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Abstract

Previously, we have shown that the GABA synthesizing enzyme, L-glutamic acid decarboxylase 65 (GAD65) is cleaved to
form its truncated form (tGAD65) which is 2–3 times more active than the full length form (fGAD65). The enzyme
responsible for cleavage was later identified as calpain. Calpain is known to cleave its substrates either under a transient
physiological stimulus or upon a sustained pathological insult. However, the precise role of calpain cleavage of fGAD65 is
poorly understood. In this communication, we examined the cleavage of fGAD65 under diverse pathological conditions
including rats under ischemia/reperfusion insult as well as rat brain synaptosomes and primary neuronal cultures subjected
to excessive stimulation with high concentration of KCl. We have shown that the formation of tGAD65 progressively
increases with increasing stimulus concentration both in rat brain synaptosomes and primary rat embryo cultures. More
importantly, direct cleavage of synaptic vesicle - associated fGAD65 by calpain was demonstrated and the resulting tGAD65
bearing the active site of the enzyme was detached from the synaptic vesicles. Vesicular GABA transport of the newly
synthesized GABA was found to be reduced in calpain treated SVs. Furthermore, we also observed that the levels of tGAD65
in the focal cerebral ischemic rat brain tissue increased corresponding to the elevation of local glutamate as indicated by
microdialysis. Moreover, the levels of tGAD65 was also proportional to the degree of cell death when the primary neuronal
cultures were exposed to high KCl. Based on these observations, we conclude that calpain-mediated cleavage of fGAD65 is
pathological, presumably due to decrease in the activity of synaptic vesicle - associated fGAD65 resulting in a decrease in
the GABA synthesis - packaging coupling process leading to reduced GABA neurotransmission.
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Introduction

The brain constantly strives to maintain a balance between the

excitatory and inhibitory networks, whose key players are the

neurotransmitters L-glutamic acid and c-amino butyric acid

(GABA) respectively. The decision in maintaining the state of

equilibrium is controlled by the activity of the enzyme L-glutamic

acid decarboxylase (GAD; EC 4.1.1.15), which is responsible for the

synthesis of GABA from the substrate L-glutamic acid [1]. Too

much excitation or too little inhibition could tip the balance,

potentially triggering a plethora of neurodegenerative diseases such

as epilepsy, general anxiety disorder, schizophrenia, Parkinson’s

disease, Huntington’s chorea, etc. all of which have varied etiologies

but harbor a fundamental disruption of the local GABA circuitry

[2–8]. Synaptic inhibition by GABA is not only confined to the fine

tuning of inhibitory neurotransmission in the central nervous

system, but also encompasses the peripheral nervous system where it

is actively involved as an endocrine signaling molecule [1]. GABA

inhibition failure due to GAD auto-immunity has gained wide-

spread attention and is implicated in diseases such as insulin-

dependent diabetes milletus (IDDM), Stiff person syndrome, Batten

disease, bi-polar disorder, cerebellar ataxia etc [9–13].

Interestingly, in the mammalian brain, unlike any other

neurotransmitter synthesizing enzymes, GABA is the only

neurotransmitter featuring two catalytic enzymes, namely

GAD65 and GAD67, where 65 and 67 denote their respective

molecular weights in KDa [14]. While 90% of GABA is the

outcome of constitutive expression by GAD67 in the cytosol

channeled for non-neurotransmission functions, synaptic vesicle

(SV) membrane - associated GAD65 is transiently activated

to reinforce GABA for high frequency bursts to fine-tune

GABAergic neurotransmission at the synapse [15–16]. In our

earlier work, we demonstrated that there exists a functional

coupling between vesicular GABA transporter (VGAT) and SV -

associated GAD65 [17]. Such an alignment in close proximity

between these two molecules, licenses VGAT to preferentially load

the newly synthesized GABA generated by the transiently

activated membrane - associated GAD65 into the SVs, over the

pre-existing GABA constitutively generated by GAD67 in the

soma. This key phenomenon is disrupted in GAD652/2 mice.

Mice deficient in GAD65 appear normal but are highly susceptible

to epilepsy and general anxiety disorder which could be

spontaneously precipitated by fear or mild stress [18–19]. These

findings underscore the pivotal role played by membrane -

associated GAD65 to regulate GABA for extra-synaptic tonic

inhibition.

In our previous publications, we reported the presence of

truncated GAD65 (tGAD65) during protein purification of human
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recombinant full length GAD65 (fGAD65) from a bacterial

expression system in vitro [20]. fGAD65 could be readily cleaved

by mild trypsin treatment or incubation with Factor Xa to

yield a 58 KDa tGAD65, confirming an earlier purported

report that a proteolytic hot-spot is contained within the first

100 amino acids of GAD65 [21]. Peptide fragment analysis

revealed the identity of the cleavage site to be precisely between

Arg69 and Lys70 [20]. Interestingly, in vitro biochemical

characterization of fGAD65 versus tGAD65 indicated that

the truncated form was 2–3 times more stable and stronger than

the full length form [20]. In addition, we demonstrated that rat

brain fGAD65 could be cleaved upon neuronal stimulation in vivo

to yield a cleaved product, which had similar electrophoretic

mobility as the purified recombinant tGAD65 on SDS-PAGE

[22]. Furthermore, by various biochemical approaches, we

demonstrated that the enzyme calpain was responsible for the

cleavage of fGAD65 to form tGAD65 [22]. However, the

conditions favoring calpain cleavage of fGAD65 and the

implications it has on GABA neurotransmission have not been

fully characterized.

In the CNS, calpain is a ubiquitous calcium sensitive cysteine

rich protease that is involved in normal physiological processes

and also appears to play a key role in neuropathological events.

While transient calpain activation is necessary for numerous cell

signaling and remodeling events, altered calcium homeostasis

triggers an irrepressible calpain activation that causes irreversible

neuronal damage [23]. Calpain cleavage of fGAD65 has two

functional consequences. From the propensity of our previously

published in vitro data, calpain cleavage of fGAD65 is physiological

if the cleavage of fGAD65 to tGAD65 facilitates the production of

a more active truncated form that could meet the extra demand

for GABA. On the other hand, if the cleaved product containing

the active site of the enzyme is no longer attached to SVs, this

signifies a loss of function model leading to impairment of GABA

synthesis-transport coupling process with VGAT that dampens

neuronal firing resulting in a severe lapse in GABA neurotrans-

mission.

The report presented here aims to understand the conditions

that led to cleavage of fGAD65 and to elucidate how the outcome

of the cleavage process regulates GABA neurotransmission. Our

data indicated that the formation of tGAD65 progressed with an

increase in pathological stimulus in both rat brain synaptosomes

and primary rat embryo neuronal cultures. At the transcriptional

level, fGAD65 mRNA was down-regulated with an increase in

high K+ concentration. Furthermore, we demonstrated that

fGAD65 on the SVs was amenable to cleavage by calpain and

the site of cleavage was not masked by protein-protein interac-

tions. Post cleavage, the active tGAD65 was liberated from

the SVs. Interestingly, tGAD65 was observed in the transient

focal cerebral ischemic rat brain tissue and not in the matched

control regions further strengthening our notion that the forma-

tion of tGAD65 occurs under pathological conditions. Using a

range of biochemical approaches, the functional significance of

fGAD65 cleavage was also investigated. The data indicated

that the cleavage resulted in reduced GABA synthesis and

uptake at the SVs. This is the first communication addressing

cleavage of fGAD65 directly on the SVs, the site of action of

fGAD65, where the synthesis of GABA occurs specifically for the

purposes of neurotransmission. We also conceptualized experi-

ments that would serve as a proof of concept to our fGAD65

cleavage hypothesis. A prototype model integrating calpain

cleavage of fGAD65 in regulating GABA neurotransmission is

also discussed.

Results

1. Effect of high K+ stimulation of rat brain synaptosomes
on cleavage of fGAD65

When fresh rat brain synaptosomes suspended in Kreb’s Ringer

Phosphate (KRP) buffer were stimulated with increasing concen-

trations of K+, progressive accumulation of the 58 KDa product;

tGAD65 in a dose dependent manner was observed (Fig. 1A, lanes

3 and 4). The presence of the cleaved product was demonstrated

by immunoblotting using a monoclonal antibody GAD6, whose

epitopes are directed against the C terminus of the protein (see

methods). tGAD65 was essentially absent at physiologically low

concentrations of K+ (10 mM K+; Fig. 1A, lane 2) and in the

control sample (Fig. 1A, lane 1), respectively. However, upon

exposure to higher concentrations of K+, tGAD65 was more

readily released.

2. Effect of high K+ stimulation of rat brain synaptosomes
on total GAD65 activity

Since neuronal stimulation promoted cleavage of fGAD65 to

form tGAD65, we further wanted to evaluate the effect of

stimulation of rat brain synaptosomes on total GAD65 activity as

shown in Fig. 2. Briefly, after synaptosomal stimulation, the lysates

from each treatment group served as a starting material for

immunoprecipitation using monoclonal GAD65 antibody; GAD6,

which pulled down both fGAD65 as well as the cleaved product;

tGAD65. Classical radiometric GAD activity assay was performed

on the immunoprecipitants. As shown in Fig. 2A, total GAD65

activity decreased with increase in the concentration of K+. A very

high concentration of K+ at 100 mM, where maximal conversion

of fGAD65 to tGAD65 occurred (Fig. 1A, lane 4) also sharply

reduced total GAD65 activity to about 50% relative to the control

(Fig. 2A, column 100 mM). Incubation with 1 mM calpain

inhibitor peptide (Fig. 2B) restored total GAD65 activity to control

levels indicating that inhibition of calpain has direct relation to

activity.

3. Time dependent cleavage of fGAD65 and
corresponding cell viability in rat primary neuronal
cultures upon exposure to 100 mM K+ stimulation

To further assess whether fGAD65 cleavage is observed in

whole intact neuronal cells, rat primary neuronal cells in culture at

11 days in vitro (DIV) were subjected to 100 mM KCl treatment for

different time points as indicated (Fig. 3A, lanes 2–5). tGAD65 was

readily released and substantial aggregation of the cleaved product

occurred at 4 hr and 8 hr post KCl treatment (Fig. 3A, lanes 4 and

5 respectively). Similar results were obtained when primary rat

neuronal cultures were exposed to hydrogen peroxide or

glutamate (unpublished data).

To further clarify whether the formation of tGAD65 occurs

under pathological conditions, corresponding time dependent

cell viability assay was performed using Promega Cell Viability

Assay under the same conditions which promoted fGAD65

cleavage in primary neuronal cell cultures as shown in Fig. 3B.

The data indicated that the conditions at which cleavage of

fGAD65 occurred; also promoted neuronal cell death, demon-

strating, that fGAD65 is cleaved under pathological condi-

tions. At 4 hr of exposure to 100 mM KCl, about 50% of

fGAD65 was cleaved to form tGAD65 (Fig. 3A, lane 4), around

which, 50% loss of cell death occurred (Fig. 3B, lane 4 hr

treatment).

Cleavage of GAD65 Disrupts GABA Neurotransmission
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4. Time dependent differential expression of GAD65 and
GAD67 mRNA upon exposure to 100 mM KCl in primary
rat neuronal cell cultures

Next, we evaluated the changes in the expressions of GAD65

and GAD67 mRNA under the same conditions as Expt #3, to

determine how the GAD mRNA are regulated at the transcrip-

tional level in response to the established pathological conditions

that promoted the cleavage of fGAD65 to form tGAD65 (Expt

#3). The mRNA levels of both GAD67 and GAD65 were

differentially expressed. As shown in Fig. 4A, GAD65 mRNA

expression was down- regulated with increase in exposure to

100 mM KCl in a time dependent manner. However, GAD67

mRNA expression initially decreased at 10 min exposure, and was

up-regulated upon longer exposure time.

5. Cleavage of SV-associated fGAD65 as a function of KCl
concentration

It is well established that fGAD65 is found abundantly as a

membrane protein tightly anchored to the SV membrane not

through direct interactions, but by forming a protein complex with

several proteins, including HSC70 and VGAT [17,24]. Because

SV-associated fGAD65 is directly responsible for neurotransmitter

GABA, it therefore, became imperative to address whether the

calpain cleavage site of fGAD65 on the SVs was susceptible to

attack by the protease. To test this idea, we stimulated

synaptosomes with increasing concentrations of KCl, after which

the SVs were isolated and washed. These SVs were relatively free

of contamination, except for ER and Golgi (see Fig. 5A) to

separate them from any contaminating cytosolic fractions, as

indicated by a representative immuno-blotting against synapto-

physin ab, a SV marker (Fig. 5A). Golgi and ER are not involved

in uptake of GABA since there is no evidence of VGAT in Golgi

or ER. Enriched SVs were isolated and the cleaved fGAD65 was

detected by immuno-blotting against GAD6 ab (Fig. 5B). As

reported, we confirmed that the membrane-bound fGAD65 on the

SVs could be readily cleaved to form tGAD65, similar to the

cytosolic synaptosomal fractions (Fig. 1A). At 100 mM KCl

stimulation, complete conversion of fGAD65 to tGAD65 was

observed.

6. Demonstration of the release of tGAD65 from SV
membranes - In vitro calpain cleavage assay

We further examined to confirm whether tGAD65 after calpain

cleavage was still attached to the SV membranes. In order to test

this idea, we designed an in vitro calpain cleavage assay to promote

calpain cleavage of fGAD65 directly on the SVs. After calpain

Figure 1. Effect of high K+ stimulation of rat brain synaptosomes on cleavage of fGAD65. A. Representative immuno-blot image showing
progression in cleavage of fGAD65 to form tGAD65 when rat brain synaptosomes were stimulated with increasing K+ concentration (lanes 2–4). A
non-stimulated synaptosomal fraction (lane 1) served as a control. The samples were analyzed by immuno-blotting using monoclonal GAD65-specific
antibody; GAD6. The 58 KDa cleaved product tGAD65 was found to accumulate proportional to the increase in KCl concentration. B. Densitometric
analyses of the conversion of fGAD65 to tGAD65 in rat brain synaptosomes treated with increasing K+ concentration expressed as % of control
(Fig. 1B, Ctrl). Data are presented as mean 6 SEM, n = 4 independent experiments. *P,0.05 and #P,0.05 are statistically significant differences
between the levels of fGAD65 and tGAD65 of 50 mM KCl treatment group and the control respectively. **P,0.001 and ##P,0.001 are statistically
significant differences in the levels of fGAD65 and tGAD65 between 100 mM KCl treatment group and the control respectively.
doi:10.1371/journal.pone.0033002.g001

Cleavage of GAD65 Disrupts GABA Neurotransmission
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Figure 2. Effect of high K+ stimulation of rat brain synaptosomes on total GAD65 activity. A. Total GAD65 activity in the rat brain
synaptosomes was measured under conditions promoting cleavage of fGAD65. Synaptosomes were stimulated with increasing concentrations of K+

as indicated (Fig. 2A; 10 mM KCl group, 50 mM KCl group and 100 mM KCl group). Unstimulated synaptosomes served as the control (Fig. 2A; Ctrl
group). Total GAD65 activity comprising the activity of both fGAD65 and tGAD65 after stimulation was measured using a combinational approach of
immunoprecipitation and radiometric GAD activity assays. First, soon after stimulation, total GAD65 was pulled down by immunoprecipitation using
monoclonal GAD65 antibody; GAD6. Next, after normalizing the synaptosomal lysates between groups, the pulled down complex was analyzed using
the classical radiometric method for measuring GAD activity. The values are mean 6 SEM (n = 4); *P,0.05 and **P,0.005 are statistically significant
differences between 50 mM KCl and 100 mM KCl treatment groups with the control group respectively. B. Effect of calpain inhibitor on total GAD65
activity was evaluated by pre-incubating the synaptosomes with 1 mM of calpain inhibitor peptide as shown in Fig. 2B. As in Fig. 2A, the
synaptosomes in Fig. 2B, were subjected to 50 mM KCl treatment with or without the calpain inhibitor, followed by synaptosomal lysis,
normalization, immunoprecipitation and then the total GAD65 activity was measured by radiometric GAD activity assays. Data are represented as 6
mean SEM (n = 3); *P,0.05 are the statistically significant differences between K+ (50 mM) and the control groups. #P,0.05 are the statistically
significant differences between K+ (50 mM) and the K++Calp Inhi (50 mM KCl and 1 mM calpain inhibitor) groups.
doi:10.1371/journal.pone.0033002.g002

Cleavage of GAD65 Disrupts GABA Neurotransmission
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treatment, the SVs were centrifuged to separate the aqueous

fraction from the SV membranes. Thereafter, the washed SV

membrane fractions and the aqueous fractions were normalized,

re-suspended in gel loading dye for further analysis. As shown in

Fig. 6A, tGAD65 was no longer attached to SVs, but was found in

the collected aqueous fraction (Fig. 6B).

7. Effect of calpain-mediated cleavage of SVs on GABA
synthesis

Since SV-associated fGAD65 is solely involved in synthesizing
neurotransmitter GABA, we next investigated the effect of calpain-
mediated cleavage of SVs on GABA synthesis. If tGAD65
detached from the SVs and liberated into the cytosol post calpain

Figure 3. Time dependent cleavage of fGAD65 and corresponding cell viability upon exposure to 100 mM K+ stimulation in primary
rat neuronal cultures. E17 primary rat neuronal cell cultures at 11 DIV were exposed to 100 mM KCl for different time intervals as shown. A.
Representative immuno-blot analysis of fGAD65 cleavage post 100 mM KCl treatment (Fig. 3A, lanes 2–5). Lane 1 represents the untreated control. B.
Quantitative analysis of fGAD65 cleavage in primary rat neuronal cells expressed as % of control is shown in Fig. 3B. Values are mean of 6 SEM (n = 3);
*P,0.001 is the statistically significant differences between the levels of expression of fGAD65 in 1 hr, 4 hr and 8 hr treatment groups and the control
group respectively; ##P,0.005 and #P,0.05 are statistically significant differences between the levels of expression of tGAD65 in the 1 hr, 4 hr and
8 hr treatment groups with the control group respectively. C. Cell viability of rat primary neuronal cells in culture under similar conditions as in Expt.
3A, which promoted fGAD65 cleavage. Values are mean of 6 SEM (n = 4); *P,0.05 is the statistically significant difference between 10 min exposure
and the control group. *P,0.001 is the statistically significant differences between 1 hr, 4 hr and 8 hr treatment with the control group respectively.
doi:10.1371/journal.pone.0033002.g003

Cleavage of GAD65 Disrupts GABA Neurotransmission
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cleavage, as suggested by our data in Fig. 6A, one would expect to

see a decrease in the synthesis of GABA in calpain-treated SVs. To

test this concept, intact SVs were isolated and subjected to calpain

treatment (0.15 U) in vitro. The control as well as calpain-treated

SVs were washed and the residual GAD activity remaining on the

SVs was assessed using the standard radiometric GAD activity

assay as described [25–26]. As anticipated, calpain-treated SVs

showed remarkable decrease in GABA synthesis of about 50%

when compared to the control (Fig. 7).

8. Effect of calpain treatment of GABAergic SVs on newly
synthesized GABA uptake

From our previously published data, it is well established that

fGAD65 and VGAT on the SV membranes are functionally

coupled to each other and that such a tight coupling between the

two molecules ensures efficient GABA synthesis and packaging

into the SVs [17,27]. We then began to question how the uptake of

newly synthesized GABA would be affected if tGAD65 was

liberated from the SVs after calpain treatment. To examine this

idea, we performed an experiment to monitor the radiometric

newly synthesized GABA uptake profiles of both calpain-treated

and control GABAergic SVs. Our data as shown in Fig. 8 reveal

that the slope of the curve of calpain-treated GABAergic SVs was

lower when compared to that of control, further strengthening our

hypothesis that because of liberation of tGAD65 after cleavage, the

coupling between VGAT and fGAD65 remaining on the SVs was

compromised.

9. Identification of tGAD65 fragments in a rat model of
focal cerebral ischemia and corresponding elevation of
glutamate levels during ischemia

To show a proof of concept to our cleavage hypothesis of

fGAD65, we envisioned to research for the presence of tGAD65

fragments in a rat model of focal cerebral ischemia. In order to

carry out this investigation, a rat model of Middle Cerebral Artery

Occlusion (MCAO) was created as described [28]. After 90 min of

occlusion, brain tissue from the core and penumbra of the

ischemic side and the matched control side were isolated,

processed and immuno-blotted against GAD65 and GAD67

antibodies as shown in Fig. 9A. Interestingly, we observed that

both fGAD65 and fGAD67 were cleaved to form their respective

truncated forms. Apart from the GADs, we also assessed the

changes in the levels of calpastatin, an endogenous calpain

inhibitor using calpastatin antibody (Fig. 9A). We observed that

the levels of calpastatin in the ischemic tissue of both core and

penumbra were highly up-regulated when compared to the very

low expression in the controls.

In a parallel analysis within the same animal before harvesting

the brain tissue, we also monitored the corresponding changes in

the extracellular glutamate release in the rat brain before and

Figure 4. Time dependent differential expression of GAD65 and GAD67 mRNA upon exposure to 100 mM KCl in primary rat
neuronal cell cultures. A. Representative gel image of GAD65 and GAD67 mRNA separated on a 1.5% agarose gel. Lane 1: Control; Lanes 2–5:
10 min, 1 hr, 4 hr and 8 hr exposure to 100 mM KCl respectively. GAD65 and GAD67 mRNA were differentially regulated under the same conditions
of exposure to 100 mM KCl for different time points as indicated in lanes 2–5. B. Quantitative analyses of GAD65 and GAD67 mRNA expression shown
as % of control (Fig. 4B, Ctrl). Values are mean of 6 SEM (n = 4); ##P,0.05 statistically significant differences between GAD67 mRNA expression of
10 min exposure group and the control. *P,0.05 statistically significant differences between GAD65 mRNA expression of 1 hr and 4 hr exposure
groups with the control respectively. **P,0.005 is the statistically significant difference between GAD65 mRNA expression between 8 hr exposure
group and the control.
doi:10.1371/journal.pone.0033002.g004

Cleavage of GAD65 Disrupts GABA Neurotransmission

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e33002



during occlusion by microdialysis, followed by HPLC. Our data

indicate that there was a 20 fold rise in the glutamate levels during

occlusion when compared to the baseline glutamate levels before

occlusion (Fig. 9B). The rise in the levels of glutamate directly

demonstrates that cleavage of fGAD65 and fGAD67 occurred

under excitotoxic conditions in a rat stroke model.

Discussion

There is ambiguity concerning whether cleavage of fGAD65

mediated by calpain is a physiological response or a pathological

outcome, which has direct implications on GABA neurotransmis-

sion at the synapse [22,29]. Recent reports suggest that cleavage of

fGAD65 occurs under glutamate alterations that contribute to

sustained calpain activation [30–31]. In this study, we have

concluded that cleavage of fGAD65 reduced GABA neurotrans-

mission, which is a pathological outcome of the cleavage

mechanism. This is based on the following principal findings.

Firstly, the accumulation of tGAD65 occurred under conditions of

progressively increasing excitotoxic insult in rat brain synapto-

somes. In rat primary embryo cell cultures, the factors which

caused the formation of tGAD65 not only down-regulated GAD65

mRNA expression, but also promoted neuronal death, indicating

that tGAD65 was formed during extreme pathological conditions.

Secondly, total GAD65 activity, attributed to both fGAD65 and

tGAD65 combined, was sharply reduced at a very high K+

concentration where the maximal cleavage of fGAD65 occurred.

The total GAD65 activity was restored by the addition of calpain

inhibitor prior to stimulation, suggesting a direct role of calpain in

the cleavage of fGAD65 which affects activity. Thirdly, fGAD65

on the SVs, which is not directly attached to SVs but in association

with interacting partners such as HSC70, CSP and VGAT [17,24]

on the SVs was amenable to calpain cleavage, suggesting that the

calpain cleavage site of fGAD65 on the SVs was not masked by

protein-protein interactions. Fourthly, after calpain cleavage, the

active tGAD65 was no longer attached to the SVs but was

liberated into the surrounding aqueous fraction. Importantly, total

GAD activity as well as newly synthesized GABA uptake profiles of

calpain-treated GABAergic SVs showed a reduction in total GAD

activity and uptake respectively, when compared to the untreated

control. Finally, in a rat model of transient, focal cerebral ischemia

(MCAO), tGAD65 was observed in the core and penumbra of the

ischemic tissue which showed corresponding elevation in gluta-

mate release during occlusion, but no tGAD65 was detected in the

matched controls, further strengthening our notion that formation

of tGAD65 occurs under pathological conditions. Overall, the

present findings suggest that the calpain cleavage of fGAD65 has

deleterious functional consequences on the magnitude and

sustenance of rapid firing required for the fine tuning of GABAergic

synaptic function. Any perturbation to this norm can be directly

linked to debilitating neurodegenerative diseases such as epilepsy,

Parkinson’s disease, and Huntington’s chorea etc [32].

Figure 5. Cleavage of SV-associated fGAD65 as a function of KCl concentration: A. Representative immuno-blot demonstrating the
isolation of enriched SVs, relatively free from any contaminating cytosolic fractions, other than that of Golgi and ER fractions, as indicated by immuno-
blotting against synaptosophysin (SV marker), calnexin (ER marker) and 58K Protein (Golgi marker). B. Representative immuno-blot demonstrating
cleavage of SV-associated fGAD65 directly on the SVs, on account of a dose-dependent KCl stimulation. C. Quantitative densitometric comparison,
expressed as relative percentage with respect to SVs, of the levels of expression of fGAD65 and synaptophysin in SVs vs Cyt (cytosolic) fractions.
Values are mean of 6 SEM (n = 3). *P,0.05 and **P,0.001 are statistically significant differences in the levels of expression between fGAD65 and
synaptophysin in the SV fractions when compared tocyt fractions. D. Densitometric analyses of the changes in the expressions of fGAD65 and
tGAD65 in the SV fractions. Untreated SVs served as a control. Data points are mean of 6 SEM (n = 3). *P,0.05 and #P,0.05 are statistically significant
differences between 50 mM KCl treatment group and the control group respectively. **P,0.005 and ##P,0.005 are statistically significant
differences between 100 mM KCl group and the control group.
doi:10.1371/journal.pone.0033002.g005

Cleavage of GAD65 Disrupts GABA Neurotransmission
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It is well known that the GABA generated by GAD65 and

GAD67 are compartmentalized into synaptic and metabolic pools

respectively [14]. GAD65 and GAD67 are both synthesized as

soluble proteins, but only GAD65 undergoes exclusive post-

translational modifications at the N terminus necessary for post-

Golgi trafficking that targets the molecule to the SV membranes,

its primary site of action [33]. No such modifications are known to

occur for GAD67. The GAD molecules are highly homologous

but exhibit small but extremely divergent sequence variation at the

N terminus which dictate their affinities to co-factor pyridoxal L’-

phosphate (PLP) [16]. The recently resolved crystal structure of

the N-terminal truncations of both GAD isoforms reveal that

GAD67 has a tethered loop covering the active site that boosts

continuous GABA production, while the same catalytic loop is

inherently mobile in GAD65, acting as a molecular switch,

regulating the transient activation of GAD65 [34]. Because of

these differences in the interaction with PLP, GAD67 is

responsible for 90% GABA in the brain that is used for basal

firing. On the other hand, GAD65 is transiently activated to

augment GABA production necessary for sustained inhibitory

bursts to the post-synaptic nerve terminal [16]. It has been

documented that GAD65 and GAD67 both undergo homo or

heterodimerization at the middle and the C terminus and that the

removal of N terminus did not affect their activity [35]. Earlier

views in the literature unanimously proposed that only GAD65,

either as a homo or heterodimer attached to the SVs via protein-

protein interactions [17,24]. However, emerging data in under-

standing the membrane anchoring properties of GAD65 and

GAD67 have revealed a robust GAD65-independent membrane

anchoring, axonal targeting and pre-synaptic clustering of GAD67

on the SVs [36]. The attachment was abolished by a leucine-103

to proline mutation which changed the conformation of the N

terminal domain but does not affect the GAD65-dependent

membrane anchoring of GAD67 [37].

Applying this substantial body of knowledge regarding differ-

ential regulation and localization of the GAD molecules to

fGAD65 cleavage, a number of important conclusions could be

drawn. From our previously published peptide fragment analysis

data, it was identified that the calpain-mediated cleavage of

fGAD65 occurred between Arg 69 and Lys 70 [20]. Calpain-

mediated cleavage of fGAD67 resulted in two shorter forms of

tGAD67, occurring as a consequence of independent cleavages

after amino acids 70 and 90 [38]. Thus, the calpain-mediated

cleavage sites of the GAD molecules are lodged in their respective

N termini. Incidentally, it has long been established that the

residues participating in the attachment to SVs for GAD65 are

resident in the N terminus of the molecule [39]. It has always been

accepted that only GAD65 and not GAD67 attached to the SVs

Figure 6. Status of tGAD65 on intact SVs that were subjected to in vitro calpain treatment. A and B. Representative immuno-blot image
of liberation of tGAD65 when intact SV membranes were subjected to in vitro calpain cleavage. A. Washed intact synaptic vesicles B. Liberated
tGAD65 fragments collected in the aqueous fraction. As indicated, both lanes 1 and 2 in Fig. 6A and Fig. 6B served as controls. Lanes 3–5 in Fig. 6A
represent SV membranes that were washed after in vitro calpain treatment. Lanes 3–5 in Fig. 6B represent the tGAD65 fragments liberated into the
aqueous fraction. C. Densitometric analyses of liberation of tGAD65 fragments. Values are mean 6 SEM (n = 3); **P,0.005 and ##P,0.005 are
statistically significant differences between fGAD65 and tGAD65 in the 0.15 calpain treatment with the untreated control respectively. *P,0.05 and
#P,0.05 are statistically significant differences between fGAD65 and tGAD65 in the 0.015 calpain treatment with the untreated control respectively.
doi:10.1371/journal.pone.0033002.g006
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via partnership through various other molecules comprising the

SV machinery [16–17]. Any availability of GAD67 at the SVs was

speculated to be available through heterodimerization with

GAD65 at the middle and the C terminus, where the functional

residues of both the enzymes are resident [34]. However, recent

data definitively demonstrated a robust GAD65-independent

anchoring of GAD67 to SVs, and that the attachment was

completely abolished by a leucine-103 to proline mutation,

confirming that the N termini residues of GAD67 are also

involved in the independent anchoring mechanism. Nevertheless,

this single amino acid change had no effect on the GAD65-

GAD67 heterodimerization [36–37]. Therefore, based on the

above discussion, it is reasonable to propose that since the calpain-

mediated cleavage of either of GAD65 or GAD67 in their homo/

heterodimer states occurs at their corresponding N termini, the

effect would be to liberate the functional part of the enzymes

which no longer are proximal to VGAT, thereby disrupting the

functional coupling process. This loss of function was further

confirmed by a decline in the total GAD activity as well as new

GABA uptake profiles in calpain-cleaved GABAergic SVs data

presented in this investigation, suggesting that that the cleavage of

fGAD65 enzyme has deleterious functional consequences. Fur-

thermore, from another perspective, it became essential to shed

light on the fate of GABA neurotransmission devoid of GAD65

and address any possible role played by cytosolic GAD67 in such a

scenario. Studies on GAD652/2 mice indicate that there is a

decrease in the refilling kinetics of the releasable pool of vesicles

under sustained synaptic activation but not under a spontaneous

stimulus, suggesting that cytosolic GAD67-derived GABA could

not substitute for the loss of GAD65-derived GABA required

during high-frequency neuronal firing [40]. In an independent

observation, from our vesicular uptake assays published earlier, it

was evident that VGAT preferred the newly synthesized GABA

synthesized by GAD65 over the pre-existing GABA synthesized by

GAD67 [17]. The converse was true with GAD652/2 mice [27].

In the course of the study, based on our data, we began to

understand that fGAD65 cleavage is not only an outcome of a

pathological process, but also that the cleavage caused reduced

GABA uptake, with repercussions affecting the GABA release at

the synaptic cleft, suggesting that calpain-mediated cleavage of

fGAD65 is both a cause and effect phenomenon.

Though calpain activity has been implicated in normal

physiological functions, altered calcium homeostasis leads to

persistent, pathological activation of calpain [23]. Aberrant

calpain activity is a hallmark of a variety of neurodegenerative

diseases such as cerebral ischemia, Alzheimer’s disease, Parkin-

son’s disease, Huntington’s disease, multiple sclerosis and

amyotrophic lateral sclerosis [41]. Under high calcium influx,

important neuronal proteins, specifically those comprising the SV

machinery, negatively affect neurotransmitter release [42–44].

Calpain has long been identified as a potential therapeutic target

Figure 7. Effect of calpain-mediated cleavage of SVs on GABA
synthesis. Residual GAD activity of calpain-treated and untreated SVs.
Lane 1: Control SVs; Lane 2: SVs treated with 0.15 U of calpain enzyme.
Data are mean of 6 SEM (n = 3). *P,0.005 is the statistically significant
difference in the GAD activity between the calpain-treated SV group
and the control.
doi:10.1371/journal.pone.0033002.g007

Figure 8. Effect of calpain treatment of GABAergic SVs on newly synthesized GABA uptake. Uptake of newly synthesized GABA was
conducted in the presence (N) or absence (&) of calpain enzyme. [3H] Glu was used as a substrate for the synthesis of newly synthesized [3H] GABA.
Values are mean of 6 SEM (n = 3). The specific uptake was obtained by subtracting the non-specific uptake from the total uptake and was expressed
as pmol per mg of protein.
doi:10.1371/journal.pone.0033002.g008
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Figure 9. Identification of truncated forms of GAD and corresponding elevation of glutamate levels in a MCAO model. A.
Representative immuno-blot demonstrating the presence of truncated forms of GAD65 and GAD67 and corresponding elevation of calpastatin. N,
Normal; I, Ischemic. B. Densitometric analysis of the immuno-blot images. Data points are mean of 6 SEM (n = 3). **P,0.005 and *P,0.05 are
statistically significant differences when compared to their respective controls. C. Corresponding changes in the levels of glutamate before and
during ischemia. Values are mean of 6 SEM (n = 4). *P,0.005 is the statistically significant differences between during occlusion and before occlusion.
doi:10.1371/journal.pone.0033002.g009
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and a myriad of cell-permeable calpain inhibitors have been

synthesized for pharmacological inhibition of calpain activity [45–

46]. Detection of tGAD65 fragments in our MCAO model of

ischemia in the core and penumbra on the ipsilateral side of the

brain and its absence in the matched contralateral side is a direct

proof of concept to the cleavage hypothesis of fGAD65 that

calpain-mediated cleavage of the GAD enzyme occurs under

pathological conditions. Also, it is interesting to note that the

sustained calpain activation that led to fGAD65 cleavage occurred

in conjunction with a 20-fold increase in glutamate levels when

compared to baseline, and that at such high levels of glutamate,

the turnover rate of calpastatin, an endogenous calpain inhibitor,

showed a drastic elevation in the injured tissue when compared to

the control, perhaps as a response to rescue of the injured tissue.

Although calpain is shown to be responsible for fGAD65 cleavage,

the role of synchronous activity of calpain and caspases cannot be

under estimated [47–49]. This is especially true from our primary

neuronal cell culture data where the conditions which favored

calpain cleavage of fGAD65 also promoted neuronal cell death.

The commitment steps to the execution of apoptosis are initially

directed by the calpain/calpastatin ratio, which is a deciding factor

to trigger the activation of the caspase cascade [48,50]. In addition

to this, it is intriguing to note that it has been published elsewhere

that there is decreased expression and activity of VGAT in rat

brain following focal ischemia [51]. Therefore, it is reasonable to

speculate that under sustained calpain activation such as in

ischemia, calpain-cleavage of fGAD65, not only liberated the

functional moiety of the enzyme from the site of action at the SVs

causing a sharp decline in the refilling kinetics, but also knocked

down VGAT expression and activity, thereby collectively

depleting the readily releasable pool of GABA loaded SVs,

perturbing the already established functional coupling process

from our previous work [17]. Also, it has been shown earlier that

GABA uptake into SVs by VGAT depends on the integrity of

electrochemical gradients of SVs [52]. Under sustained stimula-

tion such as the case discussed here, the local excesses of calcium in

the pre-synaptic nerve terminal compromise the action of V-

ATPases leading to severe loss of SV membrane integrity [53–54].

In conclusion, the deleterious functional consequences culmi-

nating from sustained calpain activation, following acute neuronal

insult are depicted in the prototype model as shown (Fig. 10). The

model is an amendment of our previously published model of

fGAD65 interacting partners at the SVs [17]. The localization of

the various molecules in a typical GABAergic neuron is presented.

The transiently activated SV-associated fGAD65 (here shown

cleaved), cross-talks with VGAT via its interacting partners,

namely HSC70 and CSP and is involved in synthesizing new

GABA neurotransmitter [16–17]. Free cytosolic fGAD67 in its de-

phosphorylated state, constitutively synthesizes GABA for non-

neurotransmission purposes to meet the high energy requirements

in the neuron [16,55]. Briefly, the changes occurring in the over-

excited neuron are delineated as follows. 1. The SVs are recycled

by means of clathrin-coated pits. The clathrin coat is then

dissociated from the SVs through interaction with HSC70 [24]. 2.

SVs are then returned to their resting state, where the proton

gradient is restored by V-ATPase. 3. SV-associated fGAD65 is

activated through protein phosphorylation by a proton gradient

dependent protein kinase. We have shown in vitro that fGAD65 is

phosphorylated by PKCJ [55]. In a typical neuron under a

physiological stimulus, the activated fGAD65 uses glutamate from

the cytosol to synthesize new GABA to be transported into VGAT

4. However, upon sustained stimulation, Ca2+ from intracellular

stores is released into the cytosol, raising the intracellular calcium

concentration, leading to hyperactivation of calpain. 5. Hyper-

activate calpain translocates from the cytosol to act on its

substrates, one of which is fGAD65. SV-associated fGAD65 is

cleaved at the N terminus, thereby liberating the active part of the

enzyme which is resident in the middle region of the molecule. 6.

Since this is a loss of function at site model, active fGAD65 post

cleavage is unavailable to generate newly synthesized GABA to be

transported into VGAT. 7. VGAT is unable to take up any GABA

owing to loss of the electrochemical gradient necessary to

exchange protons for newly synthesized GABA. 8 and 9. The

net loss is a reduction in the number of new GABA loaded SVs

that are to be dispatched to the pre-synaptic nerve terminal,

necessary to be released at the synaptic cleft.

Materials and Methods

Experiments involving animals
The protocol for this study for use of animals and their materials

were approved by and in accordance with the requirements of

Institutional Animal Care and Use Committee, Florida Atlantic

University. The Public Health Service animal welfare assurance

number is A3883-01. For all experiments, either 250–300 g

Sprague-Dawley male rats (Harlan, IL, USA) or timed-mated

Sprague Dawley pregnant female rats (Charles River, MA, USA)

were used. The animals were separated by sex and two animals

per cage were housed and maintained at 22uC with an alternating

12-hr light/dark cycle. The animals were allowed a minimum

stabilization period of at least 3 days after which they were utilized

for experimentation.

1. Isolation of synaptosomes
Crude synaptosomes were prepared as described previously [56].

Unless otherwise specified, all steps were performed with ice cold

solutions. Rats were euthanized in a closed chamber with a lethal

inhalation dose of isoflurane, following which they were decapitat-

ed using a guillotine. Brains were quickly isolated, suspended in

Hepes buffered sucrose solution (0.32 M sucrose, 4 mM Hepes-

NaOH, pH 7.4, 10 ml/g of brain w/v) and homogenized with the

aid of Potter-Elvehjem Teflon dounce homogenizer. The homog-

enate was centrifuged at 1500 g for 10 min to remove the nuclear

debris. The resulting supernatant (S1) was saved while the pellet

(P1) was further homogenized in the same volume of sucrose buffer

used in the previous step and was re-centrifuged under the same

conditions to yield supernatant (S1’) and pellet (P1’). The

supernatants S1 and S1’ were combined and further centrifuged

at 20,000 g for 30 min. The resulting pellet (P2) was the crude

synaptosome fraction. The pellet (P2) was washed by gently

swirling it in fresh sucrose buffer whose volume was equivalent to

the discarded supernatant (S2) and centrifuged again at 20,000 g

for 30 min to yield the washed crude synaptosomes (P2’).

2. Synaptosomal stimulation
As described previously, freshly prepared, washed crude

synaptosomes (P2’) were re-suspended in equal volumes of 2X

Kreb’s Ringer Phosphate (KRP) buffer whose final concentration

was 10 mM Tris-HCl, 2.2 mM CaCl2, 0.5 mM Na2HPO4,

0.4 mM KH2PO4, 4 mM NaHCO3, 80 mM NaCl pH 7.5 [22].

Aliquots of the synaptosomes in KRP buffer were stimulated by

the addition of increasing concentrations of KCl as indicated in

the experiments and incubated at 37uC for 45 min. A non-

stimulated sample served as the control. For analysis of

synpatosomal lysate for immuno-blotting or radioactive GAD

activity assays, the synaptosomes in each aliquot were lysed in

brain lysis buffer whose final concentration was 50 mM Tris-HCl,

150 mM NaCl, 2 mM EDTA, pH 8.0, 1% Triton-X-100 and
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1:100 dilution of mammalian protease inhibitors (Sigma-Aldrich,

MO, USA). The lysates were rocked at 4uC for 30 min and were

centrifuged at 25,000 g for 30 min. The supernatant was collected

and the protein concentrations were normalized to serve as the

material for subsequent steps.

3. Preparation of synaptic vesicles
Synaptic vesicles were prepared as described previously [17]. All

steps were conducted at 4uC. Synaptosomes (P2’) were rapidly

osmolysed in 10 volumes of water containing a 1:100 dilution of

mammalian protease inhibitors (Sigma-Aldrich, MO, USA). The

diluted synaptosomal lysate was re-homogenized, incubated in ice

for 45 min and was centrifuged at 47,000 g for 15 min to remove

the large membrane fractions and mitochondria. The supernatant

(S3) was further centrifuged at 200,000 g for 2 hr to yield the

crude synaptic vesicles (P4). In order to entirely remove any

contaminating diluted cytosolic fractions (S3), the tight pellet (P4)

bearing the crude synaptic vesicles was washed thrice with 10

volumes of standard GAD buffer (50 mM potassium phosphate,

1 mM 2-aminoehtylisothiouronium bromide (AET) and 0.2 mM

pyridoxal 59-phosphate, pH 7.2), homogenized and re-suspended

in the same buffer to be used for ensuing steps.

4. Preparation of primary rat embryo neuron enriched
culture

Primary rat embryo neuron enriched cultures were prepared as

described in our previous publication [57]. All dissection

instruments as well as glassware used to prepare the media were

autoclaved before the experiment. In the animal dissection area,

Sprague Dawley timed-pregnant rats carrying E17-E18 embryos

were deeply anesthetized using the inhalation anesthetic isoflur-

ane. Rat embryos were extracted and collected in a petri dish. In a

laminar flow hood, the embryos were isolated from their respective

embryonic sacs and placed in Basal Medium Eagle’s (Sigma-

Aldrich, MO, USA) supplemented with 2 mM L-glutamine

(Invitrogen, CA, USA), 5 mg/ml glucose (Invitrogen, CA, USA)

and 20% heat inactivated fetal bovine serum (Invitrogen, CA,

USA). This media was referred to as Growth Medium Eagles

(GME). After removing the meninges, brain cortices from

littermates were isolated and placed in a separate dish containing

fresh GME. All cortices were pooled and mechanically dissociated

using a 14-G cannula by passing them in and out of GME. The

tissue suspension was centrifuged at 500 g for 5 min. The pellet

was further re-suspended in GME and plated on desired culture

plates pre-coated with 5 ug/ml Poly D-Lysine (PDL) (Sigma-

Aldrich, MO, USA). The plates were incubated in an incubator

maintained at 37uC, 5% CO2 and 99% humidity. After 30 min of

incubation in GME, the media was replaced with Neurobasal (NB)

medium supplemented with B27 (Invitrogen, CA, USA) and

0.5 mM glutamine (Invitrogen, CA, USA) which promotes

selective growth of neurons while limiting glial cell growth.

Cultures at 11 day in vitro (DIV) were used for experimentation.

5. KCl stimulation of primary neuronal cell cultures
Cultured neurons at 11 DIV, which show typical neuronal

morphologies with healthy cell bodies and intact processes, were

Figure 10. Proposed model of the SV-associated fGAD65 cleavage mediated by calpain under sustained neuronal stimulation.
Under sustained neuronal stimulation, SV-associated fGAD65 which is in association with VGAT via partnership with HSC70 and CSP is cleaved by
hyper-active calpain to liberate the functional part of the enzyme. This resulted in the disruption of the fGAD65-VGAT functional coupling process,
largely reducing the releasable pool of GABA loaded SVs. The GABA generated by SV-associated fGAD65 is shown in magenta; GABA generated by
fGAD67 is shown in teal. The stars on GAD67 and GAD65 represent the active states of the enzymes. GAD67 is activated by dephosphorylation,
whereas GAD65 is active in its phosphorylated state. Certain areas of the pathway which are directly affected by calpain-mediated cleavage of
fGAD65 are shown in red crosses. The sequence of events leading to liberation of tGAD65 is discussed in the text.
doi:10.1371/journal.pone.0033002.g010

Cleavage of GAD65 Disrupts GABA Neurotransmission

PLoS ONE | www.plosone.org 12 March 2012 | Volume 7 | Issue 3 | e33002



chosen for experiments. Fresh KCl solubilized in NB medium was

used for the treatment. KCl was administered at different time

points as indicated in the experiments.

6. Immuno-blot analysis
Protein concentrations of the samples were determined using

Bradford reagent (Bio-Rad, CA, USA) with the aid of NanoDrop

8000 spectrophotometer (Thermo Scientific, DE, USA). Unequal

protein concentrations were normalized with the corresponding

buffer and about 20 mg of proteins per sample were electropho-

retically separated on pre-cast 4–12% or 10% Bis-Tris gels

(Invitrogen, CA, USA). After the run was complete, proteins were

transferred onto a 0.45 mm nitrocellulose membrane (Bio-Rad,

CA, USA). Post-transfer, the efficiency of the transfer was visually

inspected by staining the membrane with Ponceau Stain (Sigma-

Aldrich, MO, USA) followed by extensive washing with the spent

transfer buffer to remove the Ponceau stain. Non-specific antibody

binding was blocked by incubating the membrane in blocking

buffer constituting 5% non-fat dry milk, 0.1% Tween in TBS,

(TBS-T) for 1.5 hr at room temperature (RT). Subsequently, the

membrane was incubated overnight at 4uC in the appropriate

dilution of primary antibody (ab) prepared in TBS-T (Please refer

to Table 1 for ab dilutions). All steps ensuing primary ab

incubation were performed at RT. Excess primary ab was

removed by washing the membrane in TBS in intervals of

30 min and two 15 min washes. Mouse or rabbit horse-radish

peroxidase conjugated secondary ab (GE Healthcare Bio-Sciences

Corp, NJ, USA) in TBS-T (1:4000) was applied to the membrane

and incubated for 1 hr. Following this, the membrane was further

washed thoroughly in TBS before protein bands were detected by

electrochemiluminescent substrate reagents (Pierce Thermo Sci-

entific, IL, USA). The signal was captured and visualized on a

highly sensitive double emulsion blue film (Midwest Scientific,

MO, USA).

7. Immunoprecipitation
Indirect immunoprecipitation method was employed to pull

down fGAD65 as well as tGAD65 complexes from synaptosomal

lysates whose synaptosomes were subjected to increasing amounts

of KCl stimulation as indicated in the experiments. Unstimulated

synaptosomes served as the control. For treatment of synapto-

somes with calpain inhibitor, the synaptosomes were pre-

incubated for 30 mins with 1 mM of calpain inhibitor peptide

(Sigma-Aldrich, MO, USA) prior to KCl stimulation. All steps

were performed at 4uC and with constant agitation. The protein

concentrations between groups were normalized. Mouse mono-

clonal GAD6 ab whose epitopes are directed against the C

terminus of GAD65 protein was used to pull down both fGAD65

and tGAD65. About 50 ml of Ms-GAD6 ab was added to ,250 mg

pre-cleared synpatosomal lysate and incubated overnight. In order

to capture the ab coupled to the antigen (ag) in the synaptosomal

lysate, about 3 mg of washed, Dynabeads Protein G (DPG)

magnetic beads (Invitrogen, CA, USA) was added and the mixture

was allowed to incubate for 2 hr. The DPG-ab-ag complex was

isolated from the rest of the sample with the aid of DynaMagTM-2

magnet (Invitrogen, CA, USA). In order to eliminate any non-

specific binding on the DPG, the immunocomplex was washed at

least thrice with 10 volumes of standard GAD buffer and the

complex was finally re-suspended in 150 ul of the same buffer.

8. Cell Viability Assay
The number of viable rat primary cortical neurons at 11 DIV

post 100 mM KCl stimulation for different time intervals as

indicated, was assessed using the Cell Titer-Glo Luminescent Cell

Viability Assay (Promega) according to the manufacturer’s

instructions. Briefly, equal volume of the equilibrated assay

reagent was added to the neurons in a 96 well plate format and

incubated for 10 min at RT. The homogeneous ‘‘add-mix-

measure’’ format resulted in cell lysis and generation of a

luminescent signal proportional to the amount of ATP present,

which is an indicator of metabolically active cells. After

transferring the lysate to a standard opaque walled multi-well

plate, the intensity of the luminescent signal was measured with a

luminometer (SpectraMax, Molecular Devices, CA, USA).

9. Semi-quantitative RT-PCR
After KCl stimulation, the cell culture media from the tissue

culture plates was aspirated and discarded. Total RNA enriched in

mRNA from the KCl stimulated cells was extracted using the

RNeasy Mini Kit (Qiagen, CA, USA) according to the

manufacturer’s directions. The RNA concentrations were evalu-

ated using the NanoDrop 8000 spectrophotometer (Thermo

Scientific, DE, USA) and normalized prior to using as a starting

material for c DNA synthesis. c DNA was synthesized using the

SuperscriptH III First- Strand Synthesis SuperMix (Invitrogen,

CA, USA) according to the manufacturer’s instructions. Briefly, up

to 5 mg of total RNA was incubated with 50 mM of oligo(dT)20 at

65uC for 5 min. Reverse transcription reaction was carried out at

Table 1. Primary Antibody information.

Antibody Species Supplier Dilution

GAD6 (epitopes directed against C terminus of
GAD65 and picks up both fGAD65 and tGAD65 on IB)

Mouse monoclonal Abcam, MA, USA. 1:250

GAD67 (epitopes directed against 3–101 aa of GAD67
and picks up both fGAD67 and tGAD67 in IB)

Mouse monoclonal Synaptic Systems, Goettingen, Germany. 1:500

Calpastatin Mouse monoclonal Millipore Corporation, MA, USA. 1:500

GAPDH Rabbit monoclonal Cell Signaling Technology, MA, USA. 1:2000

Synaptophysin Mouse monoclonal Sigma-Aldrich, MO, USA. 1:2000

VGAT Rabbit polyclonal Synaptic Systems, Goettingen, Germany. 1:500

Calnexin Rabbit polyclonal Abcam, MA, USA. 1:500

58K Protein Mouse monoclonal Abcam, MA, USA. 1:500

Abbreviations used: GAD: Glutamic Acid Decarboxylase; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; VGAT: Vesicular GABA Transporter; IB: Immunoblotting.
doi:10.1371/journal.pone.0033002.t001
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50uC for 50 min with a supplied 10 ml of 2X First-Strand Reaction

Mix and 2 ml of SuperscriptH III/RNaseOUTTM Enzyme Mix.

Amplification of the prepared c DNA was performed using the

Platinum PCR Supermix (Invitrogen, CA, USA) in mastercycler

gradient thermal cycler (Eppendorf, NY, USA). The reaction

mixture (50 ml) consisted of 45 ml of PCR pre-mix consisting of

2 U complexed TaqDNA polymerase with Platinum Taq Anti-

body, 2.2 mM Tris-HCl (pH 8.4), 5.5 mM KCl, 0.165 mM

MgCl2, 2.2 mM each of dNTPs and 200 nM per primer; 1 ml

each of primers and 3 ml template DNA solution. The sequences

of the primers chosen to study the expression of GAD65 and

GAD67 [58] and the control G3PDH [59] mRNAare shown in

Table 2. The amplification conditions consisted of brief priming at

94uC for 2 min followed by 35 cycles of denaturation at 94uC for

30 secs, annealing at 54uC for 30 secs and an extension step of

72uC for 1 min and a final single long extension of 72uC for

10 min. The PCR products were separated on a 1.5% agarose

gels. Gels were stained with Ethidium bromide, illuminated on a

UV transilluminator, and documented on a black-and-white

instant film.

10. Radioactive GAD activity assay
GAD activity was assayed by a classical radiometric method

measuring the formation of 14CO2 liberated from end labeled

[L-14C] glutamic acid as described [25–26]. Briefly, the reaction

set up consisted of test tubes containing aliquots of GAD in

standard GAD buffer, to which 0.25 mCi/ml end labeled [L-14C]

glutamic acid (Perkin Elmer, MA, USA) was added. The total

reaction mixture in each test tube was 200 ul. As soon as the hot

substrate was added, 0.6 ml eppendorf tube containing 200 ul

benzethonium hydroxide (BH) (Sigma-Aldrich, MO, USA) was

suspended half-way through the test tube. The test tubes were

tightly sealed with a rubber stopper and were subjected to constant

shaking for 45 min at RT. The reaction was stopped by injecting

200 ul of 0.5 N H2SO4 through the rubber stopper directly into

the GAD mixture without disturbing the tube containing BH. The

experimental set up facilitated the capture of 14CO2 gas by BH,

released in the decarboxylation reaction of end labeled [L-14C]

glutamic acid to GABA, which is directly proportional to the

activity of the GAD enzyme. Thereafter, the test tubes continued

to shake overnight, until all of the 14CO2 was captured by BH.

The radioactivity in the BH was measured by suspending the

eppendorf tubes in 5 ml of Econo- SafeTM scintillation cocktail

(Research Products International Corporation, IL, USA) con-

tained in scintillation vials and the emissions were recorded using

the Tri-Carb 2900TR Liquid Scintillation Analyzer (Perkin Elmer,

MA, USA).

11. In vitro calpain cleavage assay
The assay was conducted in a similar method as described

previously [22]. Washed, enriched SVs were prepared as

mentioned above (Refer to preparation of synaptic vesicles). SVs

were suspended in a calpain reaction buffer (10 mM HEPES-

NaOH, pH 7.5, 150 mM NaCl, 1 mM EGTA) and homogenized

manually using a pencil Teflon homogenizer. Increasing amounts

of the human calpain-1 enzyme (Sigma-Aldrich, MO, USA)

accompanied by 10 mM CaCl2 was added to the aliquots of SVs

except for the internal control. The calpain reaction was

performed at 30uC for 45 min. After the stipulated time, SVs

were diluted 10X and were centrifuged at 200,000 g for 1.5 hr.

The aqueous fraction was collected and was concentrated using

Centricon centrifuge concentrator (Millipore, MA, USA). The

remainder of tight SV membrane pellets were gently washed thrice

with 10 volumes of calpain reaction buffer. The SV membranes

were then re-suspended in calpain reaction buffer. The concen-

trated aqueous fraction and the homogenized SV membranes

were normalized, resolved on 10% Bis-Tris gels (Invitrogen, CA,

USA) and analyzed by immuno-blotting against GAD6 ab.

12. Vesicular uptake assay of GABA newly synthesized
from [L-3H] glutamate

Newly synthesized GABA uptake from [L-3H] glutamic acid

was conducted as described previously in a detailed manner

[17,60–61]. Briefly, SVs were isolated as described in the section

above. After washing the SVs of contaminating cytosolic fractions

with GPBS buffer (9.5 mM KH2PO4, 40.5 mM K2HPO4, 8 mM

KCl, 86.6 mM potassium gluconate, pH 7.4), SVs (2 mg/ml) were

equally distributed into 2 aliquots. 10 mM CaCl2 was added to

both the tubes to provide calcium for the calpain reaction in the

next step. One of the aliquots received treatment with 0.15 U

calpain at 30uC for 45 min, while the other served as a control.

After calpain treatment, both the control and calpain-treated SVs

were washed thrice with GPBS buffer to serve as a starting

material for the uptake assay.

13. Creation of transient focal cerebral ischemia/
reperfusion stroke rat model

Male adult Sprague-Dawley rats (weighing 250–300 g) were

subjected to middle cerebral artery occlusion (MCAO) for 90 min

using the intra-luminal thread occlusion method as described [28].

All animals were fasted the night before the procedure. On the day

of occlusion, rats were anaesthetized initially with isoflurane, and

then during surgery ketamine (80 mg/kg) and xylazine (4 mg/kg)

were administered via intraperitoneal injection. The body

temperatures of the animals were maintained at 37.5uC through-

out the surgery using a heating lamp and a heating pad connected

to rectal probe. In all experiments, the left side of the brain was

chosen to be the ischemic side while the matching right side was

chosen to be the control region. A laser doppler probe attached to

a laser doppler flow monitor (Perimed Inc, OH, USA) was

positioned between the bregma and the lamda on the ipsi-lateral

side to monitor the cerebral blood flow (CBF). Silicon-coated 4.0

nylon monofilament suture was advanced 18–22 mm from the

external carotid artery bifurcation into the internal carotid artery

until there was a slight resistance.

14. Identification of the injured tissue by TTC staining
The MCAO rat whole brain was harvested immediately after

90 min of occlusion minimizing tissue rupture as much as possible.

The whole brain was then snap-frozen at 280uC for 7 min to

harden the tissue. Thereafter, at RT, the whole brain was

Table 2. Sequence of primers used in the RT-PCR reaction.

Gene
Name Primer Sequence (59-39)

PCR Product
Length (bp)

GAD65 F: GGCTCTGGCTTTTGGTCCTTC
R: TGCCAATTCCCAATTATACTCTTGA

441

GAD67 F: GCTGGAAGGCATGGAAGGTTTTA
R: AATATCCCATCACCATCTTTATTTGACC

303

G3PDH F: TCCATGACAACTTTGGCATCGTGG
R: GTTGCTGTTGAAGTCACAGGAGAC

366

Abbreviations used: G3PDH: Glyceraldehyde-3-phosphate dehydrogenase.
doi:10.1371/journal.pone.0033002.t002
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positioned in a rat brain matrix (Zivic Instruments, PA, USA).

Blades were placed on it to incise the brain to obtain 2 mm

coronal brain sections. The sections were immediately immersed

in 1% 2, 3, 5-triphenyl tetrazolium chloride (TTC) in PBS for

5 min at 37uC for the reaction to develop. Injured tissue stained

white, while the uninjured tissue stayed pink. Subsequently, after

visual inspection, the core and the penumbra of the ischemic side

and the matching control side were identified and dissected out.

The brain tissues were then processed with lysis buffer as

mentioned in the previous sections [see synaptosomal stimulation],

to obtain their respective lysates to serve as a starting material for

immuno-blot analysis.

15. Glutamate microdialysis
For those animals subjected to microdialysis for measuring

glutamate release, guide cannulae were pre-implanted at least 1

week before microdialysis and MCA occlusion. Briefly, rats were

anaesthetized with a combination of xylazine (4 mg/kg, i.p.) and

ketamine (80 mg/kg, i.p.) and then placed on a stereotaxic frame

(Stoelting Co., IL, USA). The skull was surgically exposed for

implantation of a sterile 22-gauge guide cannula at stereotaxic

coordinates for two striatal regions: 1) 0.5 mm anterior to bregma,

3.0 mm lateral to the midline and 2.0 mm ventral to the skull and

2) 2.5 mm posterior to bregma, 4.0 mm lateral to midline and

2.0 mm ventral to the skull. The guide cannulae were then secured

into place with acrylic dental cement and skull screws. One day

before microdialysis and MCA occlusion, a hollow probe was

inserted through the cannula into each of the two striatal regions

for glutamate microdialysis. The coordinates for the tip of the

probe were 0.5 mm anterior to bregma, 3.0 mm lateral to the

midline and 7.0 mm below the skull and 2.5 mm posterior to

bregma, 4.0 mm lateral to midline and 7.0 mm below the skull.

After probe insertion, rats were placed in a chamber attached to a

fluid swivel that allowed animals to move freely (RaturnH system;

Bioanalytical System Inc., IN, USA). The dialysis probes were

perfused overnight with KRP buffer at a rate of 1.0 ml/min.

The next day, after two baseline samples, animals were

subjected to 90-min MCAO. Dialysis samples were collected at

a 30 min interval before and during MCAO and analyzed by high

performance liquid chromatography (HPLC) – electrochemical

detection (HTEC-500; Eicom, Kyoto, Japan). Separation of

glutamate was achieved on a 150 mm61 mm i.d. column packed

with a TSK gel ODS-80 TM, 5 mm particle size. The potential on

the graphite working electrode was set at +400 mV (relative to the

Ag/AgCl reference electrode). The mobile phase was made of 0.1

M phosphate buffer (pH 6.0), 4% methanol, and 40 mg/l EDTA

and pumped at a rate of 500 ml/min.
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