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Abstract

Members of the calbindin subfamily serve as markers of subpopulations of neurons within the vertebrate nervous system.
Although markers of these proteins are widely available and used, their application to invertebrate nervous systems has
been very limited. In this study we investigated the presence and distribution of members of the calbindin subfamily in the
sea cucumber Holothuria glaberrima (Selenka, 1867). Immunohistological experiments with antibodies made against rat
calbindin 1, parvalbumin, and calbindin 2, showed that these antibodies labeled cells and fibers within the nervous system
of H. glaberrima. Most of the cells and fibers were co-labeled with the neural-specific marker RN1, showing their neural
specificity. These were distributed throughout all of the nervous structures, including the connective tissue plexi of the
body wall and podia. Bioinformatics analyses of the possible antigen recognized by these markers showed that a calbindin
2-like protein present in the sea urchin Strongylocentrotus purpuratus, corresponded to the calbindin-D32k previously
identified in other invertebrates. Western blots with anti-calbindin 1 and anti-parvalbumin showed that these markers
recognized an antigen of approximately 32 kDa in homogenates of radial nerve cords of H. glaberrima and Lytechinus
variegatus. Furthermore, immunoreactivity with anti-calbindin 1 and anti-parvalbumin was obtained to a fragment of
calbindin-D32k of H. glaberrima. Our findings suggest that calbindin-D32k is present in invertebrates and its sequence is
more similar to the vertebrate calbindin 2 than to calbindin 1. Thus, characterization of calbindin-D32k in echinoderms
provides an important view of the evolution of this protein family and represents a valuable marker to study the nervous
system of invertebrates.
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Introduction

EF-hand domain-containing calcium-binding proteins (CBP) of

the calbindin and parvalbumin subfamilies have been used during

the last three decades as markers of subpopulation of neurons in

the nervous system of vertebrates [1–11]. Despite the vast interest

in these proteins, their study in non-vertebrate species has not

been widely pursued. The first major reports in non-vertebrates

were conducted in Loligo pealeii (Lesueur, 1821) (Teuthida,

Cephalopoda) [12] and Drosophila melanogaster (Meigen, 1830)

(Diptera, Insecta) [13]. In the former a protein biochemically

similar to calbindin 1 was characterized, though its sequence is not

yet available. In the latter, the calbindin-D32k gene of Drosophila

was cloned. This protein presents 42% and 37% homology to

chicken calbindin 2 and calbindin 1, respectively [13]. Since then,

sequences similar to calbindin-D32k have been identified in many

representatives of Insecta as part of the whole genome sequencing

being performed to study their evolution. So far, no other CBP of

the calbindin or parvalbumin subfamilies has been reported to be

present in a non-vertebrate organism.

The calbindin subfamily of EF-hand domain-containing CBP is

characterized by having six EF-hand motifs and is made up by

calbindin 1 (calbindin-D28k), calbindin 2 (calretinin), and

secretagogin. These proteins function as calcium buffers, but their

physiological role remains unknown [14,15]. In vertebrates,

specifically in mammals, calbindin 1, parvalbumin and calbindin

2 are present in different populations of neurons and interneurons

of mice adult spinal cord [10]. In amphibians, differential

immunoreactivity to anti-calbindin 1 and anti-calbindin 2 in cells

and fibers throughout the brainstem serves to determine the

localization and signature of many cell groups [9]. Lastly,

calbindin 1 and calbindin 2-like immunoreactivities are present

in the retina of the lamprey, the basal vertebrate studied at present

[16]. In invertebrates, only two members of the calbindin

subfamily have been identified, calbindin-D32k [13] and secreta-

gogin [17]. In Drosophila, calbindin-D32k is selectively distributed
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in the nervous system, consistent with the specific distribution of

the vertebrate calbindins [13]. Thus far, reports showing the

distribution of any other calbindin subfamily members in

invertebrates are lacking.

At present, the parvalbumin subfamily of EF-hand domain-

containing CBP is one of the best-studied CBP subfamilies. These

proteins have been well characterized at the molecular expression,

and structural levels [18–22]. This subfamily is characterized by

having two functional EF-hand motifs that bind calcium and is

made up by two major isoforms, a and b (oncomodulin). In some

organisms such as zebrafish, 9 isoforms, encoded by different

genes, have been identified [19]. This protein is considered to be a

vertebrate specific protein, as it has not been found in non-

vertebrates. Interestingly, studies done with antibodies that

recognize parvalbumin showed that there is parvalbumin-like

immunoreactivity in the planarian nervous system [23].

Currently not much is known about the physiological function

of CBP [24], but understanding their evolution may give us a good

insight into their possible function. Thus identifying and studying

CBP in basal deuterostomes, such as echinoderms, may be the key

to unlocking this mystery. The phylum Echinodermata comprises

a distinctive group of marine invertebrates characterized by radial

pentameric symmetry originating in bilaterally symmetrical larvae.

Echinoderms can be further subdivided into three subphylums,

Asterozoa, Echinozoa, and Crinozoa. The subphylum Asterozoa

includes the Asteroidea (starfishes) and Ophiuroidea (brittlestars);

the subphylum Echinozoa includes the Echinoidea (sea urchins

and sand dollars) and Holothuroidea (sea cucumbers); and the

subphylum Crinozoa comprises the Crinoidea (sea lilies). These

organisms are part of the branch of the deuterostome evolutionary

tree that gave rise to chordates [25], thus, lie at a key evolutionary

position. Therefore, studying CBP in echinoderms is vital in order

to understand the evolution of these proteins in the chordates.

In this study we tested three antibodies that recognize EF-hand

domain containing CBP of the calbindin and parvalbumin

subfamilies. We identified a subpopulation of cells and fibers of

the nervous system of H. glaberrima that showed immunoreactivity to

these antibodies. Characterization of the antigens recognized by

these markers was done by bioinformatics analyses with S. purpuratus

and H. glaberrima, and western blot experiments with H. glaberrima

and L. variegatus. Additionally, we used these antibodies, together

with the novel neuronal marker RN1, to further characterize the

nervous system component of the connective tissues in H. glaberrima.

Our findings provide new markers for a subpopulation of neurons

and fibers in the echinoderm nervous system. The availability of

these new markers make feasible the study of the evolutionary

aspects of the calcium-binding proteins family, as has been done

recently with other gene family, the retinal genes in S. purpuratus

[26]. Furthermore, we identified the presence of calbindin-D32k in

H. glaberrima and L. variegatus, supporting its presence in at least two

classes of echinoderms Our data also supports the evolutionary

conservation of the calbindin subfamily, which seems to have

evolved from two primitive EF-hand domain-containing CBP. One

of them gave rise to cabindin-D32k in invertebrates and to calbindin

2 and calbindin 1 in vertebrates, while the other gave rise to

secretagogin in both vertebrates and invertebrates. Furthermore,

these proteins are preferentially distributed to the nervous system in

both vertebrates and invertebrates.

Materials and Methods

Animals
Adult Holothuria glaberrima (Selenka, 1867) (Aspidochirotida,

Holothuroidea) and adult Lytechinus variegatus (Lamarck, 1816)

(Temnopleuroida, Echinoidea) specimens were collected from the

shores of the north coast of Puerto Rico. The animals were kept in

sea water aquaria at the University of Puerto Rico in Rı́o Piedras.

Tissue sections
H. glaberrima specimens were anesthetized in 0.2% 1,1,1-

trichloro-2-methyl-2-propanol (Sigma, St. Louis, MO) for

10 min and dissected by longitudinal section of the body wall.

Ventral and dorsal areas of the body wall were divided into

anterior, middle and posterior portions, dissected and fixed in 4%

paraformaldehyde at 4uC for approximately 1 h. Tissues were

rinsed 3 times for 15 min with 0.1 M phosphate-buffered saline

(PBS), and left in a 30% sucrose solution at 4uC. Once the tissues

had been in 30% sucrose solution for at least 24 h, they were

embedded in Tissue-Tek (Sakura Finetek, Torrance, CA).

Cryostat tissue sections of 14 mm were cut and mounted on

Poly-L-lysine-coated slides.

Immunohistochemistry
The indirect immunofluorescence method was followed [27,28].

In brief, tissues were rinsed for 5 min in 0.1 M PBS, followed by

one rinse of 15 min in 1% Triton X, 1 h incubation with 0.1 M

Glycine, and a 1 h incubation in goat serum 1:50 (Invitrogen,

Carlsbad, CA). Subsequently, the primary antibodies were

incubated overnight at room temperature (Table 1). All antibodies

were diluted in RIA buffer (0.05 M PBS- pH 7.4, 0.15 M NaCl,

0.5% BSA, and 1.5 mM NaN3). The primary antibodies used

include the RN1 monoclonal antibody [27,29] raised against a

homogenate of the radial nerve of H. glaberrima and used at a

dilution of 1:100,000 in RIA buffer; the monoclonal antibody anti-

b-tubulin, (Sigma T-4026 Lot. 024K4862) clone TUB 2.1

prepared against tubulin from rat brain and used at a 1:500

dilution in RIA buffer; the rabbit antiserum anti-GFSKLYamide

No. 23 2i2s [30] prepared against a GFSKLYa synthetic peptide

and used at a 1:1,000 dilution in RIA buffer; the rabbit antiserum

anti-galanin-1 2i3s [31] prepared against galanin (Calbiochem

Corp. San Diego, CA) and used at a 1:1,000 dilution in RIA

buffer; the rabbit polyclonal anti-calbindin 1 (Abcam ab11426 Lot.

378854) prepared against the calbindin 1 protein purified from rat

kidney and used at a 1:500 dilution in RIA buffer; the rabbit

polyclonal anti-parvalbumin (Affinity Bioreagents PA1-933 Lot.

762-116) prepared against purified parvalbumin from rat skeletal

muscle and diluted in RIA buffer to a 1 mg/ml concentration; the

rabbit polyclonal anti-calbindin 2 (Abcam ab702 Lot. 721984)

prepared against full length calbindin 2 and used at a 1/100

dilution in RIA buffer. Negative controls were performed in all

experiments by incubating the tissue sections with rabbit serum

during the incubation period of the primary antibody and

following the normal immunostaining protocol.

The secondary FITC antibodies, Goat anti-mouse (Biosource,

Camarillo, CA, #AMI0408 Lot. 3501) and Goat anti-rabbit

(Biosource, Camarillo, CA, #ALI0408 Lot. 1502) were used at a

1:50 dilution in RIA buffer for double-labeling indirect immuno-

histochemistry. Also, the Cy3-conjugated secondary antibodies,

Goat anti-mouse (Jackson ImmunoResearch Laboratories, Inc.

West Grove, PA, #115-165-068 Lot. 47814) and Goat anti-rabbit

(Jackson ImmunoResearch Laboratories, Inc. West Grove, PA,

#111-165-144 Lot. 50694), were used at a 1:2,000 dilution in RIA

buffer for double-labeling indirect immunohistochemistry.

Cell nuclei were stained with 2 mM DAPI (Sigma, St. Louis,

MO) in the buffered glycerol solution used to mount the slides. In

cases where double-labeling was performed, the two primary

antibodies were applied simultaneously and later the two

secondary antibodies were added together (see [28]). Tissues were
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examined and photomicrographs taken on a Nikon Eclipse E600

fluorescent microscope with FITC, R/DII and DAPI filters.

Images were recorded using the MetaVue software (version 6.0;

MDS Analytical Technologies, Toronto, Canada) or the Spot

Basic software (version 4.7; Diagnostic Instruments, Sterling

Heights, MI), and Image J (version 1.37; NIH, Bethesda, MD).

These were cropped, brightness and contrast adjusted, using

Adobe Photoshop 7.0 (Adobe Systems, San Jose, CA).

Bioinformatics
Sequences were downloaded from the NCBI GeneBank protein

database and stored in Biology Workbench v3.2 [32]. BlastP were

performed against the public nonredundant protein database in

GeneBank. EF-hand domain determinations were performed

using ScanProsite [33]. Alignments were carried out with

ClustalW and edited with GeneDoc CLC free-workbench software

(v.3.2.1 by CLC bio A/S, Denmark), or by using the Blosum62

matrix and edited with Geneious software (v.5.4.6 by Biomatters

LTD, New Zealand) [34]. The phylogenetic trees were construct-

ed using the unweighted pair group method with arithmetic mean

(UPGMA) with default parameters and distances calculated using

the Jukes-Cantor genetic distance model using the Geneious

software (v.5.4.6 by Biomatters LTD, New Zealand) [34].

Western blots
The western blot assay protocol used has been described

previously [27]. Briefly, approximately 300 mg of radial nerve

homogenates were run at 100 V in SDS-PAGE (5% stacking and

15% running gel) for 2 h using a BioRad Mini Protean

Electrophoresis system. The gel was equilibrated for 10 min in

Towin buffer and transferred to a PVDF membrane at 100 V for

1 h in a Mini Trans Blot Cell (BioRad, Hercules, CA). The

membrane was then blocked for 1 h at room temperature with 5%

nonfat dry milk and washed three times in Tris-buffered saline

with 0.1% Tween-20.

The membrane was then incubated overnight with the

respective primary antibody. The primary antibodies used were

anti-calbindin 1 (1 mg/ml); anti-parvalbumin (1 mg/ml); anti-

calbindin 2 (1:100), diluted with RPMI 1640 medium supple-

mented with 5% horse serum. Positive controls in which mouse

kidney homogenates were treated with the anti-calbindin 1 and

the anti-calbindin 2 primary antibodies, and rat skeletal muscle

homogenates with the anti-parvalbumin primary antibody were

done to corroborate the quality of the homogenates and the

antibody binding. Negative controls were done by using the EF-

hand domain-containing synthetic protein EF-hand domain

protein 2 (EFHD2) [35]. Following primary antibody incubation,

the membrane was washed three times for 5 min each, and then

incubated for 1 h in sheep anti-mouse (1:10,000 dilution) or

donkey anti-rabbit (1:20,000 dilution) IgG peroxidase-linked

secondary antibody (Amersham Biosciences, Piscataway, NJ)

diluted with RPMI 1640 supplemented medium. After three

washes of 5 min each, the membrane was incubated for 5 min in

Super Signal West Dura Chemiluminescent Substrate (Thermo

Fisher Scientific, Rockford, IL) and the signal was visualized using

a Chemi System (UVP BioImaging Systems).

Cloning of the H. glaberrima calbindin-D32k
cDNA used in the cloning was prepared from H. glaberrima

radial nerve extracts. After dissection of the radial nerves, the

tissues were placed in 1 ml of TRIzol Reagent (Invitrogen,

Calsbad, CA) and homogenized with a PowerGen Model 125

Homogenizer (Thermo Fisher Scientific, Rockford, IL). Following

a phenol-chloroform extraction, total RNA was obtained from the

aqueous supernatant. cDNA was then synthesized from the total

RNA using M-MLV Reverse Transcriptase (Invitrogen, Calsbad,

CA) and oligo(dT) primers. Degenerate primers (F59-GACCA-

GAATAAGGATGGAAAG-39, R59-ACTCTGCCCCGTGAT-

TTT-39) were designed against a potential calbindin 2 homolog

found in the S. purpuratus genome (XP_001178717) and used to

amplify a 376 bp fragment from H. glaberrima radial nerve cDNA.

A highly conserved region was chosen for amplification by aligning

sea urchin calbindin 2-like protein (XP_001178717) with calbin-

din-D32k from D. melanogaster (NP_476838) and calbindin 2 from

M. musculus (NP_033918). A start and stop codon were affixed to

the 59 and 39 positions of the insert, respectively, using PCR

amplification (F59-ATGGACCAGAATAAGGATGGAAAG-39,

R59-TCAACTCTGCCCCGTGATTTT-39). Using this template,

the restriction sites BamHI and NotI were affixed to the 59 and 39

positions, respectively, using PCR (F59-GAAATAGGATC-
CATGGAC CAGAATAAGGATGGAAAG-39, R59-TTCCCC-

GCGGCCGCTCAACTCTGCCC CGTGATTTT-39). This

product was purified using a QIAGEN Spin Column (QIAGEN,

Valencia, CA) and inserted into pGEX6P-1 (GE Healthcare

Biosciences, Piscataway, NJ), using BamH1 and NotI restriction

enzymes (New England Biolabs, Ipswich, MA). The vector was

previously treated with Calf Intestinal Alkaline Phosphatase

(Invitrogen, Carlsbad, CA) diluted to 0.01 u/uL in Buffer CIAP.

The ligation was carried out using T4 ligase (New England

Biolabs, Ipswich, MA), and the construct was heat shocked into

OneShot BL21 Star (DE3) chemically competent E. coli cells

(Invitrogen, Carlsbad, CA). After the shock, vials were incubated

Table 1. Antibodies used in this study.

Antigen Raised in Immmunogen Source Dilution used

Calbindin 1 rabbit (polyclonal) 28 kDa calbindin-D protein purified from rat kidney Abcam (ab11426) 1:500

Parvalbumin rabbit (polyclonal) Parvalbumin from rat skeletal muscle Affinity Bioreagents
(PA1-933)

1 mg/ml

Calbindin 2 rabbit (polyclonal) Full length Calretinin Abcam (ab702) 1:100

GFSKLYamide rabbit (polyclonal) GFSKLYa synthetic peptide Dr. Garcı́a-Arrarás lab [30] 1:1,000

Galanin rabbit (polyclonal) Galanin Dr. Garcı́a-Arrarás lab [31] 1:1,000

b-tubulin mouse (monoclonal) Tubulin from rat brain Sigma (T-4026) 1:500

Unknown (RN1) mouse (monoclonal) Homogenate of the radial nerve of H. glaberrima Dr. Garcı́a-Arrarás lab [27] 1:100,000

For more detailed information, see Materials and Methods.

doi:10.1371/journal.pone.0032689.t001
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in SOC medium (Invitrogen, Calsbad, CA) for 1 h before plating.

We analyzed for positive insertion using selective plating with

ampicillin and Colony PCR, using pGEX specific primers. All

DNA samples were analyzed in 1% agarose gels run at 150 V for

30 min in 10 mM Sodium Borate buffer, visualized with SafeView

Classic (Applied Biological Materials, Richmond, BC) staining in a

ChemiDoc XRS+ System, and Sanger sequencing was use to

confirm the sequences.

Expression of H. glaberrima calbindin-D32k
Positive colonies were grown in LB medium with 50 mg/ml

ampicillin to O.D.600 1.3, and induced with 1 mM IPTG (Sigma,

St. Louis, MO). Cells were lysed using B-PER Reagent (Thermo

Fisher Scientific, Rockford, IL) and protein extraction was carried

out using TRIzol LS Reagent (Invitrogen, Calsbad, CA) according

to the manufacturers protocol for bacterial protein extraction. The

fragment was purified using a B-PER GST Fusion Protein Spin

Purification Kit (Pierce, Rockford, IL), and fractions were

collected after lysing, washing, and elution, for a total of seven

fractions. As a negative control, another protein from a different

bacterial strain containing the same vector but a different insert,

translationally controlled tumor protein (TCTP), was purified

along with our fragment. The fractions were then analyzed via

SDS-PAGE and western blot.

Results

Neuronal specificity
The radial nerve cord (RNC) is the most prominent neural

structure of the echinoderm’s nervous system. It is subdivided

anatomically into two major components, the ectoneural (ERN)

and the hyponeural component (HRN) (Fig. 1A). The RNC is a

ganglionated nerve, with cell bodies located in the periphery of the

respective component. Nerves originating from the RNC inner-

vate other body structures. The ectoneural peripheral nerve

extends from the ERN into the dermis and tube feet, while the

hyponeural peripheral nerve extends from the HRN into the body

wall travelling between the coelomic epithelia and the circular

muscle. We observed immunoreactivity to anti-calbindin 1, anti-

parvalbumin, and anti-calbindin 2 within both components of the

RNC (Fig. 1A–C). All three antibodies labeled cells in the RNC,

but their numbers were not the same. Approximately 3064 (6%)

(n = 7) anti-calbindin 1 immunopositive cells were observed per

section [1964 (4%) in the ERN and 1164 (2%) in the HRN], as

demonstrated by double-labeling with DAPI. A smaller number of

cells were labeled with anti-parvalbumin [1464 (3%) (n = 4) cells

per section- 963 (2%) in the ERN and 562 (1%) in the HRN] and

with anti-calbindin 2 [461 (n = 4) (1%) cells per section- 461 (1%)

in the ERN and 0 (0%) in the HRN] (all numbers are expressed as

mean 6 SD).

Anti-calbindin 1 immunoreactivity was observed in a large

number of fibers equally distributed throughout both components

of the RNC, contrary to fibers immunoreactive to anti-

parvalbumin and anti-calbindin 2, which were mostly distributed

to the distal region of the ERN and all throughout the HRN.

Immunoreactivity to the three markers was also observed in the

peripheral nerves extending from the ERN and the HRN.

Individual immunoreactive fibers were best observed within the

circular muscle, just distal to the hyponeural peripheral nerve. At

this site, fibers immunoreactive to the anti-CBPs markers were

present, but their number and morphology was different with each

marker as observed in serial sections. The number of immuno-

reactive fibers was larger with anti-calbindin 1 and lowest with

anti-calbindin 2, leaving the amount of anti-parvalbumin

immunopositive fibers in-between the first two. The thickness of

immunoreactive fibers also differed in the same pattern. Anti-

calbindin 1 labeled thick and thin fibers, while most of anti-

calbindin 2 immunopositive fibers were thick fibers. Anti-

parvalbumin immunopositive fibers were mostly thick fibers,

though some thin fibers were observed. The localization of the

fibers, as well as the pattern of direction in which the fibers run

through was similar with all the three markers.

We corroborated the neuronal specificity of the three markers

by double-labeling immunohistochemistry using the CBP marker

with the monoclonal antibodies RN1 or anti-b-tubulin, and by

means of serial sections immunostained with markers that

recognize the well-characterized neuropeptides GFSKLYamide

and Galanin. Co-labeling of individual fibers with anti-calbindin 1

and RN1, anti-parvalbumin and RN1, and anti-calbindin 2 and

RN1 was best observed in the circular muscle (CM) (Fig. 2).

Although, most of the fibers were co-labeled, there were still fibers

(especially those that had a smaller diameter) only labeled by RN1,

but not by any of the CBPs markers.

Connective tissue components
The connective tissue component (CTC) of holothurians has

been defined to be sandwiched between two epithelia and has

been well described in the body wall and in the tube feet. This

component is innervated by fibers that originate from the

ectoneural nervous system. The CTC of the body wall can be

divided into inner and outer dermis, according to the distribution

of its fibers. All three markers labeled structures in the body wall

CTC divisions, although more fibers were labeled in the outer

dermis than in the inner dermis (Fig. 3). Both individual fibers and

some small bundles were observed. Immunoreactive fibers in the

inner dermis had a parallel orientation to the muscular fibers of

the CM, while immunoreactive fibers in the outer dermis did not

show a particular orientation (Fig. 3). In the inner dermis, fibers

were oriented parallel to the circular muscle fibers that lie beneath.

Cells immunoreactive to all three markers were also observed in

the two dermal layers of the body wall. These cells were mostly

isolated and had a bipolar or pyramidal morphology. Fibers could

be observed extending from them through the dermis; though no

association with a particular structure or localization could be

identified.

Although the tube feet are extensions of the body wall, their

CTC is somewhat different from the body wall dermis. A larger

number of fibers within the CTC of the tube feet were labeled by

all three markers, compared to the outer dermis. Thicker fibers

were also noted to be present in the CTC of the tube feet

compared to the body wall (Fig. 4). The fibers present within the

CTC of the tube feet were closely packed and presented an

orthogonal orientation that clearly differed from those of the body

wall. Thus, they outlined a cylindrical shape that distinctly

delineated the boundary between the tube feet and the body wall

dermis. Immunoreactive cells to all three markers were observed

in CTC of the tube feet (Fig. 1D–F). Similar to those cells within

the body wall, these had a bipolar or pyramidal morphology, and

fibers from these could in some cases be observed extending to the

podial nerve and the podial cylindrical fenestrated sheath of the

tube feet.

EF-Hand comain containing CBPs
An alternative strategy to study the presence and relationship of

EF-hand domain containing CBPs is to focus on the gene

sequences identified in EST and genomic databanks. Sequences

for EF-hand domain containing CBPs calbindin 1, calbindin 2,

and parvalbumin in Echinodermata, were searched in the NCBI’s

Calbindin-D32k in the Echinoderm Nervous System
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GeneBank database (Echinodermata- TaxID: 7586), SpBase (the

sea urchin Strongylocentrotus purpuratus genome annotation database),

the S. purpuratus genome project [36], and the sea cucumber H.

glaberrima expressed sequences tags EST database from our

laboratory [37]. According to these databases only a putative

calbindin 2 protein was found in the genome of S. purpuratus.

Interestingly, no echinoderm sequences annotated for calbindin 1

or parvalbumin were found. However, we did find a secretagogin,

which belongs to the calbindin subfamily of CBPs. To further

characterize the most likely antigens being recognized by these

Figure 1. Anti-calbindin 1, anti-parvalbumin, and anti-calbindin 2 immunoreactivity in the nervous system of Holothuria glaberrima
(Holothuroidea). Transverse sections through the radial nerve cords showing immunoreactivity to anti-calbindin 1 (A), anti-parvalbumin (B), and
anti-calbindin 2 (C) in the ectoneural and hyponeural components of the radial nerve. Double-labeling of anti-calbindin 1 (D) and RN1 (G), anti-
parvalbumin (E) and RN1 (H), and anti-calbindin 2 (F) and RN1 (I) in cells (arrows) and fibers of the connective tissue plexus of the tube feet. Co-
labeling is observed with the anti-CBPs markers and RN1 in the majority of the fibers, but not in all (arrowheads). ern, ectoneural component of the
radial nerve cord; hrn, hyponeural component of the radial nerve cord; *, ectoneural component cell bodies; **, hyponeural component cell bodies.
doi:10.1371/journal.pone.0032689.g001

Figure 2. Anti-calbindin 1, anti-parvalbumin, and anti-calbindin 2 immunoreactivity in the peripheral nerve and circular muscle of
Holothuria glaberrima (Holothuroidea). Longitudinal sections through the body wall showing colabeling of anti-calbindin 1 (A) and RN1 (D), anti-
parvalbumin (B) and RN1 (E), and anti-calbindin 2 (C) and RN1 (F). Most of the immunoreactivity was observed in the peripheral nerves (arrowheads),
while only a minor supopulations of fibers were co-labeled by the anti-CBP and RN1 (arrows).
doi:10.1371/journal.pone.0032689.g002
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antibodies in the echinoderm nervous system, we performed the

following analyses: (1) an orthologous search for the respective

protein sequence from Rattus norvegicus using the NCBI’s GeneBank

database (Echinodermata; TaxID: 7586) and the S. purpuratus

annotated genome in SpBase and (2) structural comparison of the

EF-hand domains of related proteins. If an orthologue sequence

was obtained, multiple sequences alignments were performed.

Calbindin 1 or calbindin-D28k
A BLAST of rat calbindin 1 (AAH81764.1) against the NCBI

Echinodermata sequences was performed to identify the presence

of orthologous proteins in the echinoderms. Rat calbindin 1

sequence was used since this was the immunogen against which

the anti-calbindin 1 antibody was made. The best hit obtained in

this search was a predicted protein known as ‘‘similar to

ENSANGP00000013966 isoform 2’’ (XP_781517.2), which cor-

responded to the S. purpuratus putative calbindin 2, as annotated by

Kathy Foltz [17], with an E value of 1e250 and a Score of 196

(from now on CalretIso2 or Sp_Calb32). The second best hit was

the isoform 1 of the same predicted protein (XP_001178717.1)

(from now on CalretIso1) with an E value of 4e250 and a Score of

194; while the third best hit was a hypothetical protein

(XP_785060.2), which corresponds to the S. purpuratus secretago-

gin, as annotated by Kathy Foltz [17], (from now on Sp_SCGN),

with an E value of 3e231 and a Score of 131. A comparison

performed between both calbindin 2 isoforms identified in S.

purpuratus sequences revealed two slight differences between them.

First, isoform 1 had nine more amino acids than isoform 2

(residues 204 to 212); and second, they differed in five amino acids

(residues 198 to 203). An alignment between calretIso2 from S.

purpuratus and calbindin 1 from R. norvegicus showed 42% of

identities and 60% of positives. Nonetheless, these two sequences

differed in length and molecular weight. In rats, like in other

vertebrates, calbindin 1 has 261 amino acids with a molecular

weight of 28 kDa. Meanwhile, the sea urchin calretIso2 had 288

amino acids with a predicted molecular weight of 32 kDa.

Structural comparative analysis performed between rat calbindin

1, rat calbindin 2, Drosophila calbindin-D32k and the sea urchin

calbindin-D32k sequences using the ScanProsite program showed

that all proteins had different numbers of EF-hand domains. Rat

calbindin 1 and 2 had only 5 EF-hand domains, of which 4 and 5

of these are capable of binding Ca2+ respectively, while Drosophila

and the S. purpuratus calbindin-D32k had 6, of which 5 and 6 of

these are capable of binding Ca2+ respectively (Fig. 5).

Furthermore, a BLAST of calretIso2 against GeneBank showed

that the most similar sequence was a predicted protein similar to

calbindin-D32k (XP_002735965.1) of the hemichordate Saccoglos-

sus kowalevskii (Agassiz, 1873) (Enteropneusta, Hemichordata). The

second best hit was another predicted protein similar to calbindin-

D32k (XP_975683.1) from the invertebrate Tribolium castaneum

(Herbst, 1797) (Insecta, Arthropoda). A multiple alignment of the

best hits of calbindin 1 sequences (-D28k and -D32k) with 11

species (5 from vertebrates and 4 from invertebrate), suggested that

calretIso2 might correspond to calbindin-D32k in the sea urchin.

A phylogenetic tree from this analysis showed that Sp_Calb32

clustered with the calbindin-D32k. All together, these results

Figure 3. Anti-calbindin 1, anti-parvalbumin, and anti-calbindin 2 immunoreactivity in the body wall nervous system of Holothuria
glaberrima (Holothuroidea). Longitudinal sections through the body wall showing immunoreactivity to anti-calbindin 1 (A,E,I), anti-parvalbumin
(B,F,J), and anti-calbindin 2 (C,G,K) as compared to RN1 (D,H,L) immunoreactivity in the different layers of the body wall. Immunoreactivity of the
internal connective tissue plexus (A–D), external connective tissue (E–H) and epidermis (I–L) showed that the anti-CBP only labeled a minor
subpopulation of fibers and cells within these plexi, as compared to RN1 which labeled a large subpopulations of cells and fibers of the body wall
nervous system.
doi:10.1371/journal.pone.0032689.g003
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Figure 4. Anti-calbindin 1, anti-parvalbumin, and anti-calbindin 2 immunoreactivity in the podial nervous system of Holothuria
glaberrima (Holothuroidea). Longitudinal and transverse sections through the tube feet showing immunoreactivity to anti-calbindin 1 (A,D,G,M),
anti-parvalbumin (B,E,I,N), and anti-calbindin 2 (C,F,K,O) in the different subdivisions of the podial nervous system. (A–F) Immunoreactivity was
observed with all markers in the podial nerve (arrows) and in the podial cylindrical fenestrated sheath (arrowheads). (G–L) Co-labeling of anti-
calbindin 1 (G) and RN1 (H), anti-parvalbumin (I) and RN1 (J), and anti-calbindin 2 (K) and RN1 (L) was observed in fibers and cells (arrows) of the
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suggested that the calbindin 2-like protein annotated in the

genome of S. purpuratus is the echinoderm orthologue of calbindin-

D32k.

Calbindin 2 or calretinin
The BLAST search for calbindin 2 using R. norvegicus protein

sequence (NP_446440.1), against the NCBI GeneBank database

(Echinodermata- TaxID: 7586) showed that the most similar hits

were the same as for calbindin 1, though with lower E values and

higher scores: calretIso2 had an E value of 1e257 and a Score of

218, calretIso1 had an E value of 1e256 and a Score of 214, and

the Sp_SCGN had an E value of 1e236 and a Score of 147.

Structural comparative analysis performed between rat calbindin 2

and the sea urchin calretIso2 sequences using the ScanProsite

program showed that both proteins are mainly composed of EF-

hand domains, but rat calbindin 2 had only 5 domains, all of

which were capable of binding Ca2+, while the sea urchin

calretIso2 had 6 all of which were capable of binding Ca2+ (Fig. 5).

A multiple alignment of calbindin 2 sequences, calbindin-D32k,

and the calretIso2 also suggested that the latter might correspond

to calbindin-D32k in the sea urchin. A phylogenetic tree from this

analysis showed that calretIso2 was clustered with calbindin-D32k.

These results also support our contention that the calbindin 2-like

protein annotated in the genome of S. purpuratus is the echinoderm

orthologue of calbindin-D32k.

Calbindin-D32k
The invertebrate sequence most similar to the calretIso2 protein

was that of calbindin-D32k from S. kowalevskii. A Blast of calretIso2

showed that the E value and score for this protein were 2e284 and

261. Sequence alignment between these two proteins showed that

they are 52% identical and 71% similar when conserved residues

were included. As expected, the calbindin-D32k had a similar

number of amino acids, when compared to calretIso2, 293 versus

282 amino acids, respectively. Structural analysis using the

ScanProsite program showed that this protein had 6 EF-hand

domains, all of which were capable of binding Ca2+ (Fig. 5). A

multiple alignment of calbindin-D32k sequence in invertebrates,

rat calbindin 2, and the S. purpuratus calbindin-D32k supported

previous results showing a high similarity between calbindin 2 and

the invertebrate calbindin-D32k, (Fig. 6a). In a phylogenetic tree

done from a multiple alignment of representatives of the calbindin

family (calbindin 1, calbindin 2, calbindin-D32k, and secretago-

gin), two major groups were formed (Fig. 6b). The first included

calbindin 1, calbindin 2, and calbindin-D32k, and the second was

composed of secretagogin. Within the first cluster, two major

groups were derived, one containing calbindin-D32k and a second

containing calbindin 1 and 2. The sea urchin calretIso2 was

grouped with the calbindin-D32k as was expected from our

previous analyses. Hence, from now on we will refer to calretIso2

as S. purpuratus’ calbindin-D32k.

Parvalbumin
The BLAST search for parvalbumin (using R. norvegicus protein

sequence- NP_071944.1- against the NCBI GeneBank database -

Echinodermata: taxid: 7586) showed a predicted protein similar to

calmodulin (XP_001190813.1) from the sea urchin S. purpuratus to

be the most similar match. Although the e-value seems to be

relatively low (3e207 and a score of 49.7), both sequences shared

33% of identities and 55% of positive residues. The structural

analyses using ScanProsite between rat parvalbumin and the sea

urchin predicted protein-similar to calmodulin showed that the

first had two EF-hand domains, while the latter had four EF-hand

domains. Interestingly, this predicted protein from sea urchin had

283 amino acids, while the rat parvalbumin had 110 amino acids.

In the S. purpuratus genome database (Sea Urchin Genome

Sequence Consortium 2006), three calmodulin sequences have

been reported (GLEAN3_05032, GLEAN3_05033 and

GLEAN3_16371). Moreover, among the higher hits from R.

norvegicus Parvalbumin BLAST was calmodulin (AAY41437) from

the Japanese sea cucumber Apostichopus japonicus (149 amino acids).

Sequence alignment between these two proteins showed that they

are 29% identical and 51% similar when positive residues were

included. In summary, no sequence orthologous to the vertebrate

parvalbumin was found in the echinoderms.

connective tissue plexus. (M–O) Anti-calbindin 1 (M), anti-parvalbumin (N), and anti-calbindin 2 (O) immunoreactivity was also present in the nerve
plate of the tube feet’s disk. Al, ambulacral lumen; ctp, connective tissue plexus; icc, inner cluster of cells; me, mesothelium; np, nerve plate; occ, outer
cluster of cells.
doi:10.1371/journal.pone.0032689.g004

Figure 5. Schematic domain structure of members of the calbindin subfamily in rat (R. norvegicus), fly (D. melanogaster), and sea
urchin (S. purpuratus). Domains 1, 3, 4, and 5 are present in all the proteins. The second domain doesn’t bind calcium in the calbindin 1 protein,
while it does in calbindin 2, and in Drosophila and S. purpuratus’ calbindin-D32k. Domain 6 is present in Drosophila calbindin-D32k and S. purpuratus
calbindin-D32k, but it is only able to bind calcium in the latter. Pairwise similarities of domains between proteins were calculated by aligning the
domains as predicted by ScanProsite.
doi:10.1371/journal.pone.0032689.g005
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Figure 6. Alignment of the peptide sequences and phylogenetic trees of members of the calbindin subfamily from different
species. (A) Sequence alignment of rat calbindin 2 (NP_446440.1), Drosophila calbindin-D32k (NP_476838.1), S. kowalevskii calbindin-D32k
(XP_002735965.1), and S. purpuratus calbindin-D32k proteins (XP_781517.2). Alignment of the proteins was made using the CLUSTALW multiple
sequences alignment. Dots represent conserved residues and black lines below the residues represents the presence of an EF hand domain. (B)
Phylogenetic tree of members of the calbindin subfamily from different species. Calb32_Dm Drosophila melanogaster (NP_476838.1), Calb32_Sk S.
kowalevskii (XP_002735965.1), Calb32_Sp S. purpuratus (XP_781517.2), Calb32_Sm S. mansoni (XP_002574332.1), Calb2_Gg G. gallus (NP_990647.1),
Calb2_Dr D. rerio (NP_957005.1), Calb2_Rn R. norvegicus (NP_446440.1), Calb2_Hs H. sapiens (NP_001731.2), Calb1_Xl X. laevis (NP_00108408.1),
Calb1_Gg G. gallus (NP_990844.1), Calb1_Mm M. musculus (AAH16421.1), Calb1_Rn R. norvegicus (AAH81764.1), Calb1_Hs H. sapiens (NP_004920.1),
SCGN_Sk S. kowalevskii (NP_001161653.1), SCGN_Sp S. purpuratus (XP_785060.2), SCGN_Dr D. rerio (NP_001005776.1), SCGN_Xl X. laevis
(NP_001088097.1), SCGN_Rn R. norvegicus (NP_963855.1), SCGN_Mm M. musculus (NP_663374.1). The phylogenetic tree was constructed from an
alignment created by using the unweighted pair group method with arithmetic mean. The scale bar represents 100 times the expected number of
amino acid substitution.
doi:10.1371/journal.pone.0032689.g006
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Western blots
Immunoblots of nerve cord homogenates, from the sea

cucumber H. glaberrima and the sea urchin L. variegatus, revealed

a single immunoreactive band of approximately 32-kDa to the

polyclonal anti-calbindin 1. Positive controls of mouse kidney

homogenates showed a major immunoreactive band of 28-kDa

(Fig. 7a). Interestingly, the immunoreactive band in a western blot

of nerve cord homogenates performed with the polyclonal anti-

parvalbumin, was similar to the one observed in the anti-calbindin

1 western blot; while in positive controls, using mouse skeletal

muscle homogenates, a main band of approximately 12-kDa was

observed (Fig. 7b). No immunoreactive band in nerve cord

homogenates was observed in western blots done with the

polyclonal anti-calbindin 2. Nonetheless, this antibody did not

react either with homogenates of mouse kidney (the tissue from

which the antigen was obtained) indicating that the antibody does

not work in western blot. No bands were observed in the negative

control (EFHD2 synthetic protein) demonstrating the specificity of

the antigens recognized by these antibodies.

The previous results prompted us to search for the H. glaberrima

ortholog of the predicted calbindin-D32k identified in echinoderms

(XM_001177659.1). Using primers designed against a well-

conserved region between S. purpuratus calbindin-D32k (XM_0011

77659.1), Drosophila melanogaster calbindin-D32k (NM_057490.3)

and Rattus norvegicus calbindin 2 (NM_053988.1), we amplified a

fragment of the H. glaberrima ortholog. The amplicon was a 376 bp

region of the H. glaberrima calbindin-D32k homolog, (Hg_Calb32)

containing 3 out of the 6 EF-hand domains identified in S. purpuratus

calbindin-D32k (Fig. 8a). A homology search for the peptide

sequence, resulted in the top hits being calbindin-D32k sequences in

invertebrates, followed by calbindin 1 and calbindin 2 sequences in

vertebrates. The top two hits were the two isoforms of calbindin-

D32k of S. purpuratus with e values of 2e-68 (isoform 1) and 9e-64

(isoform 2), confirming that we had successfully identified a

fragment of H. glaberrima’s calbindin-D32k. Even though the cloned

fragment was almost identical to isoform 1 of S. purpuratus, it still

holds some interesting differences. The main difference between

isoform 1 and isoform 2 from the sea urchin is a 15 amino acid long

sequence from 195 to 210, which is the region we selected for the

reverse degenerate primer. As can be seen from the alignment of the

isoforms with Hg_Calb32, our fragment corresponded to the

equivalent of isoform 1 as it has the beginning of the 15aa region.

Interestingly, this is a very variable region amongst the different

calbindin sequences, and only isoform 1 seems to have this 15 amino

acid motif. There are 6 variable residues between sea cucumber and

sea urchin sequence. Of these, the addition of an amino acid in

Hg_Calb32 at position 93 or 94 absent in the sea urchin sequences

stands out, as it is not present in any of the other sequences.

Hg_Calb32 was cloned and expressed in an heterologous

system. As our construct contained a GST tag, we employed

Affinity Chromatography for the purification of the Hg_Calb32,

which was then analyzed through SDS-PAGE. Coomassie staining

showed enrichment of a ,36 kDa band, which is near the

expected weight of our fragment tagged with GST. A western blot

of the expressed peptide tagged with GST was immunopositive to

both anti-calbindin 1 and anti-parvalbumin, in the expected band

size of 36 kDa (Fig. 8b), as well as when proved with an anti-GST

antibody. No immunoreactive band was observed in the negative

control, which consisted of GST tagged TCTP when incubated

with anti-calbindin 1 or anti-parvalbumin (Fig. 8b), which was

immunopositive when proved with the anti-GST antibody.

Discussion

In this study we report the distribution of an EF-hand domain

containing CBP of the calbindin subfamily in the nervous system

of the echinoderms. This is the first report that describes the

distribution of these proteins, which have been well-studied in the

vertebrate nervous system, in the echinoderm nervous system.

Accordingly, calbindin-D32k is specifically localized within the

nervous system of the echinoderm H. glaberrima, extending the

usefulness of this neural marker to invertebrates, in particular to

the Echinodermata.

Anti-calbindin 1, anti-parvalbumin, and anti-calbindin 2
immunoreactivity is restricted to the nervous system

The immunoreactivity of these CBP markers is specific to

echinoderm neural components. The evidence for this is the

following: First, in other organisms in which these have been

studied (mostly mammals), these markers specifically label neural

structures [9,10,16]. Second, in the holothurian studied here,

immunoreactivity to these markers is observed in cells and fibers of

the radial nerve cords, podial nerves and peripheral nerves, which

are the classically described neural structures in the echinoderms

[27,29,30,38–40]. Finally, double-labeling experiments with

known neural markers (RN1 and anti-b-tubulin), and serial

sections done with markers made against the neuropeptides

GFSKLYamide and Galanin show co-labeling of the same fibers

and cells by the CBP markers and the neural markers. Similarly,

the localization of some of the fibers and cells labeled by anti-

GFSKLYamide and anti-Galanin is similar to that of the three

CBP markers in serial sections.

Figure 7. Western blot of holothurian and echinoid radial
nerve cords preparations using anti-calbindin 1 and anti-
parvalbumin. (A) A 32 kDa immunoreactive band to anti-calbindin 1
was observed in H. glaberrima and L. variegatus radial nerve cords
homogenates. A 28 kDa immunoreactive band corresponding to
calbindin 1 was observed in the rat kidney positive control and no
immunoreactive bands were observed in the synthetic peptide of an
EF-hand domain-containing protein negative control. (B) A 32 kDa
immunoreactive band to anti-calbindin 1 was observed in H. glaberrima
and L. variegatus radial nerve cords homogenates. A 12 kDa major
immunoreactive band corresponding to calbindin 1 was observed in
the rat skeletal muscle positive control and no immunoreactive bands
were observed in the synthetic peptide of an EF-hand domain-
containing protein negative control.
doi:10.1371/journal.pone.0032689.g007
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Anti-CBP immunoreactivity identified distinctive plexi
within the connective tissue

One of the most interesting findings of our study is the

immunoreactivity of the CBP markers in the connective tissue

plexi of the body wall and tube feet. The only other marker that

has been used to identify these plexi is RN1 [27,29]. The fact that

the CBP markers recognize these plexi is very interesting from a

functional point of view. Trotter and Koob [41] demonstrated that

calcium-dependent processes are involved in the stiffening of the

body wall in the sea cucumber Cucumaria frondosa (Gunnerus, 1770)

(Holothuroidea, Dendrochirotida). The importance of calcium in

the connective tissue catch phenomenon has also been demon-

strated due to its association with the electron-dense granules in

the juxtaligamental cells [42] and its role in the hardening and

softening of the intervertebral ligament of ophiruoids [43].

Therefore, the echinoderms EF-hand containing CBPs are

excellent candidates to act as calcium buffers and might play

some important role in the control of the mutable connective

tissue, which still needs to be defined and further investigated.

Anti-calbindin 1 and anti-parvalbumin recognize the
same antigen, echinoderms’ calbindin-D32k

Bioinformatics analysis of members of the calbindin subfamily

in the genome of the sea urchin S. purpuratus were performed to

further single out which subfamily member is/are our markers

recognizing. We focused on the presence of EF-hand domain-

containing CBPs of the calbindin and parvalbumin subfamily, as

these molecules are the ones recognized by these markers in

vertebrates. Using this approach, we identified two proteins that

are part of the calbindin subfamily of CBP, a putative calbindin 2

and secretagogin, but no proteins of the parvalbumin subfamily.

Both of these proteins are predicted gene models that were

formulated from the whole genome-sequencing project [17]. Thus

we had two possibilities as to which antigen is/are the CBP marker

recognizing in echinoderms.

Although the labeling of antigens by antibodies provides some

information on the molecular structure of the antigen, in no way

this provides definite proof of the antigen identity. Thus,

additional studies were performed to better define the type(s) of

CBP(s) of the calbindin subfamily being recognized by the

antibodies in echinoderms. Western blot analyses to the three

markers showed 32 kDa immunoreactive bands for anti-calbindin

1 and anti-parvalbumin. This observation, together with the

similar labeling pattern observed in immunohistochemistry, raised

the question as to whether these antibodies are recognizing the

same antigen in H. glaberrima. This was certainly a possibility,

especially considering that the location of fibers and cells labeled

by immunohistochemistry is very similar for both. The location of

the immunoreactivity within the immunopositive structures is the

same, but the number of fibers and cells is not. This difference can

be explained by a difference in the affinity of the antibodies for the

Figure 8. Identification of calbindin-D32k as the anti-calbindin 1 and anti-parvalbumin epitope in echinoderms. (A) Sequence
alignment of H. glaberrima calbindin-D32k fragment (Calb32_Hg) and S. purpuratus calbindin-D32k isoform 1 (Calb32(1)_Sp) and isoform 2
(Calb32(2)_Sp), showing a high degree of homology. Alignment of the proteins was made using the CLUSTALW multiple sequences alignment. Dark
gray represent conserved residues, light gray represent conservation of strong groups, and black lines below the residues represents the presence of
an EF hand domain. (B) A 36 kDa immunoreactive band to anti-calbindin 1 and anti-parvalbumin was observed in the H. glaberrima GST-tagged
calbindin-D32k fragment peptide (Calb32_Hg), and no immunoreactive band to anti-calbindin 1 and anti-parvalbumin was observed in the negative
control, GST-tagged translationally controlled tumor protein (TCTP).
doi:10.1371/journal.pone.0032689.g008
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antigen. Anti-calbindin 1 immunoreactivity was more intense than

that of anti-parvalbumin or anti-calbindin 2, which is most likely

the result of a higher affinity of the anti-calbindin 1 antibody for

the antigen being recognized. Thus when taking these observa-

tions into account, in addition to the fact that no parvalbumin

orthologue was identified in the S. purpuratus genome, the most

plausible explanation for the parvalbumin immunoreactivity in the

echinoderms is that this antibody is recognizing a conserved

sequence of the EF-hand domain containing CBP in one of the

calbindin subfamily members. We tested this hypothesis, and

showed that both markers are recognizing a very similar, if not the

same, antigen in radial nerve western blot. Furthermore, the H.

glaberrima calbindin-D32k fragment western blots showed that the

antigen in question is the orthologue of calbindin 2 in

echinoderms, calbindin-D32k. These last sets of experiments show

that indeed calbindin-D32k is present in the echinoderms and that

it is the antigen being recognized by the anti-calbindin 1 and anti-

parvalbumin markers used in our study. This last observation

possibly holds true for the anti-calbindin 2 marker as well, though

we only able to gather indirect evidence supporting this.

Calbindin-D32k is present in Echinodermata
We have provided evidence of the presence of calbindin-D32k

within the echinoderms, and this is the first report that establishes

its presence in Echinodermata. Calbindin-D32k was also previ-

ously identified in Drosophila [13], although due to the lack of the

full genome of the organism at the time, no evolutionary relation

could be made with the members of the calbindin subfamily of EF-

hand domain containing CBPs. The calbindin-D32k identified in

Drosophila was named for its apparent molecular weight of 32 kDa

in SDS-PAGE. Interestingly, calbindin-D32k and secretagogin are

the only members of the calbindin subfamily present in

invertebrates. Thus, our results also support the evolutionary

conservation of the calbindin subfamily, which seems to have

evolved from two primitive EF-hand domain-containing CBP.

One of them gave rise to calbindin-D32k in invertebrates and to

calbindin 1 and calbindin 2 in vertebrates, while the other gave

rise to secretagogin in both, vertebrates and invertebrates. This

hypothesis is also supported by findings from genomic sequencing

of model organisms such as D. melanogaster, S. purpuratus or S.

kowalevskii, in which only one ortholog of calbindin-D32k and one

of secretagogin have been identified [17]; as well as previous works

suggesting that calbindin 1 arose during the radiation of

vertebrates and is a vertebrate-specific gene [13,16,19]. Nonethe-

less, there is still a need for a major pool of sequences from a wider

variety of organisms to reach a better-informed conclusion, of

when specifically did calbindin 1 arose. Thus we propose that the

vertebrate calbindin 1 and calbindin 2 are co-orthologous of the

calbindin-D32k of Drosophila and the calbindin-D32k of S.

purpuratus and H. glaberrima.

In conclusion, our study contributes to a better understanding of

the evolution of the calbindin subgroup of CBPs through the

species and their role in the nervous system. We have identified a

calbindin 2 ortholog in two echinoderms classes, Holothuroidea

and Echinoidea, which is associated with the nervous system, more

specifically with the connective tissue plexi. This protein

corresponds to the calbindin-D32k previously identified in

Drosophila, which is the ortholog of calbindin 2. Additionally,

given the similarities found in sequence and structure, we show

that the calbindin 1, parvalbumin, and calbindin 2 commercial

antibodies are labeling the invertebrate ortholog of calbindin 2,

calbindin-D32k in the echinoderm nervous system.
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