
Text Mining Improves Prediction of Protein Functional Sites
Karin M. Verspoor1*., Judith D. Cohn2, Komandur E. Ravikumar1, Michael E. Wall2,3*.

1 University of Colorado School of Medicine, Aurora, Colorado, United States of America, 2 Computer, Computational, and Statistical Sciences Division, Los Alamos

National Laboratory, Los Alamos, New Mexico, United States of America, 3 Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico,

United States of America

Abstract

We present an approach that integrates protein structure analysis and text mining for protein functional site prediction,
called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using
Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb
protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are
functionally important. We assessed the significance of each of these methods by analyzing their performance in finding
known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available
protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered
binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were
also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text
were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved
when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many
functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and
text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the
two methods using LEAP-FS further improves the quality of these predictions.
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Introduction

There are now more than 75,000 experimentally determined

structures in the Protein Data Bank (www.pdb.org [1]). Nearly

8,000 structures were deposited in 2010 alone, and the number of

depositions per year is rising. In particular, the number from

structural genomics initiatives recently cracked 10,000, and these

include a large number of proteins with unknown function. A

major challenge of modern structural biology is to fully realize the

potential of this resource to advance drug development, e.g. to

leverage structure determination of Mycobacterium tuberculosis

proteins for structure-based drug design [2].

After obtaining an atomic structure of a potential target, the first

key step in structure-based drug design is to identify functional

sites that might directly mediate drug interactions [3]. Compounds

that bind specifically to a target’s active site can interfere with

protein function, and such inhibitors are typically explored as drug

leads. Unfortunately drug leads are unsuccessful when they

inadequately block the active site, as often happens. To overcome

this limitation, drug developers have begun targeting alternative

sites where interactions can remotely disable protein activity; for

example, a recently discovered inhibitor of HIV protease blocks a

site that controls access to the active site [4]. Experimentally

derived knowledge of such alternative sites is scarce, however, and

computational methods are needed to identify both active sites and

alternative, functionally important sites. In particular, allosteric

sites, where molecular interactions can remotely control the

behavior of the active site, represent a potentially large, untapped

source of alternative sites for drug design [5].

There are a growing number of computational methods that

aim to identify and characterize functionally important sites in

protein structures for drug design (see, e.g. review [6]). We

developed a method called Dynamics Perturbation Analysis

(DPA), which uses analysis of protein dynamics [7,8,9,10,11,12].

DPA exhibited good performance in detecting small-molecule

binding sites in hundreds of proteins in a protein-ligand docking

test set [8,9], and is specifically designed to locate allosteric sites,

where binding causes changes in protein structure and dynamics

[9,11]. The development of an accelerated approximate method

called Fast DPA created the potential for high-throughput analysis

of protein structures to predict functional sites using DPA [8]. Fast

DPA enabled a typical protein domain to be analyzed in less than

a minute using a single core of a desktop computer, bringing

analysis of all ,100,000 protein domains in version 1.75 of the

SCOP database [13] within easy reach. Our preliminary

application of DPA to ,50,000 domains in an earlier version of

SCOP confirmed the feasibility of this task [14].

The good performance of DPA on a controlled test set of

hundreds of protein-ligand complexes suggested that DPA would

be a valuable resource for structure-based drug design [8,9]. In
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applying DPA to a comprehensive set of 100,000 publicly available

protein structures, however, information to validate predictions is

scarce compared to that for the test set. In most cases information

about functional sites is simply not available. In the relatively few

cases where information is available, we would like to use it for

validation. However, even when the literature indicates that a

small molecule binds to a protein at a specific site, this knowledge

might not have made it into a database and it is therefore

effectively hidden from a high-throughput computational system.

For example, when proteins are crystallized without a known small

molecule interaction, the interaction will be missing from a

database of information derived from crystal structures. Indeed,

one of the major problems in modern biology is the growing gap

between the knowledge captured in the literature and what has

been formalized in genomic databases [15]. Because it is simply

not feasible to manually follow up on functional site predictions for

100,000 protein structures, it is necessary to develop automated

methods for extracting relevant information from the literature.

There has been a recent increase in efforts to extract

information from the biomedical literature automatically [16,17],

including protein-protein interactions (e.g. [18,19]) and gene-

disease relationships (e.g. [20,21]). Text-based features have also

been successfully integrated into models for classification of protein

domains [22] as well as more generally of protein function

prediction [23,24]. The problem of text mining specifically for

functional site information, however, has been largely under-

explored. Because text describing functional sites involves

mentions of specific residues, we wondered mentions of residues

in text might be indicators of their functional importance, and

therefore might provide supporting evidence for functional site

predictions. Detection of residue mentions offers some interesting

advantages as a text mining problem: not only do residue mentions

exhibit regularities that can facilitate their detection [25,26,27],

but they also can be independently validated using physical data

(i.e., the protein sequence). Similar advantages were seen in

extraction of point mutation information from text [28].

Here we demonstrate the integration of high-throughput

structure-based and text-based functional site predictions. We

applied DPA to a comprehensive set of ,100,000 domains in the

SCOP database. We found the predictions recapitulated much of

the information about functional sites in the databases, but many

of the predictions were left unvalidated. In parallel, we used text

mining to automatically extract residue mentions from abstracts of

papers about the protein structure. We provide evidence that

residues mentioned in abstracts are often functionally important,

and show that DPA sites containing residues mentioned in text are

more likely to have validating information in the databases. Our

results show that DPA predictions provide a valuable resource for

drug design, and emphasize the importance of automated

literature mining for protein function prediction. In particular,

we found that integration of text analysis improves structure-based

prediction of protein functional sites.

Results and Discussion

Protein structures and text corpus
The subject of our study was a comprehensive set S of 106,411

protein domains with publicly available, experimentally deter-

mined structures (Methods).

We performed structure-based function prediction on a subset

SX of S, consisting of 98,934 domains with structures determined

using X-ray crystallography. The importance of selecting just the

X-ray structures was to create a set that was consistent in the type

of structural model. To optimize compatibility with our structure-

based prediction method, we only selected domains for which the

entire structure was described using just a single chain identifier.

To perform text-based predictions, we compiled a corpus C

from a set of MEDLINE abstracts linked to the domains in S

(Methods). In all we retrieved 17,595 abstracts representing

primary references for 30,816 PDB entries, covering 88,707

SCOP domains.

Database-derived annotations of sites
We assembled a table of residues from the domains in S and

annotated each residue with information corresponding to three

types of database-derived data: whether the residue lies within a

site near a small molecule in the protein structure (NSM); whether

the NSM interaction has been validated by a manual literature

search (NSM-valid); and whether the residue lies within a catalytic

site identified by a manual literature search (CSA). We sometimes

refer to the combined NSM-valid and CSA data as ‘‘curated

annotations’’ as these are derived from manually curated

functional site annotations.

The coverage of S by these annotations is illustrated in Figure 1.

To summarize, there were a total of 189,034 NSM sites in 71,320 of

the SCOP domains. Using the BindingMOAD database of ligand

interactions [29,30] we identified 7,287 of these sites in 5,853

domains as valid (NSM-valid). The BindingMOAD database also

provided an ‘‘invalid’’ annotation for 5,525 sites in 2,347 domains

(NSM-invalid). Using the Catalytic Site Atlas (CSA) [31] we found

catalytic site annotations for 2,235 of the SCOP domains.

Protein and family annotations. Multiple sequence

alignments (MSAs) were used to transfer NSM, NSM-valid, and

CSA annotations to residues at equivalent positions across SCOP

families (Methods). Two types of transfers were performed,

differing in their scope. Highly conservative protein level transfers

were performed just between domains that correspond to the same

protein. Family level transfers were performed between any two

domains within the same SCOP family. The MSAs were also used

to compute residue conservation scores, e.g., for identifying when

annotations and predictions were associated with highly conserved

residues (Methods).

Protein level transfers extended the number of domains in S

having NSM annotations to 87,488, the number having NSM-

valid annotations to 19,973, and the number having CSA

annotations to 12,687 (Figure 1). Family level annotations

increased the coverage even further, to 99,926 having NSM,

42,298 having NSM-valid, and 34,658 having CSA annotations

(Figure 1). In terms of percentages, when annotations were

transferred at the protein level, 82% of the SCOP domains had a

NSM site, 19% had a NSM-valid site, and 12% were annotated

with a CSA site. The percentages improved when annotations

were rolled across the family: 94% of domains had a family-level

NSM site, 40% had a family-level NSM-valid site and 33% had a

family-level CSA site. Overall, the NSM, NSM-valid, and CSA

annotations provided significant coverage of the SCOP domains;

at the same time, however, there was a large gap between the

percentage having a NSM site and the percentage having a NSM–

valid site or CSA site, providing an opportunity for discovery of

new supporting evidence from text.

Structure-based predictions
Approach to structure-based prediction. We performed

structure-based predictions using Dynamics Perturbation Analysis

(DPA), as previously described [8,9,12]. Briefly, in DPA [9], a

protein model is decorated with M surface points that interact with

neighboring protein atoms. The probability distribution P(0)(x) of

protein conformations x is calculated in the absence of any surface

Text Mining Improves Functional Site Prediction
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points, and M protein conformational distributions P(m)(x) are

calculated for the protein interacting with each point m. Any

model may be used to generate conformational distributions; for

ease of computation, we used an anisotropic elastic network model

[32,33,34,35] of protein vibrations in contact with a temperature

bath. The relative entropy Dx between P(0)(x) and P(m)(x) is

calculated for each point m, and is used as a measure of the change

in the protein conformational distribution upon interacting with

point m. Points with high Dx values are selected and spatially

clustered, and residues near these clusters are predicted to be

functional sites. For high-throughput applications such as the

present one, we developed an approximate Fast DPA method that

performs as well as the original one in predicting small-molecule

binding sites [8]. Further details of our implementation of DPA are

provided in the Methods section.

Prediction statistics. We performed structure-based

predictions on the subset SX of S that was best-suited for analysis

by Fast DPA (hereafter referred to simply as DPA). As mentioned

above, SX contained a total of 98,934 domains. A successful run

produced two outputs: (1) a list of surface points with XYZ

coordinates, a Dx value, and a label for each distinct set of spatially

clustered points meeting the threshold requirement; and (2) a table

of DPA sites, each site consisting of a set of protein residues, where

each residue has a heavy atom within 5 Å of at least one point

from a given set of clustered points in (1).

DPA produced predictions for a subset SDPA covering 95,741

(97%) of the domains in SX. This yielded a set of predictions PDPA

of 122,866 functional sites. Of all the domains in S, 90% have at

least one functional site predicted by DPA. The coverage of those

domains by DPA is therefore comparable to the coverage of the

domains by family-level NSM annotations (94%), but is high

compared to NSM-valid (40%) and CSA (33%) annotations. It is

precisely this gap between the number of predictions and validated

annotations that we wish to address by the literature analysis,

seeking independent evidence supporting the predictions and

increasing our confidence in them.

Significance of structure-based predictions. Several

analyses highlighted the significance of DPA predictions. (1)

Many of the NSM, NSM-valid, and CSA annotations were

recovered by DPA. (2) Conservation of residues was highly

enriched in DPA sites. (3) Many of the DPA sites corresponded to

sites with a database annotation, and DPA sites with high

conservation were enriched in annotations. We describe these

analyses in turn, beginning with the coverage of annotations by

DPA sites.

There were a total of 176,910 NSM sites among the domains in

SDPA (Figure 2). The predictions overlapped 44% of these sites

(Figure 2A). The overlap increased to 68% for sites that overlapped

a NSM-valid site (Figure 2A), to 73% when the sites contained

residues with direct CSA annotations (Figure 2B), and to 85% when

the sites had both CSA and NSM-valid annotations (Figure 2B).

Interestingly, the overlap decreased to 15% for NSM sites that were

annotated as ‘‘invalid’’ by the MOAD database (Figure 2A). Thus,

DPA preferentially highlighted functionally relevant NSM sites

Figure 1. Availability of annotations for protein domains. Residues in protein domains were annotated using the following sources: 1) NSM,
2) NSM-valid, 3) CSA, and 4) text residue. A domain is labeled as annotated if one or more residues in the domain have an appropriate annotation.
Stacked bars for each of the sources include cumulative numbers for direct annotations, annotations transferred at the protein level, and annotations
transferred at the family level. The vertical order of the legend reflects the vertical order of the bars.
doi:10.1371/journal.pone.0032171.g001
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compared to all sites, and preferentially ignored NSM sites that were

associated with irrelevant interactions.

Sequence conservation was substantially enriched in DPA

predicted functional sites. Conservation MSAs were available to

calculate lumped conservation scores for 62,759 of the sites in PDPA

(Methods). We obtained a p-value for each of these lumped scores

by calculating the probability of obtaining a score at least as good

as what would be achieved by randomly selecting residues from

the SCOP domain (Methods). For 14,778 (24%) of these sites, the

p-value was , = 0.01, and for 8,983 (14%) of the sites, the p-value

was , = 0.001 (Table 1). Thus, scores with a p-value, = 0.01 were

found 24 times as often and scores with a p-value, = 0.001 were

found 140 times as often as expected at random.

Coverage of DPA sites by curated annotations was significant,

and the coverage became higher as the degree of residue

conservation increased. Of all the predicted functional sites in

PDPA for which a transfer alignment was available, 43% had a

direct NSM annotation, and 85% had a family-level NSM

annotation (Table 1). 5% had a direct and 35% had a family-level

curated (NSM-valid or CSA) annotation. Among highly conserved

DPA sites (p-value, = 0.01) 74% had a direct and 98% had a

family-level NSM annotation. 14% had a direct and 75% had a

family-level curated annotation. Among very highly conserved

DPA sites (p-value, = 0.001) 77% had a direct and 98% had a

family-level NSM annotation. 16% had a direct and 85% had a

family-level curated annotation.

Text-based predictions
Approach to text-based prediction. The fundamental

assumption underlying our text mining approach is that an

amino acid residue mentioned in an abstract from a publication

about a protein structure is likely to be part of a functional site. We

Figure 2. Coverage of sets of NSM sites by functional site predictions. (A) Coverage of NSM-valid sites by predictions is enriched and
coverage of NSM-invalid sites is suppressed with respect to all NSM sites. (B) Sets of NSM sites with a text match are enriched in overlaps with
predictions. Comparisons are made for all NSM sites, NSM-valid sites, NSM sites containing a CSA annotation, and NSM-valid sites containing a CSA
annotation.
doi:10.1371/journal.pone.0032171.g002
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found support for this assumption in our analysis of abstracts

associated with PDB structures.

To constrain the text mining to a relevant set of literature, we

obtained the PubMed identifier for the primary reference for each

PDB structure, where available. Each publication analyzed was

therefore known to be relevant to a specific protein structure. We

defined linguistic patterns corresponding to many possible

variations for referring to residues in text. These patterns were

applied to the abstract text and used to compile a database of

residue mentions. Residue mentions that matched physical

residues of the appropriate PDB entry were used as evidence that

these residues are functionally important. Residue mentions in an

abstract that could not be associated to a physical residue in the

source PDB record associated with the abstract were ignored in

subsequent processing.

Our text mining strategy was to extract from the text corpus all

mentions of a specific residue, i.e., an amino acid at a specific

position in the sequence (Methods). A simple mention of e.g.

‘‘Glycine’’ was not sufficient to support extraction; a localizable

mention such as ‘‘Glycine 23’’ was required. We also included

residues mentioned in the context of a mutation at a specific site,

e.g., ‘‘Gly23Ala’’ (Methods).

We evaluated the performance of the residue mention

extraction algorithm on three different corpora with manually

curated residue mentions: E1, to evaluate extraction of mutation

mentions from abstracts; E2, to evaluate extraction of residue or

mutation mentions from abstracts; and E3, to evaluate extraction

of residue or mutation mentions from full text. E1 consisted of 813

abstracts containing mentions of mutations, compiled for Muta-

tionFinder [28] and divided into E1_dev development (305 abstracts)

and E1_test test (508 abstracts) subsets. E2 consisted of 100 abstracts

containing mentions of residues and mutations, compiled and

annotated by Nagel [36]. E3 consisted of 50 full text articles

containing mentions of residues and mutations, compiled and

annotated by us for this study. All three of these corpora are

available at http://bionlp-corpora.sourceforge.net/proteinresi-

due/. The full MutationFinder system is available at http://

mutationfinder.sourceforge.net/.

Results of the evaluation are summarized in Figure 3. There

were 550 mutation mentions in the development set E1_dev. Our

system extracted 454 point mutations, of which 435 were correct,

resulting in a precision of 96% and a recall of 79% (see Methods

for specific definitions of the precision and recall). In the test set

E1_test, there were 907 mutation mentions. The system extracted

774, of which 728 were correct, leading to precision of 95% and a

recall of 80%.

The curated mentions in E2 include mentions of amino acids or

mutations without corresponding sequence positions; here, we

consider only 262 of the original 362 mentions, keeping only those

that are tied to a specific position. Our system extracted 293

mentions, of which 259 were correct, resulting in 88% precision,

99% recall.

Finally, E3 had 3120 curated residue mentions and mutation

mentions. The system extracted 2875 mentions, 2463 were

correct, leading to 86% precision and 79% recall.

The performance on these corpora indicates that the system

effectively extracts residue mentions from abstracts and full text.

Moreover, many of the errors could be understood by examining

Table 1. Correspondence of DPA predictions to annotations.a

Transfer MSA Available Conservation MSA Available Conservation P-value, = 0.01 Conservation P-value, = 0.001

Number of DPA Sites 118397 62759 14778 8983

Direct Annotation 52451 44.3% 29392 46.8% 11350 76.8% 7255 80.8%

NSM 50398 42.6% 28286 45.1% 10869 73.5% 6948 77.3%

Curated (NSM-valid or CSA) 5902 5.0% 3814 6.1% 2003 13.6% 1474 16.4%

Text 8527 7.2% 5211 8.3% 2687 18.2% 1803 20.1%

Curated or Text 13292 11.2% 8279 13.2% 4208 28.5% 2909 32.4%

Curated and Text 1137 1.0% 746 1.2% 482 3.3% 368 4.1%

Protein-Level Annotation 74527 62.9% 40815 65.0% 13108 88.7% 8245 91.8%

NSM 73417 62.0% 40313 64.2% 12966 87.7% 8153 90.8%

Curated (NSM-valid or CSA) 21714 18.3% 13410 21.4% 6285 42.5% 4552 50.7%

Text 22735 19.2% 14380 22.9% 7393 50.0% 4802 53.5%

Curated or Text 31291 26.4% 19402 30.9% 8845 59.9% 5733 63.8%

Curated and Text 13158 11.1% 8388 13.4% 4833 32.7% 3621 40.3%

Family-Level Annotation 100826 85.2% 59827 95.3% 14506 98.2% 8833 98.3%

NSM 100193 84.6% 59652 95.0% 14504 98.1% 8831 98.3%

Curated (NSM-valid or CSA) 40816 34.5% 28147 44.8% 11014 74.5% 7650 85.2%

Text 44990 38.0% 32110 51.2% 12210 82.6% 7853 87.4%

Curated or Text 54773 46.3% 37686 60.0% 12936 87.5% 8162 90.9%

Curated and Text 31033 26.2% 22571 36.0% 10288 69.6% 7341 81.7%

aEach entry in the table contains a number of DPA predictions that have a given type of annotation. Percentages are with respect to the numbers in the four subsets of
DPA predictions indicated at the head of each of column. The subsets are increasingly restrictive from left to right: predictions in a domain for which a transfer MSA is
available; predictions in a domain for which a conservation MSA is available; predictions for which the conservation P-value is no greater than 1022; and predictions for
which the conservation P-value is no greater than 1023. Annotations are organized into three major sections that are increasingly expansive from top to bottom, as
described in the text: direct annotations, protein-level annotations, and family-level annotations. The meaning of the NSM, NSM-valid, CSA, and Text annotations is as
described in the text.

doi:10.1371/journal.pone.0032171.t001

Text Mining Improves Functional Site Prediction

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e32171



specific cases. For example, false positives in E1 were predom-

inantly due to the similarity of mutation expressions to the names

of other entities such as cell lines (L23A), genes (E2F) and plasmids

(R377). In E3, we found errors that were representative of

previously noted broad differences between abstracts and full text

publications [37]. For instance, mentions of residues and

mutations were detected in the bibliography and other sections

that contained tangential information. In some cases, citations in

full text articles were confused with relevant mentions, e.g.

‘‘tyrosine (6)’’ was interpreted as a tyrosine at position 6. We also

encountered residue mentions such as in the phrase ‘‘The catalytic

residues Cys105L, His262L, and Asn286L together with Trp106L,

Pro287L, and Trp288L …’’. In the underlined cases, the system

extracted the mention as a point mutation due to the association of

the letter ‘L’ with the amino acid leucine. In actuality, in these

cases the letter ‘L’ refers to the light chain of the protein and they

are therefore single residue mentions rather than point mutations.

This analysis of the false positives on the full text corpus indicates

that the patterns originally developed for abstracts will need to be

adjusted for full text articles. The system also missed some curated

residue and mutation mentions because the patterns do not yet

capture the full range of variations in how these mentions appear

in the corpora. Overall, the system performed well enough to be

useful for the present study, and analysis of specific cases pointed

to opportunities for future improvement.

Validation of text residues using protein structures. A

high level view of the process that builds on the extraction of

residue mentions is shown in Figure 4, with the details available in

Methods. The process aims to map residues mentioned in the text

to physical residues in the relevant protein domains.

Text mining of the corpus C resulted in the identification of one

or more text residues in 6,109 abstracts; 5,236 of these abstracts

Figure 3. Intrinsic evaluation of the text mining system for extracting residue mentions and/or mutation mentions. Three corpora
were evaluated. E1 contains only annotations of mutations, and is subdivided into development (E1_dev) and test (E1_test) corpora. E2 and E3 include
annotations of residues and mutations. E2 consists of abstracts only, while E3 consists of full text articles.
doi:10.1371/journal.pone.0032171.g003

Figure 4. Illustration of the process for extracting residue mentions and mapping them to physical residues in protein structures.
Text mining for residue mentions is performed on the abstracts from the primary references cited in the PDB. A text residue is represented by a
residue number and one or more 3-letter amino acid codes. An amino acid for a text residue is marked with an asterisk if a text occurrence suggests it
is a mutation from wild type. Physical residues corresponding to a text residue are indicated using a PDB ID, chain identifier, residue number, and 3-
letter amino acid code.
doi:10.1371/journal.pone.0032171.g004
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contained mentions of text residues that could be unambiguously

matched to physical residues in relevant proteins, representing

nearly 30% of the original abstracts (Figure 5). In all, 14% of

abstracts with text occurrences were filtered out with a physical

validation step; most of the filtered abstracts are expected to

contain false positives.

A physically verified text residue was found for 18,229 of the

domains in S (Figure 1). We transferred these text residue

annotations to other domains at the protein level or family level

using MSAs in a manner identical to that used to transfer NSM

and CSA annotations. Transfers at the protein level increased the

number of domains with a text residue to 37,881, and transfers at

the family level further increased the number to 68,143. The

resulting coverage of domains by text residues (64%) was

significantly higher than the coverage by NSM-valid (40%) or

CSA (33%).

Significance of text-based predictions. Residues mentioned

in text were more likely to be found in a NSM-valid or CSA site than

residues not mentioned in text. The subset of proteins that have at

least one residue mentioned in text contained a total of 5,192,315

residues, 44,701 of which were mentioned in text. Of these, 17,457

(39%) matched a NSM-valid or CSA annotation. The remaining

5,147,614 residues did not have a text match. Of these, 310,821

(6%) matched a NSM-valid or CSA annotation. Thus, residues

mentioned in text were 39/6 = 6.5-fold more likely to match a

NSM-valid or CSA annotation.

The conservation of residues mentioned in text was also

elevated relative to residues for which no mention was found.

For residues with no matching text, the mean conservation score

(fractional ranking of conservation compared to all residues in the

same domain, 0 being lowest and 1 being highest) was 0.418 and

the median was 0.356, while residues mentioned at least once in an

abstract had a mean conservation score of 0.566 and a median of

0.531. This result lends additional support to the hypothesis that

residues mentioned in text tend to be functionally important.

Finally, many of the residue mentions could be mapped to

functional site annotations. The text mining of C yielded a total of

14,127 physically verified text residues (Figure 6). More than half

of these (63%), could be mapped to a NSM site at the protein level.

By contrast, relatively few could be mapped to a NSM-valid (19%)

or CSA (9%) site. Matches were more frequent when including

annotations transferred across the family: in this case, 74% of text

residues could be mapped to NSM sites, 30% to NSM-valid sites,

and 18% to CSA sites. At the same time, there were many more

text residues that matched NSM sites than matched NSM-valid or

CSA sites.

Overall, these results provide strong evidence for the functional

significance of residue mentions. They also show that automatic

extraction of text residues from the literature can identify a large

number of small-molecule binding sites that are not already

annotated in manually curated databases.

Limitations of the text mining approach. The corpus C

consists of carefully selected articles that are manually provided as

the primary reference for a given PDB record. This initial limitation

was necessary to establish the fundamental viability of the LEAP-FS

approach prior to generalizing the methods to a larger, noisier, set of

literature. Many issues will complicate the text mining when we

extend beyond this controlled set, including the need to ground

residue mentions in a specific protein sequence, and ambiguity in

protein naming. Indeed, we already have begun developing

Figure 5. Availability of text-extracted residue mentions in the corpus of abstracts C. The number of abstracts with residue mentions is
comparable when further constrained to those residues that can be mapped to physical residues in protein structures.
doi:10.1371/journal.pone.0032171.g005
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strategies both for extracting protein-residue relations [38] and for

disambiguating protein mentions [39].

Another limitation is that we require an exact match to the

position and (possibly mutated) amino acid in the protein sequence

for all residue mentions. Because of this limitation, we are

undoubtedly missing some valid matches. However, we expect

such misses to be rare in the present study because each article is the

primary reference for a deposited structure. We might catch more

valid residue mentions by attempting to accommodate different

residue numbering schemes, but this would almost certainly

introduce some false positives, which we seek to minimize.

Integration of structure-based and text-based
predictions

Structure-based predictions were improved when integrated

with residue mentions. Coverage of NSM sites by DPA sites

increased substantially for NSM sites containing residues men-

tioned in text, from 44% without to 73% with text (Figure 2B).

The availability of text evidence also increased the coverage of

NSM-valid sites by DPA sites, from 68% without to 82% with text.

The increase was not as significant when applied to the set of NSM

sites containing a CSA annotation, from 73% to 76%, but was

more significant when applied to the set of NSM-valid sites

containing a CSA annotation, from 85% to 92% (though there are

very few examples of the last case). Interestingly, the coverage of

the set of NSM sites having a CSA annotation was the same as the

coverage of the set of NSM sites matching a text residue (73%),

and the coverage of the set of NSM-valid sites having a CSA

annotation (85%) was similar to that of the set of NSM-valid sites

matching a text residue (82%). The similarity of these percentages,

combined with the lack of significant influence of text on the recall

of NSM sites containing a CSA annotation, suggests the possibility

that text mentions might be providing information that is similar

to CSA annotations.

Structure-based predictions containing a residue mentioned in

text were enriched in functional annotations (Table 1). Whereas

5% of all DPA sites had a curated (NSM-valid or CSA)

annotation, 14% of the subset of DPA sites with a text residue

had a curated annotation. The same trend was observed for

curated annotations transferred using MSAs: in this case, 18% of

all DPA sites had a protein-level annotation, compared to 58% of

DPA sites with a text residue; 34% of all DPA sites had a family-

level annotation, and 69% with a text residue had an annotation.

Chances of finding a curated annotation for a DPA site therefore

increased between two- and three-fold if the site contained a

residue mentioned in text.

On the flip side, text residues that overlapped a DPA site were

twice as likely to have functional annotations compared to ones

that did not overlap a DPA site. Of the 14,127 physically verified

text residues, 11,541 were in SCOP domains that had a DPA site.

About half of these residues (5,509) overlapped a DPA site, and of

these, 18%/39%/58% had a direct/protein/family level curated

annotation. The other half (6,032) did not overlap a DPA site and

only 9%/20%/30% of these had a direct/protein/family level

curated annotation.

Text evidence increased the overlap between residues associated

with NSM sites and DPA predictions. The overlap was

characterized using residue-wise recall and precision statistics

(Methods), and was calculated for NSM vs. NSM-valid sites, with

Figure 6. Overlap of physically-verified text residues with existing annotation sets. Annotation types and description of stacked bars for
NSM, NSM-valid, CSA, and Curated is as described in Figure 1.
doi:10.1371/journal.pone.0032171.g006

Text Mining Improves Functional Site Prediction

PLoS ONE | www.plosone.org 8 February 2012 | Volume 7 | Issue 2 | e32171



and without text evidence. Full results of the comparison are

shown in Figure 7 and illustrate a clear trend of improvement in

both recall (Figure 7A) and precision (Figure 7B) with the

availability of validated NSMs and text. The main result of

the comparison can be summarized by focusing on cases where the

precision or recall is 0.5 or higher. Out of all NSM sites that match

a prediction in PDPA, 53% of them had a recall of 0.5 or higher.

The percentage increased to 63% for NSM sites containing a text

residue, 62% for NSM-valid sites, and 69% for NSM-valid sites

containing a text residue. 47% of all DPA sites had a precision of

0.5 or greater, increasing to 59% of DPA sites containing a text

residue, 63% of DPA sites matching NSM-valid, and 77% of DPA

sites containing a text residue and matching NSM-valid.

The above results show that text residues do indeed provide

supporting evidence for structure-based predictions of functional

sites. Moreover, text residues were often found for sites for which

annotation is not yet available. Consider the set of 118,397 DPA

sites in structures for which a MSA was available (Table 1). Direct

curated annotations were found for 5% of these sites (Table 1,

‘‘Curated’’), and text residues were found for 6% of the remaining

sites for which no curated annotations were available (Table 1,

subtract ‘‘Curated’’ from ‘‘Curated or Text’’). Thus, use of text

residues more than doubled the number of DPA site predictions

for which supporting evidence was available. When annotations

were transferred at the protein level (or family level), text

annotations provided supporting evidence for 9,577 (or 13,957)

sites that had no curated annotations. In addition, of the 14,127

physically verified text residues, just 1,550 of them were already

associated with a direct, curated annotation, increasing to 5,520 at

the family level of annotation (Figure 6).

Finally, a major product of our analysis is the full set of 8,720

DPA sites (with or without an MSA available) that include one or

more matches to a physically verified text residue (File S2). A

direct curated annotation was already available for 1,179 of these

sites, and the remaining 7,541 represent our strongest leads for

future functional site annotations. Many of these sites contain

residues that can be transitively annotated by comparison to other

proteins; however, in these sites there were a total of 6,640 DPA

residues that have supporting literature evidence and yet had no

direct or transitive annotation available. A further 5,663 of these

residues could be linked to a non-curated or MOAD-invalid NSM

interaction through a protein- or family-level MSA, leaving 977

residues that were solely identified using LEAP-FS integration of

DPA and text analysis. These last predictions are entirely unique

products of our method.

Significance of novel LEAP-FS predictions. To get a sense

for the value of these predictions, we read the supporting text for a

random sample of ten protein structures with little or no

annotation information available (Table 2). Among these

structures were 15 predicted residues that were mentioned in

text: 2 residues that could be mapped to an unvalidated NSM site

at the family level, 4 that could be mapped to a NSM-valid site at

the family level, and 9 residues without any annotations at all. The

text contained evidence for the possible functional importance of

all of the residues, supporting our assumption that a residue

mentioned in an abstract from a publication about a protein

structure is likely to be part of a functional site. The supporting

text exhibited variation in the type and strength of information

provided, including evidence from mutation studies, sequence

comparisons, and other sources. The residues were mostly

associated with enzymatic activity (Table 2, last column), in

agreement with our suggestion above that text mentions might be

providing information that is similar to CSA annotations

(Integration of structure-based and text-based predictions).

To illustrate the kind of information that could be obtained in a

more detailed read of the primary reference, we highlight one

example, PDB entry 1YK3 [40]. Entry 1YK3 contains a structure of

a protein from the M. tuberculosis structural genomics consortium

which has been putatively identified as an acetyltransferase

associated with antibiotic resistance. Structure-based prediction

using DPA predicted a large functional site that included 54

residues: 17–20, 45, 65, 67–71, 73, 77, 81, 85, 90, 91, 96, 98, 103–

109, 114–116, 129–133, 143–152, 166–170, 173, 176, 179, 180,

196, and 198 (Fig. 8). Automated analysis of the abstract highlighted

the functional importance His130 and Asp168. There was no

evidence for the importance of His130 found in any of the databases

we examined. The Asp168 residue contacts a biologically relevant

ligand in another structure in the same SCOP family. The full text

Figure 7. Residue-wise performance of functional site predictions. (A) Fraction of NSM sites satisfying various thresholds of recall. (B) Fraction
of DPA predictions satisfying various thresholds of precision. The performance is compared using NSM vs. NSM-valid sites, and with or without text
matches. The precise definitions of the recall and precision are described in the Methods.
doi:10.1371/journal.pone.0032171.g007
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of the primary reference, which was not automatically analyzed,

states that His130 and Asp168 are likely catalytic residues in the

putative active site [40]. The active site also includes many other

predicted residues. In addition, a channel extending from the active

site includes electron density that can be modeled as a crystallization

detergent that contacts other DPA-predicted residues: Gly96,

Trp98, Leu106, Ile133, Phe143, Leu147, and Ile151. A separate

channel extending from the active site was suggested as a likely

binding site for the acyl-CoA cofactor, but this channel is not

obviously associated with the predictions. Overall the integrated

LEAP-FS analysis highlighted a putative active site that might be

worth mentioning in annotations, and suggested the possibility of a

previously unappreciated functional role of the detergent-binding

site, perhaps as an allosteric site.

Taken together, our data show the ability of LEAP-FS to

highlight the functional importance of many residues not yet

documented in biological databases. These results illustrate the

potential for text analysis to make a substantial impact in providing

supporting evidence for predictions, and in identifying new

annotations.

Related work
Our study investigated integration of structure analysis and

literature analysis for improved predictions of protein functional

Table 2. Summary of text linked to residue mentions for a random sample of high-quality predictions.

PDB ID (Chain) Protein Name Residue(s) Text summary

153L (A) Goose lysozyme Glu73a NAG O6 directly hydrogen bonds to Glu73 OE2 [59]

1AB0 (A) V32D/F57H Adipocyte Lipid-Binding
Protein

Asp32, His57, and Cys117b Phe57 in WT is part of the ligand binding portal, and Asp32 and His57 form a
salt bridge in the mutant that controls access to the ligand binding site.
Cys117 lies within the internal lipid-binding cavity [60]

1EYJ (A) Fructose 1,6-Biphosphatase Asp74b Asp74 is involved in the forward reaction of this enzyme [61]

1GU9 (A) Mtb alkhydro-peroxidase Cys133, His137 Cys133 is a catalytic sulfhydryl group,
His137 is involved in a relay to deprotonate Cys133 [62]

1I8B (B) Chalcone synthase Phe256a Gly256 is in the active site in the wild type and the whole paper is about
mutations to this residue, including G256F [63]

1LAR (A) Receptor-like protein tyrosine
phosphatase LAR

Leu1644 Leu1644 is responsible for inactivity of the protein and mutation to Tyr
conferred robust PTPase activity to D2 domain [64]

1QOB (A) Anabaena ferrodoxin Gln70 Gln70 is at an interface that makes contact with a key interface but is not as
critical as other residues in determining oxidation kinetics [65]

1TS2 (A) Toxic shock syndrome toxin-1 His135, Gln136 H135A appears to reduce superantigenicity by altering properties of TCR
interaction surface and is tied for the largest joint reduction in
superantigenicity and lethality. Q136A causes a dramatic conformational
change [66]

1XYH (A) Human cyclophilin J Gln52b Gln52 expected to be an active site based on sequence alignment [67]

1YK3 (A) Putative antibiotic resistance protein
from Mtb

His130, Asp168b His130 and Asp168 are both in the active site and have a putative roles in
substrate binding and catalysis [40]

aFamily-level NSM annotation available.
bFamily-level NSM-valid annotation available.
doi:10.1371/journal.pone.0032171.t002

Figure 8. High-quality functional site prediction with text evidence for PDB entry 1YK3 [40]. The protein is displayed in wall-eyed stereo
pairs as a light blue ribbon with a semitransparent surface. The predicted functional site from structure-based analysis is colored yellow, and the
predicted residues mentioned in the abstract of the primary reference are rendered as sticks colored orange (His130) and magenta (Asp168).
doi:10.1371/journal.pone.0032171.g008

Text Mining Improves Functional Site Prediction

PLoS ONE | www.plosone.org 10 February 2012 | Volume 7 | Issue 2 | e32171



sites. It is the first to quantitatively demonstrate improvement

when integrating such methods; however, other approaches exist

for functional site prediction (see, e.g., those listed in [3]), and these

could also be potentially integrated with literature analysis. In

particular, other structural analysis methods have been applied

globally to publicly available protein structures, and, following our

approach, these could be coupled to literature analysis. One

specific example is the CASTp method which has been used to

automatically map surface clefts to annotated functional sites in

4,922 PDB structures [41]. Another is the geometric potential

method for discovering ligand-binding sites, which was applied to

5,263 protein chains in the PDB [42]. Many other structure-based

functional site prediction methods exist (see, e.g., those listed in

[12]) and some of these might be suitable for high-throughput

analysis and be equally amenable to integration with the literature

analysis.

Prior efforts have addressed information extraction from the

protein structure literature, and we have drawn on these efforts

where possible. The PASTA (Protein Activation Site Template

Acquisition) system [43] aimed not only to recognize specific

residue mentions, but also to explicitly relate those residues to a

given protein and even to categorize the substructure of the

protein where the residue is found using deep natural language

processing techniques. Several systems addressing the more

specific problem of extracting point mutations have appeared

[28,44,45,46], including MutationFinder [28], whose corpora we

analyzed (corpus E1). These systems used regular expression

patterns and one system additionally attempted to classify the

functional impact of those mutations [47]. Many of these systems

tackled the challenging task of recognizing protein mentions and

normalizing them to a database identifier, a problem we deferred

by constraining our literature to the set of abstracts directly linked

to the PDB. Caporaso and colleagues [48] compared Mutation-

Finder to a physical approach in which mutations were identified

by aligning a PDB protein sequence with its UniProt counterpart

and looking for differences.

Nagel and co-workers [36] adopted a text mining approach

similar to ours to identify functional sites, and we analyzed a

corpus from their study (corpus E2). They also aimed to extract

from text the associated protein in a specific organism, a feature

that we plan to integrate in future work. Some important

preliminary steps were taken to combine this work with

structure-based functional site prediction, but the results of this

preliminary work were inconclusive [49].

Finally, it is worth noting that the curation process of the

BindingMOAD database incorporates an information extraction

step that employs a natural language processing tool called BUDA

(Binding Unstructured Data Analysis) [50]. BUDA filters out

literature that is unlikely to contain binding data and highlights

binding information in the text (e.g. binding affinity data) for

manual inclusion in the database. The database curators note that

the BUDA tool is an important time-saver in their process, but

that it cannot be used for fully automated database updates since

the tool cannot adequately determine the precise protein-ligand

pair in the crystal structure for which the affinity data is provided.

Conclusions
The LEAP-FS approach combines two methods to achieve

high-confidence protein functional site prediction. The first is a

structure-based method known as Dynamics Perturbation Analysis

(DPA) that predicts functional sites by considering the dynamics of

physical interactions [9]. The second is a text mining method that

extracts mentions of specific residues from PubMed abstracts. We

found that each of the methods independently identified

functionally important sites in proteins, and that predictions

improved when the text-derived residues overlapped the DPA

predicted residues. Moreover, text analysis provided completely

new supporting evidence for many functional site predictions. We

conclude that text analysis improves prediction of protein

functional sites, and that it can have a substantial impact in

high-throughput applications.

Methods

See Table 3 for a glossary of terms and symbols used below and

in the rest of the manuscript.

Table 3. Glossary of terms and symbols.

Term or Symbol Meaning

NSM Near a small molecule in the crystal structure

NSM-valid Subset of NSM interactions annotated as valid in the MOAD database [26,27]

NSM-invalid Subset of NSM interactions annotated as invalid in the MOAD database [26,27]

CSA catalytic residue from the Catalytic Site Atlas [28] with evidence type LIT

Text Residue physically-verified residue mentioned in abstract of primary PDB reference

Transfer MSA Protein-level or family-level multiple sequence alignment used for transferring annotations between protein domains

Conservation MSA Subset of family-level transfer MSAs involving ten or more distinct proteins, used to calculate residue conservation scores

S Comprehensive set of 106,411 protein domains

Sx Subset of S consisting of 98,934 domains on which structure-based prediction was performed

C Corpus of 17,595 MEDLINE abstracts representing primary references for PDB entries

E1 Evaluation corpus of 813 abstracts annotated with mutation mentions, compiled for MutationFinder

E1_dev Development subset of E1, consisting of 305 abstracts

E1_test Test subset of E1, consisting of 508 abstracts

E2 Evaluation corpus of 100 abstracts annotated with both amino acid residues and mutation mentions, compiled by Nagel et al. [33]

E3 Evaluation corpus of 50 full text articles containing mentions of residues and mutations, compiled by the authors for this study

doi:10.1371/journal.pone.0032171.t003
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Protein structures
mmCIF files for 65,053 Protein Data Bank (PDB) entries were

downloaded in early May 2010 [51]. Definitions of 110,800

protein domains were obtained from release 1.75 (June 2009) of

the Structural Classification of Proteins (SCOP) database [13].

106,411 of these domains fully corresponded to data found in

37,980 May 2010 PDB entries. The structure dataset S consists of

these 106,411 domains (see File S1).

Data from mmCIF files were imported into an Oracle database

using the openMMS toolkit version 1.5.1 [52]. Domain definitions

were also imported into Oracle from the SCOP files dir.cla.s-

cop.txt_1.75, dir.com.scop.txt_1.75, dir.des.scop.txt_1.75, and

dir.hie.scop.txt_1.75., downloaded from http://scop.mrc-lmb.

cam.ac.uk/scop/.

Multiple sequence alignments for annotation transfer
For each of the 3,462 SCOP families containing at least two

domains (covering 101,545 of the domains in S), we performed one

or two levels of multiple sequence alignment (MSA) using

MUSCLE version 3.7 with default settings [53]. The first MSA

level was based on assigning each domain in a SCOP family a

unique protein id based on database references from the struct_ref

category of the mmCIF data. In order of preference, a domain was

assigned the Uniprot entry name, Genbank id or PDB id of the

mmCIF entity associated with the domain. For each of 3,300

families, we were able to perform a protein-level MSA for each

protein ID with more than one domain in the family. These

alignments, covering 96,137 domains, included all domains within

a family associated with a particular protein ID. The second level

of MSA was performed on a non-redundant set of domains within

each family with at least two distinct protein IDs. This was

accomplished by selecting the longest (or the first in SID

alphabetical order if there was a tie) domain for each unique

protein ID within a family. 2,320 families included at least two

distinct protein sequence IDs, covering 87,057 domains in S. By

merging the protein-level and the non-redundant family-level MSAs,

we were able to generate a virtual alignment of all domains in the

family by transferring family-level alignment positions from the non-

redundant domains to their cohorts in the appropriate protein-level

MSA.

Annotation of protein residues
The three main types of annotation are NSM, NSM-valid, and

CSA. The NSM-valid and CSA annotations together are

sometimes referred to as ‘‘curated annotations’’ in the text.
Sites near a small molecule (NSM). An NSM site was

defined as the set of residues in a protein chain near one particular

small molecule in a PDB entry. A protein chain was defined as an

mmCIF chain associated with one or more SCOP domains; while

a small molecule was defined very broadly as any mmCIF chain

not associated with a SCOP domain. mmCIF chains in contrast to

PDB author chains are comprised of a single molecule since they

are not constrained by a one-letter chain id. By this definition,

small molecules included simple organic molecules, ions,

polysaccharides, short polypeptides, and nucleic acid chains.

91% of the 189,034 NSM sites found in S were associated with

simple organic molecules or ions and thus had a small molecular

weight compared to the SCOP domains. Only 2% of NSM sites

were associated with polymers containing more than 20 residues

and all of these were nucleic acid chains. ‘‘Near’’ was defined as a

distance of 5 Å or less between a heavy atom in a protein chain

residue and a heavy atom in a small molecule.
Validated sites near a small molecule (NSM-valid). To

annotate biologically relevant NSM sites, we used the Binding

MOAD database (2009 version) [29,30] to label a subset of the

sites as valid (NSM-valid). The BindingMOAD database also

provides ‘‘invalid’’ annotations for interactions that appear to be

irrelevant; however, it is important to note that biologically

relevant interactions can occur at sites of spurious interactions with

crystallization additives and other irrelevant compounds, and

therefore that an invalid NSM site might nevertheless be a

functional site in some other context. Based on a manual reading

of the primary references for PDB structures, the MOAD website

provides the file every_bind.csv, which contains a listing of PDB

id/ligand pairs annotated as either valid or invalid (among other

data). The ligand in each pair is represented by MOAD as an

ordered list of one or more 3-letter hetero codes. We matched the

MOAD hetero code lists for a particular PDB id to the hetero

codes (as ordered within the mmCIF file) for small molecules

associated with NSM sites in that PDB structure. Thus, for

example, PDB entry 13 gs is a glutathione S-transferase

complexed with sulfasalazine. MOAD lists three ligands for

13 gs: sulfasalazine (SAS), glutathione (GLU-CYS-GLY), and

MES [2-(N-morpholino)-ethanesulfonic acid]. The first two are

labeled as valid ligand interactions and the third is invalid. The

hetero code list for each of these ligands corresponds to the hetero

code list of a small molecule for this PDB entry (glutathione is

listed in the PDB as GGL-CYS-GLY); and multiple instances of

these small molecules are near residues of the two glutathione S-

transferase chains in the structure. Thus, depending upon which

small molecule a glutathione S-transferase residue is near, it is

labeled as NSM-valid or NSM-invalid.

Catalytic residues (CSA). We obtained annotations of

catalytic residues from the Catalytic Site Atlas version 2.2.12

[31]. The Catalytic Site Atlas database provides annotations with

two evidence types: 1) LIT, which are derived by manual

extraction from a curated literature corpus; and 2) PSI-BLAST,

which comprise transitive annotations derived from PSI-BLAST

comparisons to the sequences of structures with LIT annotations.

To ensure consistency with our own transitive annotations, we

only include the LIT annotations in our analysis. Annotated

residues with evidence type LIT (CSA) were linked to PDB

residues using the author chain id and author residue number.

Transitive annotation. Using the protein-level transfer MSAs,

we were able to map annotation of residues in one domain to an

equivalent position in all other domains from the same protein;

while using the merged protein-level and family-level transfer MSAs,

we were able to map annotation of residues in one domain to an

equivalent position in all other domains within the same family. At

both levels, annotations were transferred only in cases where the

amino acids of both the reference and target domains were in the

same ‘‘fuzzy’’ amino acid group, as defined on the Catalytic Site

Atlas website (http://www.ebi.ac.uk/thornton-srv/databases/

cgi-bin/CSA/CSA_Help.pl#templates) in the section on homo-

logous entries.

Dynamics Perturbation Analysis (DPA) of SCOP domains
Fast DPA [8] was performed on the subset SX of S, which

consisted of 98,934 SCOP domains determined by X-ray

crystallography and containing a single chain identifier. Given

an input PDB structure, MSMS [54] was run with a 1.5 Å probe

radius and a triangulation density of 1 vertex per Å2 to generate

test points on the surface of the protein. The cutoff rc for

interactions between protein Ca atoms was 10.5 Å. The cutoff rs
for interactions between a test point and the protein was 15.5 Å,

and the interaction strength between a test point and protein

atoms was cs = 12c, or 12 times the strength of the interaction

between two protein atoms. To predict functional sites, the
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distribution of Dx values was fit using an extreme value distribution

[8]. Points with Dx values in the upper 96% of the distribution

were selected and spatially clustered using the OPTICS algorithm

[55] with a distance threshold of 5 Å and a minimum of 3 points

per cluster. Any protein heavy atoms within 5 Å of any point in a

cluster were selected and were used to define predicted functional

sites. The sites were ranked according to the mean value of Dx

within the corresponding cluster of points; most SCOP domains

had only one or two predicted sites, and differently ranked sites

had similar rates of matching annotations. The analysis failed to

produce predictions for 3,193 (3%) of the domains, for various

reasons.

The median number of residues in a domain was 155 and the

median time for a completed run (using a single core of an 8-core

Mac Pro computer with 262.26 GHz quad-core Intel Xeon CPUs

and 16 gb RAM) was 45 seconds. The longest run time was

89 minutes for a domain with 1,112 residues. Input to DPA was a

PDB formatted file with a single record for each atom in the

domain generated on the fly from the mmCIF data and the SCOP

domain definitions in Oracle. When several possible sets of XYZ

coordinates were available for an atom, the first one was selected

to define the structure for analysis. Output from successful runs

included: 1) a list of surface points evaluated by DPA, including

XYZ coordinates, DPA chain ID (O, P, Q, R etc. for points which

are part of a DPA predicted cluster, NN for points which are

below the threshold, XX for points which above the threshold but

do not cluster with enough points to form a cluster); 2) a list of

protein residues in the SCOP domain with heavy atoms within

5 Å of a DPA cluster point.

Residue conservation
Conservation of individual protein residues. Conservation

scores were calculated for residues in the 54,819 SCOP domains

from 323 families with non-redundant family-level MSA containing

at least 10 sequences (called ‘‘conservation MSAs’’). Each column in

the non-redundant alignment was assigned the H.norm score

calculated by the entropy function of the bio3d package for R [56].

H.norm is the normalized Shannon entropy for a 22-letter alphabet

(20 amino acids plus a gap and a wildcard), where 1 indicates the

most conserved columns (lowest entropy) and 0 the most diverse

(highest entropy). Column scores from the non-redundant domains

were then transferred to the rest of the family domains using the

alignment positions derived from the virtual family alignment

generated by merging the family and protein level MSAs.

Lumped conservation of DPA predicted functional

sites. Each residue in a SCOP domain was ranked in

descending order (i.e., highest conservation/lowest entropy first)

using the H.norm value assigned to its position in the virtual SCOP

family multiple sequence alignment. A lumped conservation score z

for each DPA site was derived by multiplying together the percentile

rankings of each of the L residues in a predicted site. A p-value, P, for

this score was calculated by assuming a null model in which residues

are drawn at random, yielding the following equation (derived for a

similar purpose in Ref. [9]):

P~z
XL

l~1

{ ln zð Þl{1

l{1ð Þ! ð1Þ

Text corpus acquisition
To obtain relevant abstracts, we extracted PubMed IDs for

primary references from mmCIF files of PDB entries linked to

each domain in S.

We were able to extract the PMID for the primary reference of

31,367 out of the 37,980 PDB entries in our dataset. In the

remaining cases, there was either no primary reference (47 cases),

no PMID for the primary reference (3,775 cases) or our script was

unable to extract a PMID (2,791). In addition, retrieval of 444

putative PMIDs representing 551 PDB entries returned empty

documents.

Abstracts were retrieved from a local MEDLINE repository at

UC Denver using the PMID as the search query [57]. This

repository mirrors the PubMed search interface and is automat-

ically updated nightly to stay in sync with PubMed.

Residue mention extraction from text
We implemented our text mining system within the UIMA

(Unstructured Information Management Architecture) framework

[53,58]. The system loads each document to be processed and

applies a sequence of processing modules to detect both the basic

amino acid residue mentions and the point mutation mentions,

and then outputs the results in a standardized format which can

straightforwardly be loaded into a relational database.

To find residue mentions in text, we defined linguistic patterns

according to conventions for describing individual amino acid

residues in PubMed abstracts. The patterns were designed to

identify residue mentions that include both a specific amino acid

name (either the full name, the 3-letter abbreviation, or the 1-letter

abbreviation for the amino acid) and a particular position in the

protein sequence. An example of a match to such a pattern is

‘‘Asp104’’ which corresponds to an aspartic acid amino acid

residue at position 104 in the protein sequence. In addition to the

standard abbreviations, the patterns also aim to normalize more

variable linguistic expressions such as ‘‘cysteines at positions 6, 24,

and 393’’. Patterns for point mutations are designed to recognize

mentions such as the standard short form ‘‘G146A’’ or the more

linguistic ‘‘His-554 mutated to glutamine’’.

The modules for detecting amino acid residues and point

mutations are implemented as a set of Java regular expressions.

These regular expressions are defined compositionally, in terms of

sub-expressions corresponding to different components of a

relevant mention. For instance, there exist expressions to detect

single-letter and three-letter abbreviations of amino acids (e.g.

‘‘Asp’’), as well as for the full names; there also exist expressions to

detect positions (defined as a sequence of numbers, e.g. to match

‘‘104’’) and expressions to define boundaries of the mentions and

linguistic connectors. These sub-expressions are combined in

various ways to arrive at the final expression patterns that are

matched in the text (e.g. to enable matching the full residue

mention ‘‘Asp104’’). Our regular expressions were tweaked to

appropriately accommodate for Unicode characters that can

occur, especially in full text articles, e.g. hyphens that are encoded

as an ‘‘em dash’’ character ‘—’ (Unicode character 2014), or

arrows such as ‘R’ (Unicode character 2192). Finally, each

detected mention was normalized to a representation consisting of

the standard 3-letter (wild type) amino acid code plus the position;

mutations had an additional column indicating the mutated amino

acid residue.

For the intrinsic evaluation of the text mining system we

reported on, we loaded the gold standard (manual) annotation

from the appropriate sources into our UIMA framework and

compared those loaded annotations with the system-generated

annotations. We calculated Precision (P), Recall (R), and F1 score

with the standard formulas, defined in terms of true positives (TP),

false positives (FP), false negative (FN): P~TP=TPzFP,

R~TP=TPzFN, F1~2P|R=PzR. A true positive match to

a normalized residue annotation requires agreement of the 3-letter
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amino acid code and the position of the residue. A true positive

match to a normalized mutation annotation requires agreement of

the 3-letter amino acid codes for both the wild type and the

mutated residues, and the position of the mutation. A false positive

occurs when the system produces a residue or mutation residue,

but there is no matching normalized annotation in the gold

standard. A false negative occurs when the gold standard includes

an annotation that the system fails to produce. For the two corpora

E2 and E3, a true positive match requires, in addition to a match of

the normalized residue or mutation, a match of the start and end

points (the annotation span) of the annotation with respect to the

specific characters of the text. This span information was not

available for E1 and therefore not considered in that evaluation.

Association of text occurrences with physical residues
To associate text occurrences (residue mentions) with physical

residues in PDB structures and thus with DPA predicted sites and

other functional annotations used in our analyses, we processed

the text collection in batch and collated all text residue mentions in

a single data file, ordered by PMID and with each mention

individually labeled as a basic amino acid mention or a mutation

mention along with its normalized representation.

The process is summarized in Figure 4 and comprises the

following steps:

Step 1. Group text occurrences for each abstract by site

number. Each group is a text residue.

Step 2. Determine if the amino acid names for a

particular text residue within an abstract are unambig-

uous - i.e. there is a single primary and, where

applicable, one or more mutation amino acid names

for the site. In 97% of cases where there are multiple text

occurrences for the same site number within a single

abstract, the primary amino acid name is unambiguous.

Ambiguous text residues are eliminated from further

analysis.

Step 3. Match text residues to physical residues in any

protein chain of a PDB entry linked with the abstract by

joining the site number to mmCIF auth_seq_id and

either the primary or mutation (where applicable) amino

acid names to mmCIF auth_comp_id.

Step 4. Group matching physical residues within a single

PDB entry by text residue and determine if the matches

are unambiguous. Multiple physical residues matching

the same text residue within a single PDB entry are

considered unambiguous if they are derived from a

single molecular entity (as defined by the mmCIF

label_entity_id). 98% of matches to physical residues

are unambiguous. Ambiguous matches are eliminated

from further analysis, as are any text residues that

cannot be matched to a physical residue.

Residue-wise recall and precision of DPA predictions
Recall of NSM residues. Let RNSM be the set of residues in

an NSM site, and R’DPA be the set of residues in all DPA

predictions for the protein structure. The recall is defined as

R’DPA\RNSMj j= RNSMj j, where Xj j is the cardinality of set X.

Precision of DPA residues. Let RDPA be the set of residues

in a DPA predicted site, R’NSM be the set of residues in all NSM

sites for the protein structure, and R’NSM{valid be the set of

residues in all NSM-valid sites for the protein structure. The

precision of DPA residues with respect to all NSM sites is

defined as R’NSM\RDPAj j= RDPAj j, and the precision of DPA

residues with respect to NSM-valid sites is defined as

R’NSM{valid\RDPAj j= RDPAj j.

Supporting Information

File S1 This file contains a list of the 106,411 domains
that comprises the structure dataset S utilized in this
study. mmCIF files for 65,053 Protein Data Bank (PDB) entries

were downloaded in early May 2010. Definitions of 110,800

protein domains were obtained from release 1.75 (June 2009) of

the Structural Classification of Proteins (SCOP) database. 106,411

of these domains fully corresponded to data found in 37,980 May

2010 PDB entries. The file is tab-delimited and consists of 3

columns: (1) SID, the SCOP ID of the domain, (2) IS_SX, a binary

flag indicating whether the domain is a member of the SX data set,

that is, a subset SX of S, consisting of 98,934 domains with

structures determined using X-ray crystallography and (3)

IS_SDPA, a binary flag indicating whether the domain is also a

member of the SDPA data set, that is the subset of SX for which

DPA predictions exist.

(TXT)

File S2 This file contains a listing of all the residues in
8,720 DPA predicted functional sites which include
matches to one or more text residues extracted from
the abstract of the primary reference for the PDB entry.
File S2 is a tab-delimited text file which, for the most part, contains

one record per residue. However, where a residue is part of

multiple DPA sites, it will appear in multiple file records. Columns

in the file are: (1) DPA_CLUSTER_ID, unique identifier for DPA

predicted site consisting of SCOP domain identifier concatenated

with a period followed by a single letter from the set

{O,P,Q,R,S,T} where O has highest average DPA score, P the

second highest, etc.; (2) ENTITY_ID, mmCIF entity identifier

(note: each distinct molecular entity within a PDB structure has a

unique entity identifier for that entry); (3) CHAIN_ID, PDB

author chain identifier; (4) RES_SEQ_NUM, PDB author residue

sequence number; (5) ICODE, PDB insertion code; (6) RE-

S_NAME, PDB author residue name (3-letter amino acid code);

(7) IS_LIT_MATCH, binary flag indicating whether residue

matches a text residue; (8) IS_CSA_LIT, binary flag indicating

whether residue is listed in Catalytic Site Atlas with evidence

code = LIT; (9) IS_NSM_VALID, binary flag indicating whether

residue is near a small molecule in the PDB entry, which has been

identified by MOAD as a valid protein-ligand interaction; (10)

IS_NSM, binary flag indicating whether residue is near any small

molecule in the PDB entry; (11) IS_CURATED_FAMILY, binary

flag indicating whether residue is aligned with a curated

annotation within the SCOP family, where curated comprises

CSA-LIT or MOAD-valid annotation; (12) IS_NSM_FAMILY,

binary flag indicating whether residue is aligned with any NSM

site within the SCOP family; (13) NSM_HETERO_CODES, list

of hetero codes for residues in nearby small molecules with

MOAD status, if any, in parentheses (multiple small molecules are

delimited by comma; DNA or RNA molecules are not broken

down into hetero codes).

(TXT)
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