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Abstract

Background: Nfkb1-deficient murine macrophages express higher levels of IFN-b and IL-12 p40 following LPS stimulation
than control macrophages, but the molecular basis for this phenomenon has not been completely defined. Nfkb1 encodes
several gene products including the NF-kB subunit p50 and its precursor p105. p50 is derived from the N-terminal of 105,
and p50 homodimers can exhibit suppressive activity when overexpressed. The C-terminal region of p105 is necessary for
LPS-induced ERK activation and it has been suggested that ERK activity inhibits both IFN-b and IL-12 p40 following LPS
stimulation. However, the contributions of p50 and the C-terminal domain of p105 in regulating endogenous IFN-b(Ifnb)
and IL-12 p40 (Il12b) gene expression in macrophages following LPS stimulation have not been directly compared.

Methodology/Principal Findings: We have used recombinant retroviruses to express p105, p50, and the C-terminal domain
of p105 (p105DN) in Nfkb1-deficient murine bone marrow-derived macrophages at near endogenous levels. We found that
both p50 and p105DN inhibited expression of Ifnb, and that inhibition of Ifnb by p105DN depended on ERK activation,
because a mutant of p105DN (p105DNS930A) that lacks a key serine necessary to support ERK activation failed to inhibit. In
contrast, only p105DN but not p50 inhibited Il12b expression. Surprisingly, p105DNS930A retained inhibitory activity for
Il12b, indicating that ERK activation was not necessary for inhibition. The differential effects of p105DNS930A on Ifnb and
Il12b expression inversely correlated with the function of one of its binding partners, c-Rel. This raised the possibility that
p105DNS930A influences gene expression by interfering with the function of c-Rel.

Conclusions: These results demonstrate that Nfkb1 exhibits multiple gene-specific inhibitory functions following TLR
stimulation of murine macrophages.
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Introduction

The transcription factor NF-kB plays a central role in regulating

innate immune gene expression [1]. While NF-kB is generally

considered a pro-inflammatory factor, LPS induces significantly

higher levels of the genes for IFN-b (Ifnb) and IL-12 p40 (Il12b) in

macrophages derived from mice with targeted deletions in Nfkb1,

the gene coding for the p50 subunit of NF-kB, than in WT

macrophages [2–8]. Thus Nfkb1 is an inhibitor of key immuno-

regulatory genes, and this is manifest in the observation that

Nfkb12/2 mice are highly susceptible to microflora-induced colitis

[9]. However, the molecular basis for selective inhibition of Ifnb

and Il12b by Nfkb1 has not been completely defined.

Nfkb1 has multiple gene products. Its full-length gene product

p105 is a bipartite molecule consisting of an N-terminal Rel

homology domain and a C-terminal ankyrin repeat domain [10–

15]. Constitutive processing of p105 by the proteosome removes

the C-terminal domain of p105 to generate p50 monomers, which

then homodimerize or heterodimerize with other NF-kB family

members [16]. In contrast to the constitutive processing of p105 to

p50, LPS induces IkB kinase (IKK)-dependent complete degra-

dation of p105 [17–19]. IKK mediates the phosphorylation of

p105 at serine 930, which is located within a C-terminal amino

acid sequence partially homologous to the N-terminal IKK-

dependent phospho-acceptor sites in IkB-a, and mutations of S930

inhibit IKK-mediated inducible degradation of p105 [18,20,21].

It has previously been suggested that p50 homodimers are

inhibitory based on their ability to prevent binding of more active

NF-kB dimers to kB sites necessary for inflammatory gene

expression [22,23]. Nevertheless, this does not explain why the

absence of Nfkb1 selectively affects expression of Ifnb and Il12b.

Recently, it has been proposed that p50 binds to a G-rich

sequence within the Ifnb interferon stimulated response element

(ISRE) and interferes with recruitment of IRF-3. This potentially

explains the selective increase in IFN-dependent gene expression

observed in Nfkb12/2 macrophages [3], although it is not yet clear

whether expression of p50 alone is sufficient to inhibit Ifnb

expression in Nfkb12/2 macrophages. Further, while expression of

Il12b does not appear to be dependent on IRF-3 [24], it does

contain an ISRE in its proximal promoter region [25,26], but it

has not yet been determined whether p50 is sufficient to inhibit

LPS-induced Il12b.
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In contrast to the suggestion that p50 is responsible for Nfkb1-

mediated inhibition of Ifnb, we have proposed that the ability of

the C-terminal region of p105 to facilitate ERK activation is

responsible for inhibition of LPS-induced Ifnb expression [8]. ERK

inhibitors enhance LPS-induced expression of Ifnb and Il12b in

macrophages [27–29]. The C-terminal portion of p105 binds to

and stabilizes Tpl-2, a MAP3K that is essential for ERK activation

[17,30], and as a result, LPS-induced ERK activation is blocked in

Nfkb12/2 bone marrow-derived macrophages (BMDM) [19]. It

has been suggested that the basis of ERK-mediated inhibition is its

ability to enhance induction of c-Fos, which inhibits both Ifnb and

Il12b expression [27–29]. We have demonstrated that expression

of a C-terminal fragment of p105 that does not contain the Rel

homology domain (p105DN) rescues LPS-induced ERK activation

and inhibits LPS-induced Ifnb expression [8]. However, whether

the ability of p105DN to inhibit Ifnb expression depends upon

ERK activation and whether p105DN is able to inhibit LPS-

induced Il12b expression has not been determined.

To further delineate the molecular basis for Nfkb1-mediated

inhibition, we have directly compared the ability of p105, p50, and

p105DN to inhibit LPS-induced expression of Ifnb and Il12b in

Nfkb12/2 murine bone marrow-derived macrophages. In addition,

we have used a mutant of p105DN (p105DNS930A) that is unable

to support ERK activation, to determine whether the inhibitory

function of p105DN depends on its ability to activate ERK.

Results

BMDM were infected with recombinant retroviruses that

expressed either HA tagged full-length p105, p50 (amino acids

1–433), a C-terminal fragment of p105 which lacks the N-terminal

Rel Homology Domain (p105DN, amino acids 434–971), or a

mutant of p105DN in which S930, one of the serines in the C-

terminal phosphorylation site necessary for IKK-dependent

degradation and ERK activation, was mutated to alanine

(p105DNS930A) [17,20] (Fig. 1). Western blotting demonstrated

expression of HA tagged proteins of appropriate sizes (Fig. 2A),

and as expected we observed both p50 and p105 in macrophages

infected with the vector expressing p105. Western blotting with an

N-terminal p105 antibody indicated that levels of p50 and p105 in

virally infected Nfkb12/2 cells were similar to endogenous levels

observed in control cells (Fig. 2A). We observed lower protein

levels of p105DN and p105DNS930A than p105, and it is likely

that this is secondary to more rapid turnover, as we observed

similar mRNA levels in BMDM expressing p105, p105DN, or

p105DNS930A using a C-terminal Nfkb1 Taqman RT-PCR probe

(Fig. 2B, right). An N-terminal Nfkb1 probe revealed similar RNA

levels in cells expressing p105 and p50 (Fig. 2B, left).

As expected, LPS induced significantly higher expression of Ifnb

mRNA in Nfkb12/2 BMDM infected with vector alone than in

control BMDM infected with the vector alone (Fig 3A). The

presence of p105, p50, and p105DN in Nfkb12/2 BMDM all

significantly inhibited expression of Ifnb mRNA at the point of

peak induction 2 hours after LPS treatment, and these differences

were mimicked by differences in IFN-b accumulation in the cell

supernatants (Fig. 3B). These results indicate that both p50 and the

C-terminal fragment of p105 independently inhibit expression of

Ifnb.

It has previously been demonstrated that phosphorylation of

S930 in p105 is essential for LPS-induced ERK activation [20,21].

It has been proposed that ERK activation is associated with

suppression of LPS-induced Ifnb and Il12b expression because it is

necessary for induction of c-Fos, an inhibitor of both Ifnb and Il12b

[29]. However, it has not been demonstrated whether phosphor-

ylation at S930 is necessary for inhibition of Ifnb expression by

p105DN. In contrast to p105DN, p105DNS930A did not inhibit

LPS-induced Ifnb mRNA expression (Fig. 3A) or accumulation of

IFN-b in cell supernatants (Fig. 3B), and in fact Ifnb mRNA was

expressed at significantly higher levels in Nfkb12/2 BMDM

expressing p105DNS930A than in Nfkb12/2 BMDM infected

with vector alone (Fig. 3A). Consistent with a role for

phosphorylation of serine 930 in LPS-induced ERK activation

and stabilization of c-Fos, expression of p105DN but not

p105DNS930A rescued the defect in ERK activation and c-Fos

induction observed in Nfkb12/2 BMDM (Fig. 4). As expected,

LPS-induced degradation of p105DNS930A was impaired (Fig. 4).

These results demonstrate that phosphorylation of S930 plays an

essential role in mediating the ability of the C-terminal region of

p105 to inhibit LPS-induced Ifnb expression, and that this is

strongly associated with activation of ERK and induction of c-Fos.

Further, these results suggest that in the absence of IKK-mediated

phosphorylation at S930, p105DN demonstrates an activity that

enhances LPS-induced expression of Ifnb mRNA.

Consistent with previous results [4,6,7], LPS also induced

higher levels of Il12b in Nfkb12/2 cells than in control cells

following infection with vector alone (Fig. 5). To determine

Figure 1. Domain structure of p105. Diagram showing p105, p50, and constructs p105DN and p105DNS930A.
doi:10.1371/journal.pone.0032811.g001
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Figure 2. Retrovirally-mediated expression of Nfkb1 constructs. A) Immunoblotting of Il102/2Rag22/2 (Control) or Nfkb12/2Il102/2Rag22/2

(Nfkb12/2) BMDM infected with empty vector (Vector) or viruses expressing the indicated proteins. Total cell extracts from unstimulated cells were
probed with the indicated antibodies (left) by western blotting. Arrows indicate size of Nfkb1-derived gene product (right). NS refers to a non-specific
band. B) Relative expression of Nfkb1 N- and C-terminal derived mRNA as determined by RT-PCR. N = 3 mice per group.
doi:10.1371/journal.pone.0032811.g002
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whether Nfkb1 inhibited Il12b expression using similar mechanisms

employed for inhibition of Ifnb, we evaluated expression of Il12b in

RNA samples from the virus-infected macrophages described

above. As expected, p105 significantly inhibited expression of Il12b

at both 2 (data not shown) and 4 hours after treatment with LPS

(Fig. 5A). However, contrary to results with Ifnb, p50 did not

significantly influence Il12b expression, suggesting that p50 is not

an important inhibitor of Il12b following LPS treatment (Fig. 5A).

In contrast, p105DN significantly inhibited expression of Il12b.

However, we were surprised to find that inhibition did not depend

on ERK activation or the induction of c-Fos, as p105DNS930A

also significantly inhibited Il12b expression (Fig. 5A), demonstrat-

ing that inhibition of Il12b expression by p105DN was proceeding

in an ERK and c-Fos independent fashion. Indeed, inhibition by

p105DNS930A consistently appeared somewhat more robust than

inhibition by p105DN, although this did not reach statistical

Figure 3. Both p50 and p105DN inhibit LPS-induced Ifnb in Nfkb12/2 macrophages. A) Relative expression of Ifnb as determined by RT-PCR
in Il102/2Rag22/2 (control) or Nfkb12/2Il102/2Rag22/2 (Nfkb12/2) BMDM infected with empty vector (Vector) or viruses expressing indicated
proteins 2 hours after stimulation with LPS. N = 6–9 individual mice per group. B) Concentration of IFN-b in the supernatant of BMDM as determined
by ELISA 12 hours after stimulation with LPS. N = 6 mice per group.
doi:10.1371/journal.pone.0032811.g003

Figure 4. p105 serine 930 is essential for ERK activation and induction of c-Fos. Immunoblotting with indicated antibodies (right) of
extracts derived from Il102/2Rag22/2 (control) or Nfkb12/2Il102/2Rag22/2 (Nfkb12/2) BMDM infected with empty vector (Vector) or viruses
expressing indicated proteins, prior to stimulation, or at 15 and 120 minutes after LPS stimulation.
doi:10.1371/journal.pone.0032811.g004
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significance. Differences observed in Il12b mRNA expression were

closely correlated with differences observed in the accumulation of

IL-12 p40 in cell supernatants (Fig. 5B).

The experiments described above employing p105DNS930A

demonstrate that in the absence of the ability to activate ERK, the

C-terminal region of p105 retains the ability to inhibit Il12b but

enhances expression of Ifnb mRNA. In addition to facilitating LPS-

induced ERK activation, the C-terminal region of p105 contains

ankyrin repeats similar to those found in the classical IkBs [14,15]. It

has been shown that this region mediates association between p105

and both p65 and c-Rel [12,15,31,32]. c-Rel is necessary for LPS-

induced Il12b expression in macrophages [33,34] and therefore

inhibition of c-Rel function by the C-terminal region of p105 could

explain the ability of p105DNS930A to inhibit Il12b. Conversely,

inhibition of c-Rel function could explain the ability of

p105DNS930A to augment Ifnb induction if c-Rel is an inhibitor of

Ifnb. In fact, we observed that Rel2/2 BMDM expressed significantly

higher levels of Ifnb mRNA 2 hours after LPS stimulation than

control macrophages, while, as expected, they expressed markedly

lower levels of Il12b mRNA (Figs. 6A and 6B). These results were

closely mimicked by the accumulation of IFN-b and IL-12 p40 in cell

supernatants (Figs. 6C and 6D). These results suggest that inhibition

of c-Rel function by the C-terminal region of p105 could have

differential effects on the expression of Il12b and Ifnb.

Discussion

We have shown that Nfkb1 inhibits LPS-induced gene

expression by multiple gene-specific mechanisms. p50 inhibits Ifnb

but not Il12b. In contrast, the C-terminal region of p105 plays a

role in inhibition of both Ifnb and Il12b, but only inhibition of Ifnb

requires the ability of this C-terminal region to activate ERK.

It was previously proposed that homodimers of p50 inhibit

access of more active Rel dimers to kB sites present with the

promoter regions of NF-kB target genes [22]. However, a recent

study demonstrated that promoters of genes expressed at higher

levels in Nfkb1-deficient cells are enriched for ISRE-like sequences

that contain short G-rich stretches [3]. It was proposed that these

G-rich stretches serve as cryptic binding sites for p50 homodimers,

which prevent recruitment of basal IRF-3. The promoter for Ifnb

contains such an ISRE [3], but it has not been previously

determined whether p50 alone is capable of inhibiting LPS-

induced expression of endogenous Ifnb in Nfkb12/2 macrophages.

Here we show that expression of p50 in Nfkb12/2 BMDM can

inhibit expression of Ifnb, which is consistent with a model in

which binding of p50 to the Ifnb ISRE inhibits Ifnb expression.

In contrast to its ability to inhibit Ifnb expression, p50 was

unable to inhibit expression of Il12b. The fact that p50 was

expressed above endogenous levels but was still unable to inhibit

Il12b indicates that this failure was not an artifact of low expression

levels. The Il12b promoter has previously been demonstrated to

contain an atypical NF-kB binding site that consists of a stretch of

Gs, termed an NF-kB half site [35], as well as an ISRE [25,26].

However the presence of these sites is clearly not sufficient to

support inhibition of Il12b by p50, indicating that p50 has highly

selective inhibitory function. Whether this selectivity is solely based

on the presence of G-rich ISRE sequences and inhibition of IRF-3

recruitment remains to be determined.

Figure 5. p105DN but not p50 inhibit LPS-induced Il12b expression in Nfkb12/2 macrophages. A) Relative expression of IL-12 p40 (Il12b)
as determined by RT-PCR in Il102/2Rag22/2 (control) or Nfkb12/2Il102/2Rag22/2 (Nfkb12/2) BMDM infected with empty vector (Vector) or viruses
expressing the indicated proteins 4 hours after stimulation with LPS (N = 6–9 individual mice per group). B) Levels of IL-12 p40 present in the
supernatant of groups described in A, 2 hours after stimulation with LPS (N = 3 individual mice per group).
doi:10.1371/journal.pone.0032811.g005
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In contrast to p50, expression of p105DN inhibited LPS-

induced expression of both Ifnb and Il12b. Previous studies have

shown that ERK inhibitors increase LPS-induced expression of

both of these genes [27–29], leading us, and others, to hypothesize

that p105 inhibits by facilitating activation of ERK [29,36]. It has

been proposed that ERK-dependent inhibition is mediated by

increased mRNA expression [29] and/or protein stabilization of c-

Fos [27], an inhibitor of both Ifnb and Il12b [27–29]. The results

reported here strongly suggest that the ability of p105DN to rescue

ERK activation and induce c-Fos is necessary to inhibit Ifnb, but in

contrast, is dispensable for inhibition of Il12b.

The C-terminal fragment of p105 contains multiple ankyrin

repeats similar to those found in other IkBs [11,12,14,15], and it

has been suggested that p105 may preferentially interact with c-

Rel [12,15,31,32]. c-Rel is essential for LPS-induced expression of

Il12b [33] and thus inhibition of c-Rel function by p105DN could

explain inhibition of Il12b. This is supported by the observation

that p105DNS930A, which is resistant to IKK-mediated degra-

dation, may be a better inhibitor of Il12b expression than p105DN

itself. Interestingly, we have found that in contrast to its effects on

Il12b expression, c-Rel inhibits LPS-induced expression of Ifnb.

Thus, more robust inhibition of c-Rel function by p105DNS930A

than by p105DN could explain why p105DNS930A actually

augments expression of Ifnb. While one potential mechanism for

inhibition of c-Rel function by p105DNS930A is inhibition of

nuclear localization following LPS stimulation, we have not

observed increased c-Rel nuclear translocation in Nfkb1-deficient

BMDM nor have we observed inhibition of c-Rel nuclear

translocation by p105DNS930A (data not shown). Therefore the

functional consequences of c-Rel interaction with p105 remain to

be fully elucidated.

The studies presented here provide new insight into the

mechanisms of gene inhibition by Nfkb1. They demonstrate that

Nfkb1 has multiple inhibitory mechanisms that function in gene-

specific manners. Further they illustrate that rather than an on/off

switch for inflammation, NF-kB is a complex modulator of the

innate response that differentially influences key immunoregula-

tory cytokines. Understanding the molecular details of gene-

Figure 6. c-Rel inhibits LPS-induced expression of Ifnb. A) Relative expression of Ifnb and Il12b as determined by RT-PCR in Il102/2Rag22/2

(open bars) and Rel2/2Il102/2Rag22/2 (filled bars) BMDM at indicated time points after stimulation with LPS. N = 3 mice per group. Repeated 3 times
with similar results. B) Levels of IFN-b and IL-12 p40 in supernatants of Il102/2Rag22/2 (Control) and Rel2/2Il102/2Rag22/2 (Rel2/2) BMDM 4 hours
after stimulation with LPS. N = 5 mice per group.
doi:10.1371/journal.pone.0032811.g006
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specific regulation by NF-kB could lead to highly selective

therapeutic modulation of immune and inflammatory based

diseases.

Materials and Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

animal protocol was approved by the Harvard Medical Area

Standing Committee on Animals (OLAW Assurance number:

A34131-01). All efforts were made to minimize suffering.

Experimental Animals
All mouse strains were maintained on the 129S6/SvEvTac

background. Il102/2Rag22/2 (control) and Nfkb12/2Il102/2

Rag22/2 (Nfkb12/2) mice have been previously described [8].

Rel2/2Il102/2Rag22/2 (Rel2/2) mice were generated by inter-

crossing Rel2/2Rag22/2 [8] and Il102/2Rag22/2 mice. Macro-

phages were derived from mice maintained on the Il102/2

background to eliminate the effects of the strong IL-10 feedback

loop on LPS-induced gene expression, and on the Rag22/2

background to prevent the development of spontaneous colitis.

Retrovirally-mediated gene expression
BMDM were grown as previously described [36]. On the

second day of culture cells were infected with the indicated

retroviruses. 72 hours later macrophages were re-plated at 56105

cells/well in 0.5 ml of medium in a 24-well plate, or at 0.3–16105

cells/well in 100 ml of medium in a 96 well plate. The following

day cells were stimulated with LPS from E. coli 0127:B8 (Sigma, St

Louis, MO) at 1 ng/ml or left unstimulated.

RT-PCR
RNA was isolated in Trizol (Invitrogen, Carlsbad, CA)

following the manufacturer’s instructions. RT-PCR analysis was

performed using probes from Applied Biosystems (Foster City,

CA), as per the manufacturer’s instructions. Expression for each

sample was analyzed in duplicate and normalized to GAPDH

using the DDCt method. Fold-change is reported as relative to the

average of uninduced levels in unstimulated BMDM for each

experiment.

ELISA
IFN-b was analyzed in culture supernatants using an IFN-b-

specific ELISA kit (PBL Biomedical Laboratories) according to the

manufacturer’s instructions. IL-12 p40 was analyzed via ELISA

using C15.6 (Biolegend, San Diego, CA) as the capture antibody

and C17.8 (Thermo Scientific, Rockford, IL) as the secondary

antibody.

Antibodies
Anti-ERK (p44/42 MAP Kinase), anti-phospho ERK (p44/42

MAP Kinase) (Thr202/Tyr204), and anti-c-Fos (9F6) were

purchased from Cell Signaling (Beverly, MA). Anti-N-terminal

p105 (sc-1190) was purchased from Santa Cruz Biotechnology

(Santa Cruz, CA). Anti-HA (16B12) was purchased from Covance

(Princeton, NJ).

Statistical Analysis
All data analysis was performed using GraphPad Prism software

(GraphPad Software, inc., San Diego, CA). Data generated by

RT-PCR or ELISA was compared using One-way ANOVA with

the Tukey’s multiple comparison test. Error bars on graphs

represent SEM. * indicates p,0.05, ** indicates p,0.01, and ***

indicates p,0.001.
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