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Abstract

Background: The tumor microenvironment contains normal, non-neoplastic cells that may contribute to tumor growth and
maintenance. Within PDGF-driven murine gliomas, tumor-associated astrocytes (TAAs) are a large component of the tumor
microenvironment. The function of non-neoplastic astrocytes in the glioma microenvironment has not been fully
elucidated; moreover, the differences between these astrocytes and normal astrocytes are unknown. We therefore sought
to identify genes and pathways that are increased in TAAs relative to normal astrocytes and also to determine whether
expression of these genes correlates with glioma behavior.

Methodology/Principal Findings: We compared the gene expression profiles of TAAs to normal astrocytes and found the
Antigen Presentation Pathway to be significantly increased in TAAs. We then identified a gene signature for glioblastoma
(GBM) TAAs and validated the expression of some of those genes within the tumor. We also show that TAAs are derived
from the non-tumor, stromal environment, in contrast to the Olig2+ tumor cells that constitute the neoplastic elements in
our model. Finally, we validate this GBM TAA signature in patients and show that a TAA-derived gene signature predicts
survival specifically in the human proneural subtype of glioma.

Conclusions/Significance: Our data identifies unique gene expression patterns between populations of TAAs and suggests
potential roles for stromal astrocytes within the glioma microenvironment. We show that certain stromal astrocytes in the
tumor microenvironment express a GBM-specific gene signature and that the majority of these stromal astrocyte genes can
predict survival in the human disease.
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Introduction

Gliomas are the most common primary malignant brain tumor

in adults [1]. Current treatment options for glioma include surgical

resection, radiation therapy and chemotherapy. Unfortunately,

even with these aggressive treatments, patient response is poor and

average survival of patients with aggressive forms of glioma is less

than 2 years [2]. One possible reason for poor patient response to

treatment may be that standard glioma therapy regimen do not

account for the effects of stromal cells within the tumor

microenvironment [3]. There is a lack of stroma-directed therapy

due to the paucity of data clarifying the role of local non-

transformed cells in glioma maintenance and progression. As the

role of the tumor microenvironment becomes increasingly relevant

it is important to identify stromal cells and factors that may

contribute to tumor growth.

Recent advances in characterizing gene expression profiles from

patient samples have divided gliomas into four main subgroups

(Classical, Mesenchymal, Neural and Proneural) each highlighted

by the activation or loss of specific signaling pathways [4–6].

Notable genetic alterations in high-grade gliomas include loss of

NF1, increased EGFR signaling and increased PDGF signaling

[5]. The Proneural subgroup of gliomas, which is characterized by

increased PDGF signaling [5,7], can be effectively modeled using

the RCAS/tv-a system of retroviral gene transfer of PDGF into

Nestin-expressing cells in neonatal mouse brains [8,9]. This

genetically engineered tumor model recapitulates the biology of

human gliomas in an immunocompetent host, allowing for the

study of transformed cells as well as stromal cells in the tumor

microenvironment. In this PDGF-induced model of glioma,

tumors of varying grades arise and can be characterized in a

histologically accurate manner. Low-grade gliomas exhibit prolif-

eration of tumor cells surrounded by a relatively quiescent stromal

architecture (WHO grade II), whereas high-grade tumors are

histologically similar to WHO grade III and IV and feature

proliferating cells in addition to marked microvascular prolifera-

tion (Grades III and IV) and pseudopalisading necrosis (Grade

IV). In the PDGF-driven model of glioma, the tumor bulk is
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comprised of oligodendrocyte-type cells. However the tumor

microenvironment contains many cell types that may contribute to

tumor growth and maintenance. Among these cells, astrocytes are

relatively abundant in the tumor microenvironment and may

contribute to tumor growth. While the histology of TAAs has been

described [10], the biological role of these astrocytes is largely

unexplored.

Astrocytes are often identified by their expression of Glial

Fibrillary Acidic Protein (GFAP), which increases in response to

injury. Astrocytes were originally thought to play a passive role in

the brain, but they are now known to play critical roles in

supporting the integrity of the blood brain barrier [11] and the

transmission of neural impulses [12]. In addition, astrocytes

contribute to the brain’s response to injury. When injury occurs,

astrocytes become reactive, change their morphology, proliferate

and migrate to the area of injury. Depending on the context of

injury, they may promote and/or inhibit neurogenesis [13,14].

Recently, our group found that reactive astrocytes can induce

proliferation of Olig2-expressing cells after injury [15]. This

finding raises the intriguing possibility that astrocytes may be

associated with expanding oligodendrocyte cell populations in

other central nervous system disease states, including neoplasms.

In addition to reactive astrocytes, adult neural stem cells (aNSC)

also express GFAP [16]. These cells share ultrastructural and

protein expression characteristics with mature astrocytes [17] and

reside in two neurogenic niches within the adult brain: the sub-

ventricular zone of the lateral ventricles and the sub-granular zone

in the dentate gyrus of the hippocampus [18]. Within these

regions, the neural stem cells reside adjacent to blood vessels

[19,20] and these adult astrocyte-like stem cells proliferate slowly

and are thought to divide asymmetrically [21] to give rise to

progenitor cells that proliferate rapidly and symmetrically to

produce terminal cell types such as neurons [22–24] and glia

[23,25].

Recent studies have highlighted the plasticity of astrocytes with

regard to their functions in injury and as stem cells. In addition to

shared markers and ultrastructural characteristics between reactive

astrocytes and aNSC, recent work has demonstrated that reactive

astrocytes derived from an injury setting possess characteristics

specific to aNSC, including the expression of aNSC markers as

well as the ability to proliferate and generate neurospheres

[11,14,26,27]. These studies suggest a novel role for astrocytes in

the context of injury and demonstrate the plasticity of reactive

astrocytes.

The role of astrocytes can vary significantly among gliomas. In

PDGF-driven gliomas where the majority of transformed cells

closely resemble oligodendrocytes, astrocytes appear to play a

supportive role in the perivascular stem cell niche and the peri-

tumoral (invasive) edge of these tumors. In contrast, the bulk of the

tumor cells in astrocytomas are astrocytic in morphology. The

biology of transformed astrocytes derived from astrocytomas,

including the genetic alterations and gene expression patterns in

these cells, has been studied in depth. However, little is known

about the TAAs found in PDGF-driven oligodendrogliomas.

Considering the growth-promoting and stem cell properties of

astrocytic cells in normal physiologic states and brain injuries and

the possibility that these properties can be co-opted by the tumor

to promote proliferation and progression, we were compelled to

study the gene-expression properties of TAAs in PDGF-driven

gliomas with the goal of identifying stromal factors that contribute

to tumorigenesis.

To study TAAs, we used a GFAP-GFP transgenic mouse that

expresses GFP under the control of the human GFAP promoter,

which allows for isolation of astrocytes using fluorescence activated

cell sorting (FACS) from normal and tumor brains. When

compared to normal astrocytes, samples enriched for TAAs show

markedly increased expression of members of the antigen

presentation pathway. Additionally, we identified genes specific

to TAAs in GBM and validate their expression. We also

demonstrate that TAAs are derived from the stromal microenvi-

ronment and that many of the gene expression changes seen in

TAAs are specifically present in stroma and not in tumor cells.

Further, we demonstrate that many of these differentially

expressed genes predict survival in the human proneural subtype

of glioma. These data suggest a role for stromal astrocyte-

expressed genes in tumor progression and identifies potential

therapeutic targets in the treatment of proneural gliomas.

Results

Tumor-associated Astrocytes are a Component of the
Glioma Microenvironment

To generate tumors that mimic the proneural subtype of

glioma, we injected the RCAS-PDGF avian retrovirus into Ink4a/

Arf heterozygous mice that express the RCAS receptor tv-a under

the control of the Nestin promoter. Using this model, Ink4a/Arf

heterozygous mice injected with RCAS-PDGF develop tumors of

varying grades within four to eight weeks. Upon manifestation of

brain tumor symptoms such as weight loss and poor grooming,

mice were sacrificed and their brains were fixed and embedded in

paraffin for histologic analysis and grading. Using RCAS-PDGF in

the Ink4a/Arf heterozygous background allows for the generation

of tumors of varying grades within the same litter (Figure S1A).

As described above, the tumor bulk in the PDGF-driven model

of glioma expresses Olig2, while the GFAP-expressing cells are

part of the tumor stroma. These stromal astrocytes are

geographically and morphologically different from normal astro-

cytes (Figure 1A). In low-grade gliomas, the astrocytes are present

throughout the tumor in a diffuse pattern (Figure 1B). These

astrocytes are morphologically similar to reactive astrocytes, with

swollen cell bodies and processes extending in multiple directions

(Figure 1B). In the PDGF-induced GBMs, astrocytes are present in

the tumor in two distinct areas: the peri-tumoral region, located at

the tumor periphery, and the perivascular niche which is

hypothesized to harbor the stem cell niche in glioblastoma [28]

(Figure 1C). The peri-tumoral astrocytes have swollen cell bodies

and processes that extend out in multiple directions (Figure 1B9,

1C9). This population of astrocytes surrounds the tumor in a

manner similar to the way in which reactive astrocytes surround

an area of injury [11] and this population of astrocytes is present in

tumors of all grades (Figure 1B,1C). The perivascular astrocytes,

however, are only present at a significant level in high-grade

glioma, where significant microvascular proliferation is present

[29]. We also noted that these astrocytes have a more bipolar

morphology [24] (Figure 1C0) and are localized to areas

surrounding the tumor blood vessels (Figure 1C, Figure S1B)

[19,20]. The perivascular astrocytes also express the stem cell

marker Nestin [10].

The mRNA Profile of Tumor-associated Astrocytes Differs
from Normal Astrocytes

In order to determine the differences between normal astrocytes

and TAAs and to identify genes and pathways increased in TAAs

we generated PDGF-driven gliomas in GFAP-GFP transgenic

mice, which express GFP under the control of the human GFAP

promoter [30], and used FACS to specifically collect samples

enriched for TAAs from microdissected low-grade gliomas and

GBM. We used FACS and histology to confirm that the GFP-

Tumor-Associated Astrocytes in PDGF-Driven Glioma
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positive cells represented TAAs and not immune or endothelial

cells (Figure S2A–D). Normal astrocytes were collected from 6

week-old mice that were not injected with the RCAS virus.

Collected astrocytes were resuspended in trizol, their RNA was

extracted and cDNA was run on illumina-6 arrays and Partek

software was used to analyze samples. Unbiased hierarchical

clustering analysis of all genes significantly represented on the

array showed that TAAs exhibit similar expression patterns

regardless of tumor grade, indicating a shared phenotype, and

that TAAs differ markedly from normal astrocytes (Figure 1D).

MHC Class II Pathway Is Active In Tumor-associated
Astrocytes

In order to identify genes and pathways significantly changed in

TAAs, we generated a list of genes that were increased or

decreased by four-fold in both low-grade glioma and GBM TAAs

relative to normal astrocytes. We specifically characterized low-

grade tumors as WHO grade II tumors (lacking vascular

proliferation) and GBM as tumors exhibiting both hypervascular-

ity and pseudo-pallisading necrosis (WHO grade IV). We then

used ingenuity pathway analysis (IPA) to query pathways

associated with the resulting genes and identified the antigen

presentation pathway as the most significantly represented

pathway increased in TAAs relative to normal astrocytes

(Table 1). While previously published data has shown astrocytes

to have antigen-presenting capabilities in vitro as well as in in vivo

injury models [31–35], this function of stromal astrocytes has not

Figure 1. Tumor-associated Astrocytes within PDGF-driven Glioma. (A–C) GFAP immunohistochemistry of astrocytes in the normal brain (A,
A9), WHO II low-grade glioma (B, B9) and glioblastoma (GBM; C, C9, C0) at 16 (A, B, C) and 406 (A9, B9, C9, C0). Note that tumor-associated astrocytes
(TAAs) are morphologically different than normal astrocytes. Moreover, in low grade glioma, TAAs are present within and surrounding the tumor and
all of these astrocytes have a ‘reactive’ morphology identified by swollen cell bodies as well as multipolar and hyperextended processes (B9). Within
GBM (C), astrocytes are present in two areas: the peri-tumoral area, where the astrocytes have a ‘reactive’ morphology (C9) similar to low grade
astrocytes and the perivascular niche, where the astrocytes still have swollen cell bodies but have a more uni-polar or bi-polar morphology (C0). Scale
bars: A, B, C = 300 mm, A9, B9, C9, C0 = 15 mm. D) Unbiased hierarchical clustering of astrocytes from normal brain, low-grade glioma and GBM indicates
that, when factoring in the mRNA expression levels of approximately 15,000 genes significantly expressed on the array, TAAs are very different from
normal astrocytes, however most genes are similarly regulated between low grade-associated and GBM-associated astrocytes and thus, low grade-
associated and GBM-associated astrocytes do not segregate.
doi:10.1371/journal.pone.0032453.g001

Table 1. Antigen Presentation Pathway is Active in Tumor-
associated Astrocytes.

Ingenuity Canonical Pathways -log(p-value) Ratio

Antigen Presentation Pathway 1.08E+01 2.56E-01

Dendritic Cell Maturation 7.81E+00 8.05E-02

Type I Diabetes Mellitus Signaling 6.05E+00 8.70E-02

Crosstalk between Dendritic Cells and
Natural Killer Cells

5.55E+00 9.18E-02

Virus Entry via Endocytic Pathways 4.65E+00 8.33E-02

Caveolar-mediated Endocytosis Signaling 4.30E+00 8.43E-02

B Cell Development 4.00E+00 1.32E-01

CXCR4 Signaling 3.70E+00 5.39E-02

Allograft Rejection Signaling 3.69E+00 1.11E-01

Graft-versus-Host Disease Signaling 3.69E+00 1.11E-01

� 2000–2010 Ingenuity Systems, Inc. All rights reserved.
Ingenuity Pathway Analysis of genes significantly increased more than four-fold
in low-grade glioma- and glioblastoma-associated astrocytes indicates the
pathways that are significantly increased in TAAs relative to normal astrocytes.
The top ten canonical pathways represented on the array are shown in the
table. The Antigen Presentation Pathway is most represented within this gene
set.
doi:10.1371/journal.pone.0032453.t001

Tumor-Associated Astrocytes in PDGF-Driven Glioma

PLoS ONE | www.plosone.org 3 February 2012 | Volume 7 | Issue 2 | e32453



been identified in a glioma mouse model. We used immuno-

flourescent staining to confirm MHC class II expression on TAAs

in low-grade gliomas and GBM (Figure S3A) and stained with Iba-

1, an immune cell marker, to demonstrate that these MHC class

II-expressing astrocytes were not microglia or macrophages. We

also used FACS analysis to demonstrate an increase in MHCII

expression on TAAs when compared to normal astrocytes (Figure

S3B,C). In addition to MHC class II, our array analysis identified

other components of antigen presentation pathway as being

increased in TAAs (Table S1).

Comparative Expression Identifies a Stromal Gene
Signature for GBM Tumor-associated Astrocytes

In order to identify stromal genes important for tumorigenesis,

we next looked specifically for genes expressed at much higher

levels in GBM TAAs when compared to TAAs from low-grade

gliomas. Having established that the astrocytes from low-grade

glioma and GBM were relatively similar, we hypothesized that

there may be a subset of genes differentially expressed between the

two populations and that these genes may play a role in tumor

progression. In order to identify genes specific to GBM TAAs we

plotted gene expression data in TAAs from low-grade gliomas and

compared it to that of TAAs from GBMs (Figure 2A). Since the

perivascular niche is only present in GBM [29], high-grade

gliomas would be expected to have a more robust representation

of perivascular astrocytes and thus some differentially expressed

genes in GBM TAAs may represent genes specific to the

perivascular astrocytes. Our data show that the mRNA expression

profiles in TAAs are relatively similar regardless of grade

(Figure 1D, Figure 2A), however, a small subset of GBM-specific,

astrocyte-associated genes emerged from this analysis (Figure 2A,

Table 2). In fact, using this gene signature in hierarchical

clustering analysis enabled us to differentiate GBM gene

expression from low-grade glioma (Figure 2B). We screened a

number of antibodies to these GBM-specific genes using

immunofluorescence and chose two (Tenascin C and CD44) for

further analysis. CD44 and Tenascin C show clear expression in

astrocytes (Figure 2C,D). Moreover, their expression is virtually

restricted to perivascular astrocytes. We also noted that CD44, a

known stem cell marker [36,37], is only expressed in specific

astrocytes within the perivascular niche (Figure S4A) as well as in

GFAP-expressing neurospheres (Figure S4B). However, CD44

does not stain astrocytes that reside further from the ventricle

(Figure S4A) or cultured, differentiated astrocytes (Figure S4B,C).

Tumor-associated Astrocytes Are Frequently Derived
From the Stromal Environment

Because astrocytes are an abundant component of the tumor

microenvironment, we asked whether TAAs were derived from

the RCAS-transduced tumor cell of origin or from the stromal

microenvironment. To achieve this goal, we utilized fluorescently

labeled RCAS-PDGF vectors combined with immunofluorescence

and FACS analysis. We generated gliomas using RCAS-PDGF-

GFP [10,38]. We then used GFP immunofluorescence to identify

tumor progeny cells and stained the same tissue for GFAP to

identify astrocytes and look for co-localization. In these PDGF-

driven gliomas, PDGF-GFP infected tumor cells and GFAP-

expressing astrocytes were expressed in mutually exclusive areas

(Figure 3A), confirming that the astrocytes in our tumors are

stromal. We validated this data using a model of human orthotopic

glioma injected into GFAP-GFP host mice. In this orthotopic

model, TAAs derived from tumor cells would not express the

GFAP-GFP transgene; conversely, TAAs derived from non-tumor

cells should express GFP. When we injected non-fluorescent

human tumorspheres into GFAP-GFP host mice, we noted robust

correlation of GFP and GFAP expression, consistent with the

hypothesis that these TAAs are host derived. (Figure 3B). While

the orthotopic tumors exhibited a smaller degree of microvascular

proliferation than mouse tumors, all perivascular areas within the

tumors contained host-derived, GFP+, GFAP-expressing cells.

Importantly, this finding implies that host derived TAAs are

present in the tumor stem cell niche.

Since GFAP-expressing cells have extensive processes with

indistinct boundaries, immunostaining may not always be the ideal

way to differentiate host-derived astrocytes from astrocytes that are

derived from injected tumors. We therefore used FACS analysis to

determine whether GFAP-expressing cells were derived from

tumor cells or the non-neoplastic microenvironment. For these

experiments we used an RCAS-PDGF-mRFP virus to generate

tumors in GFAP-GFP [30] and Olig2-rpGFP mice [39]. Analysis

of tumors generated in Olig2-rpGFP mice infected with RCAS-

PDGF-RFP showed that most of the PDGF-RFP infected cells

were Olig2-expressing cells, consistent with the idea of an

oligodendrocyte lineage in tumor cells derived by PDGF over-

expression (Figure 3C). Correspondingly, tumors generated by

injecting RCAS-PDGF-mRFP into GFAP-GFP transgenic mice,

showed little to no expression of PDGF-RFP within the GFAP-

GFP population (Figure 3D). It is worth noting that a large

percentage of PDGF-RFP infected cells expressed low levels of

GFP and, given our staining and FACS data, these represent

PDGF-infected Olig2+ tumor cells that also express low levels of

GFAP [40] (Figure 3A, C). Finally, as a first step toward exploring

the biological properties of these stromal TAAs, we assessed their

ability to generate neurospheres in vitro and found that they

generated neurospheres under the appropriate conditions (Figure

S4D). This property is reminiscent of injury-associated reactive

astrocytes, which also display neurosphere-generating capacity

[14].

Expression Levels of GBM-associated Astrocytic Stromal
Genes Predict Survival in Human Proneural GBMs
Specifically

We next sought additional confirmation that GBM TAAs genes

were expressed in the stromal compartment of the tumor

microenvironment and not in the tumor cells. To do this, we

plotted the gene expression data from whole tumors relative to the

gene expression data from the Olig2-expressing tumor cells that

had been sorted from the rest of the tumor. This analysis enables

us to identify genes specific to stromal cells, as these genes would

only be expressed in the whole tumor population and not in the

purified Olig2+ tumor cell population. Using this analysis, most of

the genes identified as specific to GBM TAAs when compared to

low grade (WHO Grade II) TAAs were also identified as arising

only in the stromal compartment of the tumor and not in the

Olig2-expressing tumor cells (Figure 4A). In fact, of the 38 genes

identified, only 3 genes (8%) were expressed at higher levels in the

tumor cells, whereas 24 genes (63%) were expressed at significantly

higher levels in whole tumor relative to Olig2 tumors cells and 11

genes (29%) did not demonstrate a significant expression

difference between Olig2 cells and whole tumors. Taken together,

these data confirm that genes expressed in GBM TAAs are

expressed predominately in the stromal microenvironment rather

than in the Olig2-expressing tumor cells.

Once we confirmed the stromal nature of the GBM TAAs

signature genes, we were interested in knowing whether these

stromal genes play a role in tumorigenesis. Moreover, given the

differences in the astrocytic component of proneural gliomas

Tumor-Associated Astrocytes in PDGF-Driven Glioma
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Figure 2. A Gene Signature for GBM Astrocytes. A) Dot-plot of the expression levels of all genes significantly expressed in low-grade-associated
astrocytes and GBM-associated astrocytes. Red lines demarcate genes similarly expressed regardless of grade and dots outside the red lines represent
genes expressed at higher levels in GBM-associated astrocytes. Red arrows point to the dots representing Cd44 and Tenascin C. B) Hierarchical
clustering of the genes off the plot that are expressed at a higher level in GBM-associated astrocytes relative to low-grade-associated astrocytes

Tumor-Associated Astrocytes in PDGF-Driven Glioma
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compared to non-proneural tumors, we were interested in

exploring the possibility that proneural TAAs play a role in the

molecular pathophysiology of proneural glioma. In order to

understand whether our GBM TAA signature is active in human

tumors, we turned to the TCGA dataset [6] and asked whether

expression of these genes can predict survival in any given tumor

subtype. For each gene, patients were divided into two groups, low

expressing and high expressing, based on the median expression of

a given gene within a given subtype. For all four subtypes of

glioma, we determined the average survival of patients based on

their expression levels of each gene and plotted the difference in

survival between low and high expressing patients (Figure 4B,

Figure S5). In the proneural subtype, 17 of the 38 genes (45%)

showed a significant, inverse correlation with survival, where high

expression was associated with worse prognosis. Further, of these

17 genes, 12 of them are associated with a significant survival

difference of more than 6 months and of those, 10 genes predict a

significant survival difference of more than 1 year. Additionally, 8

of the 12 genes that predict a difference in survival of more than 6

months are enriched in the stromal compartment. Notably, most

of these genes did not significantly correlate with survival in the

Classical, Mesenchymal or Neural subtypes of glioma. In addition,

neither GFAP nor FGF3, two established astrocyte markers

[11,41] are associated with survival, indicating that these

correlations are specific to gene expression, rather than a simple

indication of astrocyte density present in the tumor microenvi-

ronment. These data indicate that stromal astrocyte gene

expression patterns within the proneural subtype of glioma

correlate with patient outcome and may serve as useful biomarkers

for the proneural subtype of glioma.

Recent data has identified the presence of a CpG island

methylator phenotype (CIMP) within the Proneural subgroup

[42]. These tumors have hypermethylated promoter CpG islands,

which results in transcriptional silencing of the associated genes.

The glioma-CIMP (G-CIMP) tumors have a more favorable

prognosis when compared to non-CIMP Proneural tumors or

gliomas within the Classical, Mesenchymal and Neural subtypes.

We therefore explored whether the CIMP phenotype altered the

prognostic potential of our GBM TAAs signature genes.

Remarkably, we found that the GBM TAAs signature genes can

only predict survival in the Proneural subtype when the G-CIMP

samples are included, and not when the G-CIMP samples are

excluded from the data set (Figure 4B, Figure S5). In fact, while

expression of these genes is low in the Proneural subtype in

general, it is even lower in the G-CIMP tumors (Figure S6),

indicating a connection between these genes or stromal astrocytes

and G-CIMP tumors.

Discussion

Our understanding of astrocyte function in neurological disease

has increased vastly in recent years. Whereas astrocytes were once

thought to be post-mitotic, negative regulators of tissue growth, we

now know that astrocytes possess proliferative and progenitor cell

functions [14,15]. The majority of the data on astrocyte function

comes from injury models, neurodegenerative disorders, trans-

formed astrocytes in glial tumors, and the study of a small subset of

astrocyte-like adult neural stem cells. In this study, we identify

some basic characteristics of stromal astrocytes within the PDGF-

driven tumor microenvironment. Furthermore, we identify TAA

markers that are associated with survival in the human proneural

subtype of glioma.

Astrocytes respond to injury by changing their morphology,

proliferating and migrating to the site of injury [11]. Here we show

that in our PDGF-driven model of proneural gliomas, astrocytes

respond to tumors in a manner reminiscent of their response in

brain injury. TAAs surrounding the tumor are morphologically

‘reactive’ with swollen cell bodies, hyperextended processes

extending in multiple directions, and they express high levels of

GFAP. In an injury model, these astrocytes are capable of

inducing proliferation of Olig2-expressing cells [15] and it is

possible that this pro-proliferative astrocyte function may be

directed to Olig2-expressing tumor cells in proneural gliomas.

TAAs are not only structurally similar to injury-response

astrocytes but are also similar on a molecular level. Specifically,

they are thought to express Sonic Hedgehog [10,15] as well as

members of the antigen presentation pathway. The antigen

presentation pathway is mainly comprised of MHC class I and

class II molecules. These molecules are important for antigen

presentation to T cells. While previously published data has shown

that astrocytes possess antigen-presenting capabilities ex vivo and in

models of brain injury [31–35], this function of astrocytes has not

been identified in a glioma mouse model and highlights a novel

and potentially important role for TAAs.

In addition to the antigen presentation pathway, we also

identified a gene signature that distinguishes GBM-associated

astrocytes from those in lower grade gliomas. These genes are

mainly expressed in the stromal compartment of the tumor, and are

associated with survival in the proneural subtype of human glioma.

Two of these markers, CD44 and Tenascin C, which are expressed

in the stem cell niches of normal brains [37,43–45], are expressed at

much higher levels in the perivascular niche where tumor stem cells

are proposed to reside [28]. Additionally, the fact that CD44 and

Tenascin C are expressed at much higher levels in the perivascular

astrocytes when compared to peritumoral astrocytes suggests subtle

differences between the two populations of non-neoplastic tumor

astrocytes. We will direct some of our future studies towards

understanding whether these gene expression changes produces

functional differences in tumor pathophysiology.

To further understand characteristics of peritumoral and

perivascular TAAs, we investigated whether these cells were

derived from transformed cells, stroma, or both cellular compart-

ments. We expected to find that peritumoral astrocytes were

stromal in origin, but were intrigued to learn that perivascular

astrocytes found in the center of these tumors were also stromal in

origin. While it is tempting to attribute functional roles to these

astrocytes that exist at the core of the tumor stem cell niche, more

investigation is necessary before such conclusion can be reached.

It is not currently known where the stromal-derived perivascular

astrocytes originate. Numerous studies have shown that normal

neural stem cells demonstrate a tropism towards tumors [46,47] and

the migration of normal neural stem cells out of the SVZ and SGZ

and into the tumor perivascular niche is a possibility. Another

explanation is that these perivascular astrocytes are simply local

astrocytes that become ‘‘trapped’’ within the perivascular niche. A

corollary to the latter hypothesis is that the presence of secreted

indicates that these genes are able to segregate GBM-associated astrocytes from low grade-associated astrocytes. C,D) Validation of CD44 (C) and
Tenascin-C (TNC; D) expression at low- and high-magnification. CD44 and TNC are expressed at high levels in perivascular astrocytes but expressed at
lower levels or not expressed at all in peri-tumoral astrocytes. Arrows point to perivascular astrocytes and arrowheads point to peri-tumoral
astrocytes. Scale bars = 100 mm, 10 mm.
doi:10.1371/journal.pone.0032453.g002
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PDGF and robust microvasculature causes these astrocytes to

assume a more stem/progenitor phenotype and dedifferentiate.

This hypothesis is supported by previous work has shown that

reactive astrocytes are capable of stem-like behavior [14].

In addition to identifying stromal genes expressed in TAAs of

the PDGF-driven mouse gliomas, we identified that a subset of

these stromal genes are prognostic of survival in the human

proneural GBMs, where high expression was associated with

worse outcome. In fact, almost half of the genes identified were

able to predict a difference in survival of at least 1 year. Moreover,

the predictive value of these genes is specific to the proneural

subtype of glioma, indicating the possibility of a TAA effect within

the proneural subtype of human glioma. Interestingly, the

predictive value of these genes was lost when the g-CIMP patients

were removed. Three of the stromal genes (Rbp1, Lgals3 and

Anxa2) were methylated at a significantly higher level in g-CIMP

tumors compared to non-CIMP tumors [42], and even unmethy-

lated genes were significantly downregulated in g-CIMP tumors

when compared to non-CIMP tumors [42]. The association of

these genes with the g-CIMP tumors suggests the possibility of an

altered tumor microenvironment in the g-CIMP proneural tumors

when compared to the non-CIMP tumors. Further, that these

genes were identified within the stromal compartment raises the

question of the effects of the g-CIMP tumor cells on the non-

neoplastic stromal cells within the tumor.

Our data highlight the importance of the tumor microenviron-

ment, specifically TAAs, in the proneural subtype of glioma. These

TAAs respond to the tumor in the microenvironment and express

genes that are associated with overall patient survival. As more is

learned about the various pathways driving the neoplastic growth

of gliomas, we must also consider the role of the stromal cells

within these tumors. If these cells are capable of promoting tumor

growth, they may need to be targeted in treatment protocols.

Because these cells are not neoplastic, conventional mutagenic

treatments may not be effective and thus, the ability to target

specific growth-promoting pathways in these cells is imperative. It

will be important to identify other genes and pathways active in

stromal cells, but the identification of the antigen presentation

pathway as well as GBM TAAs signature genes provides us with a

starting point in elucidating the functional roles of tumor

microenvironment in progression and malignancy.

Methods

Generation of brain tumors
Nestin-tv-a (N-tva) transgenic mice were injected with DF1 cells

(purchased from ATCC) producing RCAS-PDGFB [8], RCAS-

PDGF-sv40-GFP [10] or RCAS-PDGF-RFP [48] as previously

described [10]. Mice were monitored carefully for symptoms of

tumor development (lethargy, hydrocephalus, head tilting). GFAP-

GFP mice were purchased from Jackson Laboratories and crossed

onto the Ntv-a, Ink4a/Arf null background to generate tumors that

Table 2. A Small Group of Genes are Expressed Only in GBM-
associated Astrocytes.

Gene Symbol
Fold-Change in GBM-associated vs. Low
grade-associated Astrocytes

Spp1 7.38667

Mmp10 5.59439

Serpina3h 4.74814

Col6a1 4.74803

Cd44 4.52953

Ctgf 4.33288

Col6a3 4.32895

Vgf 4.28414

Ctgf 4.27893

Lyz 4.23631

S100a11 4.13884

Mglap 4.13362

Aldh1a3 4.03689

Timp1 3.95154

Cd44 3.90811

Timp1 3.89863

Lyzs 3.86976

Emp1 3.82806

Col6a1 3.69735

Lcn2 3.57219

Igfbp7 3.47077

Sphk1 3.45682

Prss19 3.36531

Nupr1 3.31251

Col18a1 3.27824

C1qb 3.27781

Lgals3 3.2697

Anxa2 3.15955

Lyzs 3.10612

Hk2 3.06335

Arhgdib 3.00618

Tnc 2.99419

9130006A14Rik 2.98302

Tnc 2.97213

Ppic 2.89373

Ccl4 2.8926

Bgn 2.88815

C1qg 2.88698

Aldh1a3 2.85672

9230117N10Rik 2.85186

0610041G09Rik 2.83913

Lgals1 2.8309

Rbp1 2.81274

Anxa3 2.787

Table 2. Cont.

Gene Symbol
Fold-Change in GBM-associated vs. Low
grade-associated Astrocytes

Col18a1 2.75882

Dlk1 2.71719

Cd109 2.70004

Cdkn1a 2.69406

A list of the genes expressed at higher levels in GBM-associated astrocytes
when compared to low-grade-associated astrocytes. Genes are in order of the
difference of expression between GBM-associated and low grade-associated-
astrocytes. CD44 and TNC are each represented twice on the list. Osteopontin,
which is at the top of the list, is a ligand for the CD44 receptor.
doi:10.1371/journal.pone.0032453.t002
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were heterozygous for Ink4a/Arf and GFAP-GFP. Olig2-rp-GFP

[38,39] mice were also crossed onto the Ntv-a, Ink4a/Arf null

background to generate tumors that were heterozygous for Ink4a/

Arf and Olig2-rp-GFP. For human orthotopic tumors, 100,000

cells from human tumorsphere cultures [49] were injected into

host mice which were then monitored carefully for symptoms of

tumor development and sacrificed upon manifestation of these

symptoms. All animal work was conducted using protocols

approved by the Institutional Animal Care and Use Committee

at Memorial Sloan-Kettering Cancer Center. The approved

protocols are 00-11-189 (MSKCC, last approved 3/15/2010).

Cell Culture
DF1 cells overexpressing RCAS-PDGF, RCAS-PDGF-sv40-

GFP or RCAS-PDGF-mRFP were maintained in media contain-

ing 10% FBS in a humidified atmosphere containing 5% carbon

dioxide at 39 degrees. Neurosphere cultures were maintained in

basal media (Stem Cell Technologies) supplemented with 5%

Figure 3. Perivascular Astrocytes Can Be Stromal in Origin. A) Immunofluorescence for PDGF-GFP (green) and GFAP (red) in a PDGF-GFP-
driven glioma shows expression of PDGF-GFP and GFAP are mutually exclusive, indicating that TAAs are not derived from the tumor cell of origin.
Scale bars = 100 mm. Inset, high-magnification images. Scale bars = 10 mm. B) Immunofluorescence for GFAP (red) and GFP (green) in an orthotopic
model of human glioma. Human tumorspheres were injected into GFAP-GFP reporter mice such that tumor derived astrocytes will express GFAP but
not GFP and host/stromal astrocytes will co-express GFAP and GFP. While some astrocytes express only GFAP, many astrocytes also express GFP and
are thus derived from the host stromal environment. Expression of stromal GFAP-GFP occurs in all areas of GFAP immunoreactivity. Scale
bars = 25 mm. Inset, high-magnification images. Scale bars = 10 mm. C) FACS analysis of a PDGF-RFP-driven glioma in an Olig2-rp-GFP mouse, where
PDGF-infected tumor cells express RFP and Olig2-expressing cells express GFP. Most cells infected with the PDGF-RFP virus are Olig2-rp-GFP-
expressing cells. D) FACS analysis of a PDGF-RFP-driven glioma in a GFAP-GFP mouse, where PDGF-infected cells express RFP and astrocytes express
GFP. Most of the TAAs were not infected with RCAS-PDGF-RFP.
doi:10.1371/journal.pone.0032453.g003
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proliferation supplement (Stem Cell Technologies), EGF and FGF,

as previously described [50].

Immunohistochemistry and Immunofluorescence
For paraffin embedded samples, tumors were fixed in 10%

formalin and embedded in paraffin. Histological grading was

determined based on Hematoxylin and Eosin staining and the

presence of high-grade structures. DAB staining was performed

using the Ventana DAB-MAP system. The following antibodies

were used for DAB staining: GFAP (1:10,000, DAKO), CD44

(1:1000, BD Biosciences). Immunofluorescence was performed on

10% formalin fixed, paraffin embedded samples as well as on 4%

paraformaldehyde fixed tissues embedded in OCT and frozen. For

paraffin embedded tissue: tissues were deparaffinized and

rehydrated in graded alcohols. Antigen unmasking was performed

at 93u for 15 minutes. Tissues were then permeabilized in 0.3%

Figure 4. GBM Astrocyte-associated Stromal Genes Can Predict Survival in Human Proneural Glioma. A) Dot-plot of the expression
levels of all genes significantly expressed in whole tumor extracts (tumor plus stroma) versus Olig2-expressing tumor cells only. Red shaded area
demarcates genes expressed at a higher level in Olig2-expressing tumor cells, whereas blue shaded area demarcates genes expressed at a higher
level in Olig2-negative, stromal cells. Black dots represent genes identified as GBM TAAs signature genes. B) Analysis of the predictive value of the
GBM TAA genes. For each gene, patients were divided into high expressers and low expressers, based on whether their expression of the gene was
above or below the median. Kaplan Meier curves were then generated for the two groups and the difference in survival between low and high
expressers was plotted. Black dots indicate a non-significant difference in survival and colored dots indicate a significant difference in survival, where
red is *** (p,0.001), blue is ** (p,0.01), and green is * (p,0.05).
doi:10.1371/journal.pone.0032453.g004
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triton-x/PBS, blocked in 5% serum and stained overnight in

primary antibody. The next morning, samples were washed in

0.1% triton-X/PBS and stained in the appropriate alexa-fluor

tagged secondary antibody for 2 hours at room temperature.

Samples were then counterstained with DAPI and mounted in

70% glycerol or prolong gold (Invitrogen). For frozen samples:

tissues were air-dried and then permeabilized, blocked and stained

as described above. The following antibodies were used for

fluorescent staining: GFAP (1:2000, Dako), CD44 (1:1000, BD

Pharmingen), MHCII (212-A1 antibody, 1:1000, a gift from Dr,

Lisa Denzin), IBA-1 (1:500 Wako), Nestin (1:100, BD Pharmingen)

Tenascin C (1:100, Abcam).

FACS Sorting/Analysis
For analysis and sorting of tumors, tumors were enzymatically

digested in EBSS containing 12% papain (Worthington) and

10 mg/ml DNase at 37uC for 15 minutes. The digestion was

stopped with 1 mg/ml ovomucoid (Worthington). Cells were

washed and resuspended in basal medium and sorted using a

Cytomation MoFlo cell sorter. Cells to be used on the array were

collected in PBS, centrifuged and resuspended in trizol. Cells that

were to be cultured were collected directly into the appropriate

media. For analysis and sorting of primary neurospheres, spheres

were mechanically dissociated, resuspended in basal media and

sorted using a Beckton-Dickinson FACSCalibur flow cytometer.

Antibodies used for FACS include CD44-PE (1:100, BD

Pharmingen), CD44-Pacific blue (1:100, Biolegend), APC-conju-

gated MHC-II (1:500, ebiosciences), CD45-APC (1:100, BD

Pharmingen), CD31-APC (1:100, BD Pharmingen).

Array
GFAP-GFP-expressing astrocytes were collected by FACS from

Ink4a/Arf heterozygous mice with or without PDGF-driven

gliomas. Prior to sorting, a piece of the tumor was removed for

histological analysis of grade. Six samples each of Normal, low-

grade-associated and GBM-associated astrocytes were collected,

pelleted and then resuspended in trizol. Three samples of Olig2-

rpGFP cells and three samples of whole tumors were resuspended

in trizol. RNA was extracted from normal astrocytes as well as

from samples enriched for TAAs and Illumina-6 arrays were run

by the genomics core at MSKCC. For the Olig2-rpGFP versus

whole tumor array, Illumina-8 arrays were used. Array data was

analyzed using Partek analysis software. Data was imported as a

text file and was quantile and then log2 normalized prior to

analysis. ANOVA statistics were run to determine significantly

changed genes. Gene lists were uploaded into Ingenuity Pathway

Analysis for analysis of relevant pathways.

Analysis of Human Data
Expression values for each gene of interest were obtained from

the MSKCC computational biology cancer genomics portal,

http://www.cbioportal.org/cgx/index.do, which has annotated

TCGA data. Patient survival data was obtained from published

TCGA information [6]. For each subtype of tumors, the mean and

median expression for each GBM TAAs gene was determined.

Patients were then divided into two groups (‘high’ and ‘low’),

depending on whether their expression of the gene was above or

below the median, and Kaplan Meier curves were generated

based on the resulting data. The difference in survival between

patients with high expression of a given gene compared to patients

with low expression of that gene was then calculated for each gene

in each subtype and that difference in survival was plotted on a

new graph.

Statistical Analysis
Array statistics were performed using ANOVA in the Partek

analysis software. Comparison of the changes in MHC-II

expression in astrocytes and CD44 expression in differentiated

and neurosphere conditions, as well as the differences in gene

expression between subtypes was performed using a two-tailed t-

test in prism software.

Supporting Information

Figure S1 Astrocytes in Glioma. A) Examples of Low-grade

Gliomas and GBMs at low- and high-magnification. B) Immuno-

fluorescence of tumors from Lectin-GFP injected mice stained

with GFAP (red) demonstrates that astrocytes within the tumor

reside close to blood vessels. Scale bars = 10 mm.

(TIF)

Figure S2 Gfap-GFP Reporter Recapitulates Endoge-
nous GFAP Expression. A) Immunofluorescence for GFAP

(red) and GFP (green) in the hippocampus of a normal brain from

a GFAP-GFP mouse shows colocalization of the GFP reporter

with GFAP protein. Scale bars = 50 mm. B) Immunofluorescence

for GFAP (red) and GFP (green) in a tumor-bearing brain shows

colocalization of the GFP reporter with GFAP protein. Scale

bars = 10 mm C) FACS analysis indicates that GFAP-GFP cells do

not colocalize with CD31-expressing endothelial cells. GFAP-GFP

expression is on the x-axis; CD31 expression is on the y-axis. D)

FACS analysis indicates that GFAP-GFP cells do not colocalize

with CD45-expressing immune cells. GFAP-GFP expression is on

the x-axis; CD45 expression is on the y-axis.

(TIF)

Figure S3 MHC Class II Expression is Increased in
Tumor-associated Astrocytes When Compared to Normal
Astrocytes. A) Immunofluorescence for MHC II (red), GFAP

(green) and Iba-1 (white) in low grade- and GBM-associated

astrocytes shows co-localization of MHC II with GFAP-expressing

astrocytes. Arrowheads point to MHC II-expressing astrocytes that

are Iba-1 negative and thus not immune cells. Scale bars = 10 mm B)

FACS analysis of normal and tumor-bearing brains for expression of

MHC class II (y-axis) and GFAP-GFP (x-axis). In normal brains,

there is very little MHC II expression and virtually no expression on

astrocytes. However, in a tumor-bearing brain, MHCII expression is

increased in the tumor and specifically within the astrocyte

population. C) Quantification of results of FACS analysis: in a

normal brain, approximately 1.5% of astrocytes express MHCII and

in a tumor brain, approximately 17.5% of astrocytes express

MHCII, p = 0.0351.

(TIF)

Figure S4 CD44 Expression in Astrocytes. A) Immunoflu-

orescent staining for CD44 (red) and GFAP (green) in the sub-

ventricular zone of a normal brain. Arrows point to CD44-

expressing astrocytes near the ventricle (V). In addition to

expressing CD44, these astrocytes have a bipolar morphology,

which is a hallmark of adult astrocyte-like stem cells [24].

Arrowheads point to CD44-negative astrocytes further from the

ventricle. In addition to being far from the ventricle, these astrocytes

have processes extending in multiple directions, indicating that these

cells are not adult astrocyte-like stem cells [24]. Scale bars = 10 mm.

B) FACS analysis of tumors cultured in serum-containing media or

neurosphere media demonstrates that CD44 expression is only

maintained in neurosphere conditions. Also, when normal astro-

cytes are cultured as neurospheres they express CD44. CD44

expression is on the x-axis and GFAP-GFP expression is on the y-

axis. C) Quantification of FACS data. After one week, approxi-
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mately 50% of TAAs cultured in stem-like conditions express

CD44. D) Host-derived, murine GFAP-GFP-expressing astrocytes

from an orthotopic model of human glioma were sorted, collected

and grown as neurospheres. Within these cultures there is significant

expression of GFAP-GFP, indicating the ability of stromal

astrocytes to grow as neurospheres. Scale bars = 100 mm.

(TIF)

Figure S5 GBM TAAs Genes can Predict Survival in
Human Proneural Glioma. Representative Kaplan Meier curves

for the GBM TAAs genes in each subtype as well as G-CIMP only

tumors. Blue line represents survival of patients with expression below

the median for each gene in each subtype and black line represent

survival for patients with expression above the median for each gene

in each subtype, * = p,0.05, ** = p,0.01, *** = p,0.001. Survival is

represented in months to death after diagnosis.

(TIF)

Figure S6 G-CIMP Patients Have Lower Expression of
GBM TAAs Genes. Plot of average expression of the GBM

TAAs signature genes in each subtype and in proneural G-CIMP

and non-G-CIMP patients. The average expression for all GBM

TAAs genes was lowest in the proneural subtype and lower in

proneural G-CIMP patients when compared to proneural non-G-

CIMP patients. * = p,0.05, ** = p,0.01, *** = p,0.001.

(TIF)

Table S1 MHC Class II Pathway is increased in Tumor-
associated Astrocytes Relative to Normal Astrocytes. List

of MHC Class II pathway genes that are increased in TAAs

compared to normal astrocytes. Values listed as fold change in

expression when TAAs were compared to normal astrocytes.

(TXT)
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