic the lipid environment in
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different stages of atherosclerosis development. While there was

toxicity associated to ACAT1 inhibition and FC loading, the data

support that PLIN2 inactivation is well tolerated by macrophages.

Materials and Methods

Ethics statement
All animal experiments were conducted following a protocol

approved by the Institutional Animal Care and Use Committee at

Albany Medical College (protocol number 901397). All efforts

were made to minimize suffering.

Cell culture and experimental design
BMM isolated from femurs of PLIN2-deficient mice in C57BL/

6J background [16] and age and gender matched WT controls

were cultured in RPMI-1640 media supplemented with 10% heat-

inactivated fetal bovine serum (FBS) and 15% (v/v) L929 cell-

conditioned medium, that served as the source of M-CSF [17]. At

passage three BMM were subcultured into two six-well plates and

remained untreated, or were treated for 20 hours with acLDL

(50 mg/ml; Biomedical Technologies), an ACAT inhibitor

(ACATi; 10 mg/ml; Sandoz 58-035, Sigma-Aldrich), the combi-

nation of acLDL plus ACATi, or 7-KC (50 mM; Sigma-Aldrich).

These concentrations of acLDL combined with ACATi or 7-KC

alone have previously been shown to induce ER-stress and

apoptosis in macrophages [18–21]. Because the 7-KC was

dissolved in ethanol, we also included an ethanol/vehicle group.

To mimic the limited access to extracellular cholesterol acceptors

in the core of advanced lesions, the study was performed in parallel

in media without FBS. The study design is summarized in Table 1.

Nine mice of each genotype were included, and their BMM were

used to obtain protein (n = 3), RNA (n = 3) or for staining (n = 3).

Western blots and quantitative PCRs
Fifteen mg of protein were resolved by SDS-PAGE and

transferred onto a PVDF membrane. The antibodies used for

Western blot included a rabbit anti-PLIN2 (Novus Biologicals), a

rabbit anti-GADD153 [C/EBP-homologous protein (CHOP),

Santa Cruz Biotecnologies], a rabbit anti-cleaved caspase-3 (Cell

Signaling), and a rabbit anti-GAPDH (Sigma-Aldrich). RNA was

isolated with TRIzol (Invitrogen), digested with DNase I and

purified using the Absolutely RNA miniprep kit (Agilent

Technologies). Reverse transcription of 500 ng of total RNA was

performed with SuperScript III (Invitrogen). Primer sequences

were designed with Primer3 software [22] and are available in

Table S1. Quantitative real-time PCR (qPCR) was performed

with SYBR Green QPCR Master Mix from Stratagene (Cedar

Creek, TX) using 40 amplification cycles (95uC for 30 s, 55uC for

1 min, 72uC for 1 min). Relative gene expression levels were

determined from threshold cycle (Ct) values normalized to

cyclophilin A as we previously described [12]. The splicing of

X-box binding protein 1 (XBP-1) was assessed by RT-PCR using

primers that detect both unspliced (205 bp) and spliced (179 bp)

isoforms. PCR products were separated in 6% polyacrylamide gels

and visualized by ethidium bromide staining. Relative protein

levels and XBP-1 mRNA splicing were quantified using ImageJ

software.

Oil red O and TUNEL stainings
For oil red O (ORO) staining BMM were fixed with 3.7%

paraformaldehyde, washed with phosphate buffered saline (PBS)

and stained for 30 minutes with ORO (Sigma-Aldrich; 0.3% w/v

in 60% isopropanol). Nuclei were stained with hematoxylin

(Vector Laboratories). TUNEL staining was performed with the

DeadEnd Fluorometric TUNEL system (Promega), and cell nuclei

were stained with DAPI (Sigma-Aldrich). Cell number and

TUNEL-positive cells in six to ten randomly selected fields per

sample were quantified blindly by two independent investigators.

Data analysis
Statistical significance of the effect of the three independent

variables included in this study (PLIN2 genotype, treatment, and

presence or absence of FBS) was determined by three way

ANOVA using the SigmaStat software. Pairwise comparisons were

performed by the Holm-Sidac method. In addition, a two-tailed

Student’s t-test was used to compare WT and PLIN2-deficient

macrophages within each treatment group. Differences were

considered significant at p,0.05. Results are shown as mean 6

SEM.

Results

Role of PLIN2 in LD formation in BMM
BMM can be expanded in vitro, and this allowed us to obtain

enough cells to simultaneously compare the response between WT

and PLIN2-deficient macrophages under multiple culture condi-

tions. Because the role of PLIN2 on LD formation in BMM had

not been studied, first we asked whether this is similar to the

previously described in other primary macrophages and mono-

cyte/macrophage cell lines [12,14]. As seen in Figure 1A and 1B,

qPCR analysis showed that upon incubation with acLDL there

was a significant (,4-fold) increase in PLIN2 mRNA. At the

protein level, while by immunoblot PLIN2 was barely detectable

in untreated cells, it was ,18-fold higher in acLDL-treated BMM

(Figure 1C and 1D). Note that when not bound to LDs PLIN2 is

rapidly degraded by the proteasome, and very low levels of the

protein are expected in non-lipid laden cells [23]. On the other

hand, as seen in Figure 1E, ORO staining showed abundant

cytoplasmic LDs in acLDL-treated WT BMM, but the absence of

PLIN2 markedly reduced LD buildup. Thus, in agreement with

previous observations in multiple tissues and cell types, including

macrophages, in BMM PLIN2 mRNA and protein are upregu-

lated by lipid loading, and the absence of PLIN2 hinders LD

formation.

PLIN2 inactivation does not induce apoptosis in BMM
Cholesterol loading can induce macrophage apoptosis [7]. If

high rates of apoptosis overpower the efferocytosis (clearance of

Table 1. Experimental design.

Untreated control acLDL (50 mg/ml) ACATi (10 mg/ml) acLDL+ACATi Control (ethanol) 7-KC (50 mM)

+FBS 2FBS +FBS 2FBS +FBS 2FBS +FBS 2FBS +FBS 2FBS +FBS 2FBS

WT KO WT KO WT KO WT KO WT KO WT KO WT KO WT KO WT KO WT KO WT KO WT KO

doi:10.1371/journal.pone.0033063.t001

PLIN2 Deficiency Is Well Tolerated by Foam Cells
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apoptotic bodies) capacity of the neighboring macrophages, the

accumulated apoptotic bodies may become disrupted and release

their proatherogenic cargo [24]. In early atherogenesis foam cell

formation is primarily due to mLDL uptake. In advanced lesions

the cells are also exposed to FC and its oxidized derivates, in an

environment relatively poor in cholesterol acceptors. Thus, our

treatments included acLDL, a form of mLDL avidly taken-up by

macrophages, and 7-KC, a FC oxidation product found in

atherosclerotic lesions [25]. Media with or without FBS allowed or

limited access to extracellular acceptors, respectively.

Apoptosis was assessed by two commonly used methods:

TUNEL to detect DNA fragmentation and Western blot to detect

cleaved caspase-3. The TUNEL results are summarized in

Figure 2. Briefly, in macrophages cultured with FBS there was a

low (,1%) rate of apoptosis in the untreated and in the ACATi

and acLDL-treated groups, and was not affected by the PLIN2

genotype. Treatment with acLDL+ACATi increased the rate of

apoptosis to ,2.6% in WT macrophages and to ,5.6% in

PLIN2-deficient macrophages, but the difference between geno-

types did not reach statistical significance. The effect of 7-KC was

Figure 1. PLIN2 is upregulated by lipid loading in BMM, and PLIN2 deficiency inhibits LD accumulation. (A) Representative RT-PCR
analysis (29 cycles) showing PLIN2 mRNA induction by acLDL (50 mg/ml for 20 h) in BMM. (B) qPCR analysis of PLIN2 mRNA expression relative to
cyclophilin A in WT BMM macrophages. n = 3, **p,0.01. (C) Representative Western blot and (D) quantification of PLIN2 protein relative to GAPDH in
BMM cultured with or without acLDL. n = 3, **p,0.01. (E) Oil red O staining in WT (left) and PLIN2-deficient (right) BMM cultured with acLDL.
doi:10.1371/journal.pone.0033063.g001

PLIN2 Deficiency Is Well Tolerated by Foam Cells
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more marked, but similar between genotypes: 11.1% in PLIN2+/+

macrophages and 10.6% in PLIN22/2 macrophages. In general,

the rate of apoptosis increased when the macrophages were

cultured without FBS, ranging between 1.5 and 4% in the control,

acLDL and ACATi groups. Again, acLDL treatment did not

induce apoptosis in PLIN2-deficient macrophages and in this case

the rate of apoptosis in acLDL+ACATi-treated cells was similar in

both genotypes (6.1% in PLIN2+/+ macrophages and 6.0% in

PLIN22/2 macrophages). 7-KC treatment also increased the

number of TUNEL positive cells to a comparable level in both

genotypes: 21.7 and 22.4% in WT and PLIN2-deficient

macrophages, respectively. Three way ANOVA analyses showed

that FBS depletion significantly increased apoptosis. Among the

treatments, the effect of 7-KC was highly significant. While

comparisons between the acLDL+ACATi treatment and each one

of the other treatment groups yielded p values,0.05, these values

did not reach the critical level to be considered significant in this

analysis. The PLIN2 genotype did not influence the results

(p = 0.650). The ANOVA results are summarized in Table S2. In

addition, t-test analyses did not show significant differences

between WT and PLIN2-deficient macrophages under any

condition.

The levels of the 17 kD subunit of active caspase-3 paralleled

the TUNEL data. As seen in Figure 3A, cleaved caspase-3 was

detectable only in acLDL+ACATi and 7-KC-treated macro-

phages. Treatment with acLDL did not induce caspase-3

activation in PLIN2-deficient cells whether they were cultured

with or without FBS. Interestingly, capase-3 activation was higher

in FBS+/acLDL+ACATi-treated PLIN22/2 macrophages than

in their WT counterparts, although this difference was not

statistically significant (Figure 3B). In summary, we only observed

a modest trend of increase in apoptosis markers in PLIN2-

deficient cells when they were cultured with acLDL in the

presence FBS and with the ACAT activity inhibited pharmaco-

logically. Under all other conditions, PLIN2 deficiency did not

increase apoptosis.

PLIN2 inactivation does not increase lipid-induced ER
stress in BMM

The ER is considered the main site of cholesterol-induced toxicity

in foam cells [5,26]. We asked whether PLIN2 deficiency could

induce a subapoptotic level of ER stress that in a multi-hit scenario

could facilitate apoptosis induction by other factors [24]. We

analyzed two parameters commonly used to detect activated

unfolded protein response (UPR), the adaptive response of the ER

to stress: the induction of CHOP and the splicing of XBP-1 [27]. As

seen in Figure 4A, CHOP, a proapoptotic transcription factor

[5,21,28], was robustly induced by 7-KC and to a lesser extend by

mLDL+ACATi, the two conditions that increased apoptosis.

Treatment with acLDL or ACAT inhibitor alone did not cause

CHOP induction in PLIN2-deficient BMM whether they were

cultured with or without FBS, and PLIN2-deficient and WT BMM

responded to 7-KC indistinguishably. Interestingly, compared to

WT BMM CHOP was moderately elevated in PLIN2-deficient

macrophages in the FBS+/acLDL+ACATi group (Figure 4B).

The highest rates of XBP-1splicing were also observed in 7-KC-

treated macrophages cultured both with and without FBS, and in

the FBS2/acLDL+ACATi group. PLIN2 inactivation did not

increase XBP-1 splicing in any treatment group, including the

FBS+/acLDL+ACATi group (Figure 4C and 4D). Thus, both

UPR markers increased under conditions known to induce ER

stress, i.e. 7-KC loading and treatment with acLDL+ACATi in the

absence of FBS [29,30]. However, PLIN2 inactivation did not

alter these markers except for a moderate increase in CHOP

induction in macrophages treated with acLDL+ACATi in the

presence of FBS.

Lack of PLIN2 does not increase the synthesis of TNF-a
and IL-6 in BMM

Inflammation is a major player in atherogenesis [31]. Previous

work has shown that FC accumulation in macrophages can induce

the synthesis of inflammatory cytokines such as tumor necrosis

factor-a (TNF-a) and interleukin-6 (IL-6) [6,32,33]. Thus, we

Figure 2. Analysis of apoptosis: TUNEL staining. (A) Representative images of TUNEL staining in untreated and acLDL, acLDL+ACATi and 7-KC-
treated BMM isolated from WT and PLIN2-deficient mice cultured with or without FBS supplementation. TUNEL positive cells (green) are pointed by
arrows. Bar = 50 mm. (B) Quantification of TUNEL positive cells in all the treatment groups (n = 3). The results of a three-way ANOVA analysis of these
data are shown in Table S2 online.
doi:10.1371/journal.pone.0033063.g002

PLIN2 Deficiency Is Well Tolerated by Foam Cells
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analyzed, by qPCR, the relative mRNA expression of these two

cytokines. As seen in Figure 5, in macrophages cultured in the

presence of FBS 7-KC treatment resulted in ,2.5 and ,30-fold

induction of TNF-a and IL-6 mRNA, respectively. In the

remaining treatment groups the mRNA levels were similar to

those in the control group. FBS deprivation resulted in a variable

induction of both cytokines, but both transcripts were higher in 7-

KC-treated BMM. No significant differences between genotypes

were observed when comparisons within each individual treatment

group were performed by t-test under any experimental condition.

Three-way ANOVA analysis showed that FBS depletion and 7-

KC treatment significantly increased the levels of both transcripts,

while the PLIN2 genotype did not influence the results. The

ANOVA results are summarized in Tables S3 and S4.

Discussion

Arguably, proving the safety of a molecular intervention with

potential therapeutic use is as relevant as proving its efficiency.

Previously we showed that PLIN2 ablation does not affect acLDL

binding and cholesterol uptake by macrophages, but it hampers

the foam cell’s ability to accumulate surplus of cholesterol as CE in

cytoplasmic LDs [12]. Thus, under PLIN2 deficiency part of the

cholesterol that would be stored in LDs will need to be

redistributed within the cell. On one hand this may be beneficial

because some of it may traffic to compartments from where it can

be effluxed, and this is probably why macrophages lacking PLIN2

showed increased cholesterol efflux [12]. However, this may also

cause more FC recirculation to the ER, which inherently implies

more risk of ER stress. In this study we have assessed the tolerance

of PLIN2-deficient macrophages to different forms of lipid

exposure, including milder conditions expected in early athero-

genesis such as exposure to mLDL in the presence of extracellular

cholesterol acceptors, but also two more stressing conditions

expected within advanced lesions, namely exposure to mLDL in

the absence of extracellular acceptors and exposure to free and

oxidized cholesterol derivates. Treatment with an ACAT inhibitor

allowed comparing the effects of PLIN2 deficiency to those of a

well-known inducer of ER stress-mediated apoptosis. Collectively,

our data support that PLIN2 deficiency is well tolerated by the

macrophage. Consistent with observations in macrophages from

other sources, PLIN2 deficiency reduced LD formation in BMM.

However, conversely to what happened under ACAT inhibition,

acLDL treatment did not induce ER stress and did not increase

the rate of apoptosis in PLIN22/2 macrophages even when they

were cultured in the absence of FBS, a condition that hampers the

cell’s ability to efflux cholesterol and, consequently, could increase

its dependence on cholesterol storage. In addition, while 7-KC

induced ER stress, apoptosis and inflammation in macrophages

cultured with and without FBS, these effects were similar in

macrophages of both genotypes. A possible explanation for the low

toxicity associated to PLIN2 deficiency compared to ACAT

inhibition may rely on the cellular localization of the proteins. The

ER membrane is extraordinarily poor in cholesterol, and while FC

accumulation at the ER has a marked proapoptotic effect,

macrophages show better tolerance to FC accumulation at the

Figure 3. Analysis of apoptosis: caspase-3 activation. (A) Representative Western blots to detect the 17 kD subunit of active caspase-3. The
band was detectable only in the acLDL+ACATi and 7-KC-treatment groups. (B) Quantification of the 17 kD caspase-3 fragment relative to GAPDH in
the acLDL+ACATi and 7-KC-treatment groups (n = 3).
doi:10.1371/journal.pone.0033063.g003

PLIN2 Deficiency Is Well Tolerated by Foam Cells
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Figure 4. Analysis of ER stress: CHOP induction and XBP-1 splicing. (A) Representative Western blot showing CHOP induction only in the
acLDL+ACATi and 7-KC-treatment groups. The band was detectable only in the acLDL+ACATi and 7-KC-treatment groups. (B) Quantification of CHOP
relative to GAPDH in the acLDL+ACATi and 7-KC-treatment groups (n = 3; *p,0.05 respect to WT). (C) XBP-1 unspliced (U) and spliced (S) mRNAs in
the different treatment groups. (D) Quantification of splicing. The bars represent % of spliced XBP-1 with respect to the total (spliced+unspliced) XBP-
1. n = 3.
doi:10.1371/journal.pone.0033063.g004

PLIN2 Deficiency Is Well Tolerated by Foam Cells
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plasma membrane [5], suggesting that the site of intervention

actually matters when we target the cholesterol ester cycle.

Interestingly, we observed a moderate increase in TUNEL positive

cells, cleaved caspase-3 and CHOP induction in PLIN2-deficient

macrophages treated simultaneously with acLDL and an ACAT

inhibitor in the presence of FBS. The increase in CHOP and

apoptosis markers was limited to this group, and was markedly

lower than the seen after FBS withdrawal. Altogether, these data

suggest that while PLIN2 deficiency may actually increase

cholesterol recirculation through the ER, this does not cause ER

stress unless re-esterification is blocked.

The existence of a cholesterol esterification/hydrolysis cycle in

macrophages has been known for decades [2]. However, there are

still many missing pieces in a puzzle that we need to solve if we

want to tackle cholesterol trafficking to prevent foam cell

formation and atherosclerosis. Previously we showed that targeting

PLIN2 reduces foam cell formation and atherosclerosis [12]. Here

we show that PLIN2 ablation is well tolerated by macrophages.

Overall, the data support the therapeutic potential of interventions

at the LD level aiming to mobilize intracellular cholesterol towards

efflux and reverse transport pathways to slow-down atherogenesis.

Supporting Information

Table S1 Primer sequences.
(DOCX)

Table S2 Three way ANOVA analysis of the TUNEL
data.
(DOCX)

Table S3 Three way ANOVA analysis of the TNF-a
mRNA levels.
(DOCX)

Table S4 Three way ANOVA analysis of the IL-6 mRNA
levels.
(DOCX)

Figure 5. Analysis of inflammation: TNFa and IL-6 mRNA. qPCR analysis of TNF-a (A) and IL-6 (B) mRNA expression relative to cyclophilin A.
(n = 3). The results of three-way ANOVA analyses of these data are shown in Tables S3 and S4 in the online data supplement.
doi:10.1371/journal.pone.0033063.g005
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