
The Effect of Wind on the Rate of Heat Loss from Avian
Cup-Shaped Nests
Caragh B. Heenan*, Roger S. Seymour

Department of Ecology, Evolution and Landscape Science, The University of Adelaide, Adelaide, South Australia, Australia

Abstract

Forced convection can significantly influence the heat loss from birds and their offspring but effects may be reduced by
using sheltered micro-sites such as cavities or constructing nests. The structural and thermal properties of the nests of two
species, the spiny-cheeked honeyeater (Acanthagenys rufogularis) and yellow-throated miner (Manorina flavigula), were
measured in relation to three wind speeds. Nest dimensions differ between the two species, despite the similar body mass
of the incubating adults, however nest conductance is comparable. As wind speed increases, so does the rate of heat loss
from the nests of both species, and further still during incubation recesses. The significance of forced convection through
the nest is a near-doubling in heat production required by the parent, even when incubating at relatively low wind speeds.
This provides confirmation that selecting a sheltered nest site is important for avian reproductive success.
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Introduction

The microclimate properties that are critical to adult birds

include wind, radiation, air temperature and humidity, and these

directly affect the thermoregulatory demands with which a bird

must cope [1–3]. Wind, which is forced convection (henceforth

referred to as convection), is often considered to be more

important for heat loss than conduction and evaporation [3–5].

The energetics of a variety of avian species exposed to wind has

been explored using doubly-labelled water, time energy budgets

and respirometry techniques in wind tunnels [6–9]. Webster and

Weathers [10] found that heat production in verdins (Auriparus

flaviceps) can rise by nearly 30% when wind speed increases from

1.8 to 10.8 km h21, whereas Tracy [11] argued that heat loss may

vary by up to 100% for some individuals under different wind

speed conditions.

Energy demands of thermostasis may be greatest when roosting

or during reproduction [1,12,13]. Therefore, it is expected that

there would be strong selective pressure for birds to minimise

thermoregulatory stresses to the individual and offspring. Reduc-

ing air movement over birds moderates their convective heat loss

and this can be achieved by using sheltered micro sites such as

cavities and domed nests [13,14]. Of primary interest here is how

convection can influence heat loss from the nest of reproducing

individuals, as the rate of heat loss can influence the outcome of a

breeding attempt and consequently lifetime reproductive success

[12,15]. Reproduction in birds via oviparity necessitates develop-

mental conditions to be modulated externally, provided by the

reproducing birds through modification of their own metabolism

[16,17]. While the energetics of birds under different wind regimes

has only been investigated in non-incubating individuals, it is

expected that wind would also increase the rate of heat loss for

reproducing birds. Appropriate nest site selection can reduce heat

loss through convection, however such savings may be small

compared to those produced by the addition of an insulating nest

[1,18]. Consequently, nests might be expected to be shaped by

selection over evolutionary time to approach functional optima

and reflect the microclimate conditions to which birds are

exposed, including convection [16].

Nest structure and placement has been reported widely in the

literature in recent years, as the importance of such structures has

become more apparent [reviewed by 19]. Methods for determin-

ing the effect of wind on heat loss from the nest largely consist of

either heat loss modelling [4] or nest orientation correlations

[20,21]. Nest orientation is expected to change the nest

microenvironment due to the effects of wind and thus sparrow

(Ammodramus savannarum and Aimophila aestivalis) and meadowlark

(Sturnella magna) nests are primarily oriented away from prevailing

winds [22,23]. Woodpecker (Picidae) nest orientations provide

shelter from the wind and rain [24], while nest orientation for a

variety of avian species is correlated with modified nest

temperatures [25–30].

There may be differences in nest structure that contribute to

reductions in convective heat loss [31,32]. Palmgren and Palmgren

[33] were the first to assess the influence of convection on nest

insulation and found that heat loss increases in turbulent

conditions by 44% in the common rosefinch (Carpodactus erythrinus)

to 91% in the chaffinch (Fringilla coelebs). Kern [31] found that

elevated nests of the white-crowned sparrow (Zonotrichia leucophrys)

were better insulated than ground nests and proposed that the

increased insulation may offset the increased convective cooling to

which they are exposed. Pectoral sandpiper (Calidris melanotos) nest

structure is an example of how a compromise can be found

between multiple unfavourable variables [16]. While deep nest
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scrapes would reduce convective heat loss from eggs, the eggs

would in turn experience cooler ground temperatures. Scrapes are

therefore constructed such that the eggs are positioned at an

optimal depth for minimising forced convection as well as the rate

of heat loss to the substrate. The choice of materials used for nest

construction may also be partly driven by the need to reduce

convective heat loss [34].

There is a paucity in the knowledge regarding the effect of wind

on the insulative properties of exposed nests and how wind may

influence the heat loss from the clutch, and in turn, the energetics

of the incubating parent. Our earlier study on the thermal

properties of nests involved conductive heat loss through whole

nests in essentially still air [35]. The results from 36 species of birds

with body masses ranging from 8 to 360 g demonstrated that cup-

shaped nests were constructed primarily for support rather than

insulation. Insulation was evaluated by measuring its inverse,

thermal conductance. This is the rate of heat flux (watts) moving

across the nest wall, per degree of temperature difference between

the inside and outside of the nest, based on Newton’s Law of

Cooling [11,36]. Well-insulated nests have a low conductance and

vice versa. The present study is designed to investigate the role of

convective heat transfer through cup-shaped nests of two species

with similar body masses, but of different nest construction, thin

versus thick walls. Here, the thermal conductance is again

measured, but within a wind-tunnel. In the present study, the

‘effective’ thermal conductance and ‘effective’ material conductiv-

ity is measured (henceforth referred to as conductance and

conductivity, respectively), as both thermal properties in this

context include the effects of conductive and convective heat flow.

If nest wall structure is important in preventing heat loss via

convection we expect that there would be differences in nest

conductance that are related to the thickness of the nest wall or the

conductivity of the nest material in windy conditions. Further-

more, we compare the heat loss from nests where the opening is

sealed with a Styrofoam lid to those without a lid. This was

conducted to reflect differences in heat loss from attended and

unattended nests.

Methods

Nests were borrowed from the South Australian Museum

ornithology collection and were selected for measurement if they

were in a good condition and had no branches obscuring the

opening of the nest. Nests that were damaged were excluded from

analyses. Nests were collected between 1976 and 1992, with

collection information missing for five out of the 15 nests. For

those where collection date was known, there was no significant

difference in the year the nest was collected when comparing the

two species (X2 = 1.86, DF = 1, P = 0.17). All nests were from

museum collections, stored in a similar way, which should have

reduced any bias resulting from degradation and storage. Notes on

the construction of each nest were made; including condition,

attachment, materials, nest shape and weave density.

(a) Study species
A total of eight spiny-cheeked honeyeater (Acanthagenys rufogularis

Gould, 1838) and seven yellow-throated miner (Manorina flavigula

Gould, 1840) nests were measured. The two species were selected

as they both have similar parent masses (50 g and 55 g,

respectively), however different nest structure (Figure 1). While

M. flavigula nests have larger dimensions, A. rufogularis constructs a

nest with a denser wall compared to M. flavigula. In addition, the

nest dimensions for A. rufogularis are lower than what would be

predicted for a bird of this size, while nests of M. flavigula are larger

than predicted [35].

The two species have largely overlapping geographical

distributions throughout Australia and breed in similar habitats,

usually open woodland or shrubland in arid and semi-arid zones

[37]. Both species are capable of breeding year-round but most of

the breeding occurs between June/July through to March. While

A. rufogularis tends to construct their nests suspended in the top or

outer edge of plant canopies (1 to 3 m above ground), M. flavigula

nests are regularly found in dense canopy close to the trunk of the

plant (4 to 5 m above ground).

(b) Nest dimensions
The physical dimensions of the nests were measured with

callipers and a micrometer to the nearest millimetre, including the

nest thickness (X, Figure 2), internal and external diameter (d) and

height (h). Those nests without supporting structures attached were

weighed on a Mettler digital analytical balance (model AE163,

Zürich, Switzerland).

The internal and external nest surface area (A) was approx-

imated using the equation for half of a prolate spheroid (Equation

1 of Heenan & Seymour [35]), using values for internal and

external diameters and heights. The average surface area (Ā) was

calculated as the geometric mean of the internal and external

surface area. Nest volume was calculated as half of the volume for

a prolate spheroid based on external dimensions, minus half of the

volume of a prolate spheroid based on internal dimensions

(Equation 1 of Heenan, Paton & Seymour [38], in Preparation).

The density of the nest was calculated for each species. Nest

density (r, g cm23) was calculated as the nest mass (MN) divided

by the nest volume (VN).

(c) Wind tunnel
A wind tunnel was constructed to enable wind speed

surrounding the nest to be controlled and measured (Figure 3).

The wind tunnel consisted of a long cardboard box (35.5 cm

width; 36.5 height; 139 cm length), divided into three main

chambers: the settling chamber, the test section and the diffuser.

The settling chamber consisted of a filter made from a double-

layer fly-wire mesh screen. This was used to prevent large airborne

Figure 1. A nest of Acanthagenys rufogularis and Manorina
flavigula. The nest of A. rufogularis (left) is smaller and has thinner
nest walls than M. flavigula (right) but a greater nest wall density.
doi:10.1371/journal.pone.0032252.g001
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particles from entering the chamber and causing undesirable

turbulence in the flow [39,40]. A 4 cm wide honeycomb screen

made from plastic straws (1 cm in diameter), glued together in

alternating layers, was placed towards the end of the settling

chamber. The honeycomb screen acts to straighten the flow,

reducing turbulence, as well as eliminating the cross-flow

component [39,41]. A second honeycomb screen was placed at

the beginning of the diffuser.

The test section was situated between the two honeycomb

screens, with access provided by an outward-opening door. The

door was sealed closed during the experiments with metal corner

brackets clipped in place with Velcro.

A duct mounted axial fan (ø150 mm, model MT132, Fantech,

Dandenong, Australia) was placed at the outlet end to suck wind

through the tunnel. The speed of the fan was manipulated with a

variable voltage transformer (model Voltac SB-5 IKVA, Yo-

koyama Electric Co. Ltd., Japan) by varying the voltage from 0 to

240 V. The maximum wind speed achievable was 3.4 km h21.

Wind speed was measured with a hot-wire anemometer (model

AM-4204HA, Lutron Electronic, Coopersburg, USA) at radial

interval positions through the centre of the test section when the

fan was at its maximal speed. This was to ensure that wind speed

was relatively consistent at all points in the chamber and that

differences in measurements would not result from slight changes

in nest placement. Wind speed varied slightly throughout the

chamber test section, ranging from 2.7 to 3.1 km h21 (67%)

during the test runs. The anemometer was also turned sideways

and moved throughout the chamber to confirm that movement of

air through the tunnel was laminar and did not consist of turbulent

flow or produce a cross-flow component.

The nest was placed in the centre of the test-section on a 4 cm

high wire-mesh strip to allow for free air-flow around it. The cross-

sectional area of the wind tunnel blocked by the nest ranged from

to 2–9% (mean 561%). The anemometer was suspended above

the lid of the nest to measure the wind-speed, which was recorded

for each nest and treatment. Nest measurements were repeated at

three wind speeds: 0, 0.8 and 3.1 km h21. These speeds are

described in this paper as ‘still’, ‘calm’ and ‘light air’, respectively,

according to Beaufort scale definitions in Allaby [42].

We tried to maintain a consistent wind speed by setting the

variable voltage regulator to the same output each time, the

average speed detected (Table 1) surrounding the open nests

differed for each species for the light air treatment (X2 = 5.53,

DF = 1, P = 0.019) but not within the calm (X2 = 0.13, DF = 1,

P = 0.72) treatment. There was no significant difference in the

wind speed detected around sealed nests for each species within

both the calm (X2 = 1.64, DF = 1, P = 0.20) and the light air

treatment (X2 = 3.16, DF = 1, P = 0.075). Wind speed in the still air

treatments was consistently 0 km h21.

The anemometer was inserted into the nest space through a

hole in the nest lid to determine the proportion of wind passing

through the nest wall under light air conditions. The wind detected

in the nest cavity of A. rufogularis was 0.660.1 km h21 and for M.

flavigula the nest cavity wind speed was 0.860.1 km h21. The ratio

of the internal nest wind speed to tunnel wind speed was then

compared for the two species. The ratio for nest:tunnel wind speed

was 0.260.1 for A. rufogularis and 0.360.1 for M. flavigula, with no

significant difference between the two species (F1,13 = 0.65,

P = 0.44). This was repeated for four nest orientations (nest ID

tag facing the front, left, back and right side) along the horizontal

axis of rotation. There was no significant difference in the ratio of

wind entering the nest cavity to that in the tunnel, irrespective of

nest orientation (F1,13 = 2.00, P = 0.18).

(d) Total nest conductance
The total thermal conductance (G, mW uC21) of the nests was

measured by placing an artificial heat source inside the nest and

Figure 2. A nest diagram showing the dimensions used to
calculate surface area. Both internal (light grey) and external (dark
grey) nest surface area were calculated to obtain the geometric mean
surface area.
doi:10.1371/journal.pone.0032252.g002

Figure 3. The wind tunnel used to alter experimental wind conditions. Sections include the settling chamber, test section and diffuser. Wind
flows in direction of arrows. 1. Wind tunnel air inlet; 2. Wind filter; 3. Inlet honeycomb screen; 4. Outlet honeycomb screen; 5. Axial fan; 6. Test section
access door; 7. Mesh base; 8. Nest. Not drawn to scale.
doi:10.1371/journal.pone.0032252.g003
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measuring the heat flow out through the wall (W), in relation to the

temperature difference across the wall (DT). The methods of

Heenan & Seymour [35] were used where applicable, with

exceptions outlined below. All measurements were carried out in a

10uC constant temperature room.

An artificial egg heater consisted of a 3.35 mm thick aluminium

sphere with a diameter of 3.8 cm (3003 alloy, Sharpe Products

Inc., New Berlin, USA), within which the heating equipment was

placed (Figure 4). The egg was heated internally to 40uC with a

20 W (12 V, 1.67 A) globe (Mirabella International, Tullamarine,

Australia). The heated air within the sphere was circulated with a

1.6 cm (3.3 V) fan (Copal Electronics, Tokyo, Japan), mounted

above the heat source. The temperature inside the sphere was

measured with a LM35DZ temperature sensor and the power

supplied to the globe was varied to achieve constant temperature

[35]. The opening of the nest was insulated with a 23 mm thick

layer of Styrofoam and cotton padding sealed the lip against air

leaks.

The voltage supplied to the globe was recorded in a chart

application using AD Instruments Powerlab (model ML750,

Castle Hill, Australia) and the current sent through the globe

was measured with a multimeter (model QM1538, Digitech). The

power used to operate the egg fan (WFAN) is released as heat and

this is added to the power requirement of the globe (WGLOBE). The

total power (W) required to keep a stable nest temperature was

calculated by multiplying the voltage and current from the globe

and adding this to the product of voltage and current from the fan,

according to Equation 2 of Heenan & Seymour [35].

Two copper-constantan thermocouples ensheathed in polyeth-

ylene tubing were placed on the surface of the egg heater, one at

the top and one at the bottom, between the egg heater and nest

interface. A third thermocouple was placed outside the nest to

measure the wind tunnel temperature. The temperature of the

wind tunnel fluctuated slightly, within and between treatments,

ranging from 10.8 to 12.3uC (11.460.1) for the closed treatments

and 10.5 to 15.2uC (11.660.2) for the open treatments.

Temperatures were logged on a portable data logger (model

OM-SQ2020-IF8, Omega, Stamford, USA). Thermocouples

were calibrated prior to the study by placing them into water

of four different temperatures and plotting the thermocouple

temperature reading against the temperature reading from a

precision calibrated mercury-in-glass thermometer. The resulting

calibration regression was used to correct the thermocouple

readings.

The equipment was set up to heat the nest for each treatment,

followed by an equilibration period of between 30 and 45 min.

Measurements were obtained once the heat production rate had

stabilised.

The temperature gradient used for calculations was that

between the average of the egg heater surface temperatures (Tegg)

and the wind tunnel air temperature (Ta). Using the temperature

gradient and the power required to keep a stable nest temperature,

the total thermal conductance of the system (GTOT, mW uC21)

was calculated using Equation 1.

GTOT~
W

Tegg{Ta

ð1Þ

Where the symbols are:

GTOT = System thermal conductance (mW uC21)

W= Heat production rate (mW)

Tegg = Egg heater surface temperature (uC)

Ta = Ambient temperature (uC)

The total conductance of the system includes the conductance

of the nest, air within the nest and the Styrofoam lid conductance.

The surface area (ALID), surface-specific conductance of the lid

(GA-LID) was calculated according to Heenan and Seymour [35].

For each nest, the surface-specific lid conductance was multiplied

by the surface area of the nest opening to obtain the total lid

conductance (GLID) for each nest. This was subtracted from the

total conductance of the nest system to obtain a value representing

the conductance from the egg heater surface to the outside of the

nest, from here on referred to as total conductance.

This method was repeated for A. rufogularis and M. flavigula nests

without a lid for the calm and light air wind treatments to

determine the effect of wind on heat loss from eggs during

incubation recesses. To determine the influence of the nest in

general, the egg heater was measured in the chamber without the

protection of a nest.

Figure 4. The equipment used to measure nest thermal
conductance. 1. Egg heater – consisting of a globe, temperature
sensor and fan in an aluminium 3003 alloy shell; 2. External
thermocouple; 3. Egg top thermocouple; 4. Egg bottom thermocouple;
5. Mesh base; 6. Anemometer; 7. Styrofoam lid; 8. Cotton padding; 9.
Nest. Not drawn to scale.
doi:10.1371/journal.pone.0032252.g004

Table 1. Comparison of wind speeds between open and
sealed treatments for nests of Acanthagenys rufogularis and
Manorina flavigula.

Wind speed (km h21)

Species Treatment Calm Light air

Acanthagenys rufogularis Open 0.7660.04 3.0360.10

Sealed 0.7160.02 3.0660.04

Manorina flavigula Open 0.7760.04 3.1960.08

Sealed 0.7460.04 3.1460.07

Statistics include the mean 6 95% confidence interval.
doi:10.1371/journal.pone.0032252.t001
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(e) Surface-specific nest conductance
The surface-specific conductance (GA, W uC21 m22) was

calculated by dividing the total conductance by the geometric

mean surface area of the nest.

(f) Thermal conductivity
The thermal conductivity (k, mW uC21 m21) of the nest

material was calculated using the surface area and thickness of the

nest, according to Equation 2.

k~
G X

A
ð2Þ

Where the symbols are:

k = Material thermal conductivity (mW uC21 m21)

G = Nest thermal conductance (mW uC21)

X = Nest wall thickness (m)

Ā = Geometric mean of the internal and external surface area (m)

(g) Statistical analyses
Statistical analyses were performed in JMP IN (SAS Institute

Inc., version 4.0.4). Data that met the assumptions required for

parametric tests, including normality (Shapiro-Wilk W test) and

equal variance (O’Briens test), were subjected to an analysis of

variance (ANOVA). Data that did not meet the assumptions

required for parametric tests were analysed using the Wilcoxon/

Kruskal-Wallis Chi-squared test. Comparisons of species mean

values within treatments were made using post-hoc Tukey-Kramer

HSD.

An indicator species analysis was performed in PC-Ord (MjM

Software, version 5.0) to test whether the materials used in nest

construction differed between the two species. The analysis was

based on indicator values (percent of perfect indication, based on

combining relative abundance values and relative frequency) and a

Monte Carlo test of significance of the observed maximum

indicator value for materials found in A. rufogularis and M. flavigula

nests.

An alpha value of 0.05 was used for all analyses. Data are

expressed as mean 695% confidence interval.

Results

Nest dimensions differed between A. rufogularis and M. flavigula,

despite the similar body mass of the incubating adults (Table 2).

M. flavigula had a greater nest mass, greater nest volume, thicker

nest wall, greater surface area, as well as greater diameter and

height (both internal and external). However, A. rufogularis

constructed a nest with a denser nest wall compared to M.

flavigula.

Of the eight A. rufogularis nests measured: four contained solid

plant material such as stems, vines, rootlets and bark; five

contained flat plant material such as leaves; all contained materials

from graminoids such as grasses, sedges and rushes; all contained

soft plant material (commonly known as plant down); five

contained animal products such as wool, fur, hair and feathers;

and all contained silk products from arachnids such as silk thread

and egg sacs. Of the seven M. flavigula nests measured: all

contained solid plant material; two contained flat plant material;

six contained materials from graminoids; two contained soft plant

material; all contained animal products and all contained silk

products from arachnids. In addition, one nest contained man-

made material (nylon). An indicator species analysis showed that

the materials present in the nests did not differ between each

species, with the exception of soft plant material (Table 3). Soft

plant material occurred more often in A. rufogularis nests than in M.

flavigula nests. Solid plant material was also found marginally more

often in M. flavigula nests than in A. rufogularis nests, though the

difference was not significant.

There was a significant effect of wind speed on nest conductance

for both species (Figure 5A, X2 = 30.30, DF = 5, P,0.0001). There

was no significant difference in the mean nest conductance for A.

rufogularis and M. flavigula, within each wind speed treatment

(Tukey-Kramer HSD). The control (unprotected heat source) had

a conductance that was 250% greater than the nests of both

species in still conditions and the difference increased to 290% in

light air (Figure 5A); however the increase could not be analysed

statistically as the control was not replicated. The conductance of

the nest under the light air condition was greater than the still and

calm conditions for both species; however the conductance was no

greater in calm conditions than it was in still conditions for either

A. rufogularis or M. flavigula.

Table 2. Nest dimensions for cup-shaped nests of Acanthagenys rufogularis and Manorina flavigula.

Dimension Acanthagenys rufogularis Manorina flavigula Test statistic P-value

Nest mass (MN, g) 10.3061.48 41.4667.53 25.93‘ 0.0009*

Nest volume (VN, cm3) 105.09627.24 745.616125.83 10.50# 0.0012*

Nest density (r, g cm23) 0.1260.07 0.0660.01 9.67‘ 0.014*

Nest thickness (X, cm) 0.9360.19 2.9660.38 96.39‘ ,0.0001*

Surface area (Ā, cm2) 122.46612.08 233.01616.82 113.64‘ ,0.0001*

Internal diameter (dI, cm) 7.4860.34 9.1060.46 32.18‘ ,0.0001*

External diameter (dE, cm) 9.0960.59 15.3761.04 10.50# 0.0012*

Internal height (hI, cm) 4.5860.56 5.2960.33 4.84# 0.028*

External height (hE, cm) 5.6460.66 8.0760.51 31.35‘ ,0.0001*

Statistics include the mean 6 95% confidence interval, the F-ratio (‘) for parametric tests or Chi-square statistic/X2 (#) for non-parametric tests, as well as the P-value.
*Indicates that there is a significant difference between the dimensions for each species (a= 0.05).
N = 8 for Acanthagenys rufogularis and N = 7 for Manorina flavigula except nest mass and density which has N = 3 and 7 (respectively). DF = 1,13 for all parametric
comparisons except nest mass and density which has DF = 1,8. Non-parametric comparisons have a DF = 1. The replicate for the nest mass and density measurements is
lower as some nests were excluded from analysis due to the attachment of supporting branches.
Surface area (Ā) is the geometric mean of the internal (AI) and external (AE) surface areas.
doi:10.1371/journal.pone.0032252.t002
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There was a significant effect of wind speed on surface-specific

nest conductance for A. rufogularis and M. flavigula (Figure 5B,

X2 = 37.19, DF = 5, P,0.0001). There was a significant difference in

the mean surface-specific conductance for A. rufogularis and M.

flavigula, within each wind speed treatment (Tukey-Kramer HSD).

The surface-specific conductance of A. rufogularis nests was greater

than M. flavigula for all three wind conditions. The surface-specific

nest conductance in both species was significantly greater in light air

than in calm or still conditions, which were not significantly different.

There was a significant effect of wind speed on thermal

conductivity of the nest material for A. rufogularis and M. flavigula

(Table 4, F5,39 = 27.90, P,0.0001). M. flavigula had a significantly

greater mean thermal conductivity compared with A. rufogularis,

within each wind speed treatment, as confirmed with the Tukey-

Kramer HSD. The thermal conductivity under the light air

condition was greater than the still and calm conditions for both

species; however it was no greater in calm conditions than it was in

still conditions for either A. rufogularis or M. flavigula.

There was a significant effect of wind speed on heat loss from

the nests of A. rufogularis and M. flavigula when sealed and open

(Figure 6, X2 = 76.89, DF = 11, P,0.0001). There was a significant

increase in the mean heat loss from A. rufogularis and M. flavigula as

wind speed increased (Tukey-Kramer HSD). This was the case for

both sealed and open nests. Heat loss from sealed A. rufogularis nests

increased by 34% between the two wind speed treatments (calm

and light air only), and by 24% from open nests. Heat loss from

sealed M. flavigula nests increased by 39% between the two wind

speed treatments and by 20% from open nests.

Within the calm treatment, there was no significant difference

between the heat loss from A. rufogularis nests when open,

compared with open M. flavigula nests. Nor was there a significant

difference in the heat loss from sealed nests for either species.

However, heat loss from the open nests was significantly higher

than sealed nests for both species in calm conditions (22% higher

for A. rufogularis and 19% for M. flavigula). Within the light air

treatment, there was no significant difference in the heat loss from

nests of M. flavigula, when sealed or open. However, open nests of

A. rufogularis had a 12% greater rate of heat loss than sealed nests.

Discussion

(a) Still conditions
Nest conductance in still conditions is influenced by the thermal

conductivity, the surface area and the thickness of the nest

(Equation 2). The similarity in nest conductance between the two

species results from a smaller surface area and lower thermal

conductivity in A. rufogularis being compensated by a thinner nest

(Table 4). M. flavigula, on the other hand, has a greater surface area

and higher conductivity, but a much thicker nest. Given that the

species have similar body masses and therefore comparable

metabolic rates [43], the rate of heat loss from the nest appears

independent of nest structure. The materials present in the nests

do not differ between each species, with the exception of plant

down, which is found more frequently in nests of A. rufogularis

(Table 3) and consequently their thermal conductivity is lower

(Table 4). Plant down is made up of many plant fibres such that it

resembles fur and appears to be good insulation.

Despite differences in density (g cm3) between nests of the two

species, density does not reflect the ability of the nest to prevent

convective heat loss, but rather the fineness of weave is the

important factor. The inner lining of the M. flavigula nest is densely

woven but the main structure of the nest (the majority of the

material) is quite loosely woven. On the other hand, the nest of A.

rufogularis has a medium weave throughout, resulting in a greater

overall nest density. This heterogeneous layered structure (Figure 1)

means that is not possible in this study to compare heat loss from

the nests in terms of the fineness of weave. Future work on

convective heat loss from nests could assess nests that have a

consistent structure throughout to determine if nest weave

influences heat loss.

(b) The effect of wind
i) Sealed nests. Light air flowing around the nest results in

significant increases of between 71 to 86% in total conductance and

surface-specific conductance in both species. The increase in

conductance with wind speed is caused by disruption of the boundary

layer around the nest and passage of air through it. The boundary

layer is the still layer of air at the nest-environment interface [36].

Heat is transported through the boundary layer by conduction

and is then transferred from the boundary layer largely by

radiation and convection. The thickness of the boundary layer is a

function of the wind velocity and the structure of the nest surface.

For example, nests with a loose weave and plenty of sticks

penetrating from the surface would have a thicker boundary layer

than nests with a smooth weave. By increasing the wind speed

around the nest, heat loss from the boundary layer is facilitated

[44].

Table 3. Indicator species analysis output for materials found in Acanthagenys rufogularis and Manorina flavigula nests.

Observed indicator value Indicator value from randomised groups

Material Acanthagenys rufogularis Manorina flavigula Mean Standard deviation P-value

Graminoids 54 40 53.6 0.80 0.47

Soft plant material 78 6 49.9 8.41 0.0058*

Solid plant material 17 67 46.9 8.67 0.077

Flat plant material 43 9 36.1 10.39 0.31

Animal products 24 62 49.9 6.32 0.20

Arachnid silk 50 50 50.0 0.71 1.00

The indicator species analysis output includes the indicator values and Monte Carlo test of significance of observed maximum indicator values for materials found in
Acanthagenys rufogularis and Manorina flavigula nests. Statistics include the observed indicator values (percent of perfect indication, based on combining relative
abundance values and relative frequency) for nests of each species, mean and standard deviation for the indicator value from randomised groups, as well as the P-value.
The P-value is the proportion of randomized trials with an indicator value equal to or exceeding the observed indicator value.
*Indicates that there is a significant correlation between the material type used in the nest and the species with the greater observed indicator value (a= 0.05).
N = 8 for Acanthagenys rufogularis and N = 7 for Manorina flavigula.
doi:10.1371/journal.pone.0032252.t003
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In addition, wind enters the nest material and convects heat

away, as shown by the increase in the thermal conductivity with

greater wind speeds (Table 4). While conductance is influenced by

the nest dimensions and thermal conductivity, the dimensions of

the nest do not change with increasing wind speed; hence the

increase in conductance must be a result of the increase in

convection through the nest. While the nest wall reduces the wind

speed within the nest cup compared to the tunnel, wind speeds of

0.6 km h21 and 0.8 km h21 were detected in the nest in the light

air condition for A. rufogularis and M. flavigula, respectively. The

lower wind speed within A. rufogularis nests indicates that the nest

wall provides more protection from the wind and may also

contribute to the lower thermal conductivity of the nest in

comparison to M. flavigula. It is also reasonable to assume that the

wind speed within the nest increases with the wind speed in the

tunnel, increasing the thermal conductivity at higher wind speeds.

The consequence of increased wind currents around and

through the nests in these experiments would be a near-doubling

in heat production required by the parent when incubating. There

are clear energetic costs to some birds when wind speeds increase

[15,45] however convection is known to influence the choice of

roosting site for non-breeding birds as well. Goldfinches (Carduelis

tristis) save 12% of their energy by roosting in sheltered sites,

whereas heat loss from the Carolina and mountain chickadees

(Parus carolinensis and Poecile gambeli) is reduced by 38 to 100% when

using sheltered sites, primarily a result of reduced exposure to wind

[46–48]. Keep in mind, also, that birds nesting in the wild would

be subjected to wind speeds greater than those measured here and

therefore the effect of wind on conductance may be more

pronounced in natural systems. In addition, wind has unpredict-

able fluctuations in speed and direction (turbulence) in natural

systems, which was not replicated here [49]. It is likely that there is

Figure 5. The effect of wind speed on nest conductance. Relationship between wind speed (km h21) and (A) total conductance (G, mW uC21)
and (B) surface specific conductance (GA, W uC21 m22) for cup-shaped nests of Acanthagenys rufogularis (black line) and Manorina flavigula (grey line).
The total conductance of the control (uncovered heat source) is also shown (dashed line). Each point represents the mean 6 95% CI for each
treatment mean. Points that share common symbols (a,b,c) are those that are not significantly different according to a Tukey-Kramer HSD. Wind
speed treatments consist of still, calm and light air.
doi:10.1371/journal.pone.0032252.g005
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an ever-increasing effect of wind on convective heat loss from

nests, which could considerably influence the incubation cost for

the parent [44]. Further work on convective heat loss from birds’

nests under stronger wind conditions should investigate this idea.

ii) Open nests. As the rate of heat loss from open nests is

greater than for sealed nests in calm air, when an incubating bird

takes leave to forage in calm conditions, the clutch will be

subjected to rates of heat loss between 19 to 22% higher. This can

increase developmental time and decrease hatching success [50–

52]. When wind speed increases to light air, unsealed A. rufogularis

nests lose 11% more heat than sealed nests under comparable

wind conditions. However, the difference between sealed and open

nests does not hold true for M. flavigula – the sealed nest loses heat

at the same rate as the open nest. The disparity between the

responses of the nests of these species may be related to the nest

structure. The majority of M. flavigula nests have an uneven nest

rim and when viewing them from the side, many small twigs can

be seen extending above the nest lip horizon at an angle. This is

Table 4. Comparison of the thermal and structural properties of nests of Acanthagenys rufogularis and Manorina flavigula under
each wind speed treatment.

Species

Nest thickness
(X)

Surface area
(Ā)

Wind
speed

Total
conductance
(G)

Surface-specific
conductance
(GA)

Thermal
conductivity
(k)

cm cm2 mW 6C21 W 6C21 m22 mW 6C21 m21

Acanthagenys rufogularis 0.9360.19 122.46612.08 still 48.462.7 4.060.4 36.766.0

calm 51.365.3 4.260.5 38.766.8

light air 82.766.8 6.860.8 63.0611.8

Manorina flavigula 2.9660.38 233.01616.82 still 45.165.4 2.060.3 56.867.1

calm 47.165.1 2.160.3 59.768.9

light air 83.9610.3 3.660.6 105.5612.3

Statistics include the mean 6 95% confidence interval.
Surface area (Ā) is the geometric mean of the internal (AI) and external (AE) surface areas.
doi:10.1371/journal.pone.0032252.t004

Figure 6. The effect of wind speed on heat loss from nests. Relationship between wind speed (km h21) and heat loss (W) from cup-shaped
nests of Acanthagenys rufogularis (black) and Manorina flavigula (grey) while nests are sealed (circles with solid lines) and open (square points with
dashed lines). Each point represents the mean 6 95% CI for each treatment mean. Points that share common symbols (a,b,c,d) are those that are not
significantly different according to a Tukey-Kramer HSD. Wind speed treatments consist of calm and light air.
doi:10.1371/journal.pone.0032252.g006
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rarely seen in the case of A. rufogularis nests. It may be that there is

a greater opportunity for air leaks to occur in the sealed treatments

for M. flavigula, compared to nests of A. rufogularis. The

consequence of this may be that the rate of heat loss under light

air conditions for M. flavigula nests appears more pronounced than

it would be if an incubating parent was sitting on the nest,

moulding their underbelly to the nest edges. Alternatively, the rate

of heat loss from M. flavigula nests in light air may not increase

when the lid is removed, as the coarse outer structure may help to

break up the flow of air around the nest to deflect some of it away

from the nest opening.

If the rates of heat loss between treatments accurately represent

those of attended versus unattended nests, then it means that

unattended M. flavigula clutches may not cool as fast as A. rufogularis

clutches at increased wind speeds. This would have some bearing

on the rates of nest attendance between the two species where M.

flavigula could take longer recesses and forage for greater periods,

in turn reducing the cost of reproduction for this species, as occurs

in other species [53–56].

iii) No nest. The control treatment enables the nest data to be

put into perspective. The conductance from the heat source with no

protection from a nest (control) nearly tripled in light air conditions

compared to when surrounded by a nest. This demonstrates that

the nest does in fact help to ameliorate heat loss from the clutch by

58 to 65%, potentially reducing the energetic cost of incubation to

the parent. Ar and Sidis [57] found that the nest of the blackbird

(Turdus merula) helped reduce heat loss from eggs in still air by 25 to

30% however cooling times were halved when wind speed

increased to 2.7 km h21. In the present study, the difference in

conductance from the uncovered heat source and the heat source

protected by a nest increased with wind speed, suggesting that the

presence of a nest becomes even more important as wind speed

increases. Our findings provide further support for the benefit of

selecting sheltered nest sites [15]. In addition to the nest itself, the

surrounding vegetation can be important. This is the case for the

song sparrow (Melospiza melodia), where nests are constructed on the

lee side of the plant, such that surrounding shrubs reduce wind

speed around the nest by 73% [58].

(c) Summary
Here we have shown that in still air, the two species have a similar

nest conductance, a result of differences in nest dimensions. The

thickness of a nest is largely driven by the need to support the clutch

and incubating parent when comparing over a broad range of bird

sizes [35]. In addition, the size of the inner nest cup is somewhat

determined by the size of incubating parent and clutch. Therefore, it

could be argued that the overall construction of a nest is fixed to

some extent. However, in habitats where there are extreme

temperature changes, the nature of the nest may be essential to

the development of the clutch and the efficiency of temperature

regulation of the young [20,59]. Therefore, the highly contrasting

nest dimensions yet comparable conductance values may be

indicative of the plasticity in nest design within a species, with the

ultimate objective of achieving an appropriate nest microclimate.

However, small birds (such as those studied here) may have more

flexibility regarding structural design of nests than larger birds that

may be more restricted [35]. Furthermore, as nest thickness increases

with parent mass [35], the clutches of large birds may be protected

from convection to a greater extent than those of small birds.

Exposing the sealed nests to greater wind speeds, raises nest

conductance via a concurrent increase in the thermal conductivity.

Contrary to predictions based on convective heat loss, conduc-

tance is similar in the two species, although they construct their

nests in different parts of the canopy. A. rufogularis does not increase

the insulative value of the nest to account for the poorer protection

from wind afforded by its location near the ends of branches. M.

flavigula nests would potentially have greater protection from the

elements due to the dense canopy near the trunk, but the nest has

a thick nest wall, further adding to the protection of the offspring.

The significance of convection through the nest is a near-

doubling in heat production required by the parent when

incubating in light air conditions. However, this may be more or

less extreme for other species, depending on the ability of the nest

to impede wind currents [17]. Heat is lost from nests more rapidly

during parental recesses for both species at low wind speeds, with a

minimal increase in heat loss for A. rufogularis in light air. This

would result in an immediate increase in heat loss from the clutch,

thereby lengthening development time and reducing hatching

success or chick survival [52,60,61]. The incubating or brooding

parent will also be affected following a recess as extra energy will

be expended to rewarm the clutch [62,63]. In conclusion, building

a thermally favourable nest helps to save parental energy [13],

however convection increases conductance of heat from the nest

and therefore selecting an appropriate nest site that provides

additional shelter is important for avian reproductive success.
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