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Abstract

Type 1 diabetes mellitus (T1DM) is caused by the selective destruction of insulin-producing f-cells. This process is mediated
by cells of the immune system through release of nitric oxide, free radicals and pro-inflammatory cytokines, which induce a
complex network of intracellular signalling cascades, eventually affecting the expression of genes involved in B-cell
survival. The aim of our study was to investigate possible mechanisms of resistance to cytokine-induced B-cell death. To
this purpose, we created a cytokine-resistant -cell line (B-TC3R) by chronically treating the f-TC3 murine insulinoma cell
line with IL-1f + IFN-y. B-TC3R cells exhibited higher proliferation rate and resistance to cytokine-mediated cell death in
comparison to the parental line. Interestingly, they maintained expression of B-cell specific markers, such as PDX1, NKX6.1,
GLUT2 and insulin. The analysis of the secretory function showed that B-TC3R cells have impaired glucose-induced c-
peptide release, which however was only moderately reduced after incubation with KCl and tolbutamide. Gene expression
analysis showed that 3-TC3R cells were characterized by downregulation of IL-1p and IFN-y receptors and upregulation of
SOCS3, the classical negative regulator of cytokines signaling. Comparative proteomic analysis showed specific upregulation
of 35 proteins, mainly involved in cell death, stress response and folding. Among them, SUMO4, a negative feedback
regulator in NF-kB and JAK/STAT signaling pathways, resulted hyper-expressed. Silencing of SUMO4 was able to restore
sensitivity to cytokine-induced cell death in B-TC3R cells, suggesting it may play a key role in acquired cytokine resistance by
blocking JAK/STAT and NF-kB lethal signaling. In conclusion, our study represents the first extensive proteomic
characterization of a murine cytokine-resistant p-cell line, which might represent a useful tool for studying the mechanisms
involved in resistance to cytokine-mediated B-cell death. This knowledge may be of potential benefit for patients with
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T1DM. In particular, SUMO4 could be used as a therapeutical target.
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Introduction

Type 1 diabetes mellitus (T1DM) is an autoimmune disease
characterized by a strong inflammatory response. The immune
reaction against f-cells, i.e. insulitis, precedes P-cell destruction
and overt disease onset. This complex process is mediated by a
cellular component — that includes macrophages, neutrophils,
CD4" and CD8" T cells - and a molecular component —
represented mainly by pro-inflammatory cytokines, free oxygen
and nitric oxide radicals [1-3]. All these elements act in concert in
initiating and maintaining B-cell destruction. In particular, tumor
necrosis factor-ot (TNF-o), interleukin-1f (IL-1), inteleukin-6 (IL-
6), and interferon-y (IFN-y) activate a complex network of
intracellular signalling cascades, which induce necrosis or
apoptosis [4,5]. IL-1B and TNF-o activate nuclear factor kappa
B (NF-£B), the mitogen-activated protein kinases p38 and c-Jun N-
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terminal kinase; while IFN-y acts via the Janus Kinase (JAK)/
signal transducer and activator of transcription-1 (STAT-1)
pathway [6-9]. In animal models, neutralisation of IL-1f and
IFN-v signalling appears to protect against TIDM [10-12].
Sensitivity to cytokine, free radicals and toxic chemicals is
exclusive of the B-cell. Prolonged exposure to cytokine severely
suppresses its function, eventually leading to T1IDM. However, the
exact molecular mechanisms and pathways involved are still
uncertain [13]. When islets and B-cells are exposed to cytokines,
multiple changes in the expression profiles of mRINA and proteins
are detectable. These changes comprise up- and downregulation
as well as de novo synthesis of several groups of genes, which
contribute to the loss of differentiated B-cell functions and trigger
both pro- and anti-apoptotic mechanisms. Decreased insulin
production [14,15] and reduced growth capacity of cytokine-
exposed B-cells or islets [16] have been also described. However,
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interpretation of these data remains uncertain due to the difficulty
in discriminating between early “primary” and late “secondary”
effects of cytokine exposure.

The aim of our study was to analyze possible mechanisms
involved in resistance to cytokine-induced B-cell death. To this
purpose, we first exposed the mouse insulinoma cell line B-TC3 to
chronic treatment with IL-1 + IFN-y, generating a cytokine-
resistant cell line (B-TC3R). B-TC3R cells maintained the
expression of specific markers and the secretory machinery typical
of mature B-cells, although with consistently lower glucose-
induced insulin secretion (measured as c-peptide) compared to
parental B-TC3 cells. Analysis of both protein and gene expression
profiles showed upregulation of 35 proteins in B-TC3R, among
them the Suppressor of Cytokine Signaling 3 (SOCS-3) and the
Small Ubiquitin-related Modifier 4 (SUMO4). The latter, was able
to restore sensitivity to cytokine-induced cell death in B-TC3R
cells after silencing, suggesting it could be potentially used as a
therapeutic target.

Materials and Methods

Cell lines and culture conditions

Mouse B-TC3 cell line derived by primary culture of insulinoma
was kindly provided by S. Efrat (Albert Einstein College of
Medicine, NY) [17]. Cells were cultured in high glucose DMEM,
15% heat-inactivated fetal bovine serum (FBS), 1% L-glutamine
and 1% antibiotics, at 37°C and 5% COa.

Selection of cytokine-resistant B-TC3R cell line

Cytokine-resistant B-TC3R cell line was obtained exposing -
TC3 cells for 12 weeks to increasing concentrations of recombi-
nant mouse IFN-y and IL-1B (PeproTech). The mult-step
selection process was started by incubating B-TC3 cells for
48 hours in culture medium supplemented with 10 IU/ml IL-18
and IFN-y. Cells were then cultured without cytokines for
additional 48-72 hours to allow growth of surviving resistant
cells. Concentration of cytokines (single IL-1f and IFN-y or
combination of both) was then gradually increased (50, 100 and
250 TU/ml) to further select B-TC3R cells.

Cell proliferation, viability, cell cycle and apoptosis of -
TC3 and B-TC3R cells

Cell proliferation was assessed by colorimetric assay using 3-
(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT). Both B-TC3 and B-TC3R cells were plated in a 96-well
plate with 100 pL. medium/well and cultured up to 96 hours.
Proliferation rate was evaluated by UV absorption spectrum at
550 nm, after M'T'T incubation for 4 hours at 37°C.

Viability was also assessed by MTT, culturing cells with media
containing 100 IU/ml IL-1B or 100 IU/ml IFN-y, or both
cytokines for 24, 48 and 72 hours. The reduction in optical
density (OD) caused by cytotoxic effect of cytokines was used as a
measurement of cell viability.

Cell cycle of B-TC3 and B-TC3R cells was analyzed by flow
cytometry (FACSCalibur, Becton Dickinson), after treatment with
cytokines (100 IU/ml) for 72 hours. Cells suspension was fixed in
70% ethanol and stained with propidium iodide for analysis.

Apoptosis was evaluated by Caspase 3 assay and DNA-
laddering. For Caspase 3 assay, cells were first fixed and
permeabilized with Cytofix-Cytoperm kit (BD Pharmingen),
incubated with monoclonal IgG rabbit anti-Active Caspase 3
(BD Pharmingen) and fluorescein isothiocyanate (FITC)-conju-
gated polyclonal goat anti-rabbit IgG (Santa Cruz Biotechnology),
according to the manufacturer’s instructions. Data were analyzed
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with CELLQuest Pro software (Becton Dickinson). Gating was
implemented based on negative control staining profiles.

For DNA-laddering, B-TC3 and B-TC3R cells were cultured in
medium containing cytokines (100 IU/ml) for 72 hours at a cell
density of 1x10°, then scraped and lysed at 37°C for 2 hours in
buffer containing 10 mM Tris-HCI (pH 8.0), 0.1 M EDTA
(pH 8.0), 0.5% SDS, and 20 pg/ml RNase (DNase-free). Cell
lysates were treated with proteinase K at 100 pg/ml at 57°C
overnight. Cellular genomic DNA was precipitated with 5 M
NaCl and isopropanol for 30 minutes at —20°C. The precipitate
was washed in 70% ethanol and resuspended in 10 pl Tris/
EDTA. DNA (10 ug) was resolved by electrophoresis in 2%
agarose gel and stained in 5 pg/ml ethidium bromide.

Immunofluorescence

Cells were cultured in culture-slides (BD Biosciences), fixed for
15 minutes at room temperature in 2% paraformaldehyde,
permeabilized with 0.1% Triton X-100/PBS (Sigma-Aldrich),
washed in PBS and blocked for 30 minutes in 3% BSA/PBS.
Primary antibodies were incubated for 24 hours at 4°C, while
secondary antibodies were incubated for 1 hour at room temper-
ature. The sources of antibodies and dilutions used are summarized
in Table Sl. Images were acquired with DM IRB inverted
microscope equipped with DC300F digital camera system. All
fields are representative of at least five different experiments.

C-peptide release assays (static incubation)

After discarding culturing media, both B-TC3 and B-TC3R
cells were washed several times and then incubated for 1 hour in
Krebs-Ringer solution with bicarbonate and HEPES (KRBH),
followed by 1 hour incubation in KRBH containing 2 mM D-
glucose (basal condition). Cells were then incubated for another
1 hour in stimulating conditions with either 20 mM D-glucose,
100 uM Tolbutamide or 30 mM KCI (all from Sigma-Aldrich).
Plates were incubated at 37°C on a rotating shaker and the
supernatant was sampled at basal conditions and at the time points
2', 5", 10", 15', 30’, 45" and 60" after stimulation. C-peptide
release was assessed with Rat/Mouse C-peptide 2 kit (Millipore).
Data are representative of three independent experiments.

Protein extraction

B-TC3 and B-TC3R cells were scraped and incubated in ice for
30 minutes with RIPA buffer (50 mM Tris-HCI, pH 7.4, 150 mM
NaCl, 1% Nonidet P40) and protease inhibitor cocktail (Roche).
Total cellular lysate was centrifuged at 14,000 rpm for 1 hour to
clear cell debris, and the supernatant was dialyzed against
ultrapure distilled water, lyophilized, and stored at —80°C until
analysis. Protein concentration in the cellular extracts was
determined using Bradford assay.

Proteomic analysis

Proteomic preparation was performed as previously described
[18]. Briefly, 40 pg of B-TC3 and B-TC3R protein lysates were
separated by pH 4-10 and molecular weight 8-150 kDa. Silver
stained gels were analyzed with ImageMaster 2D Platinum
software. Quantitative variations in protein expression levels were
calculated as the volume of the spots (i.e. integration of optical
density over the spot area). To correct for differences in gel
staining, spot volumes relative to the sum of the volume of all spots
on each gel (%Vol), were calculated by the software. Protein
identification was performed by Mass spectrometry on a Voyager
DE-PRO mass spectrometer (Applied-Biosystems) after in-gel
digestion of protein spots, using sequencing-grade trypsin (20 pg/
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vial). Matrix was 2,5-Dihydroxybenzoic acid from Fluka (Sigma-
Aldrich). Mass spectra were recorded in the 500-5000 Da range,
using a minimum of 100 shots of laser per spectrum. Delayed
extraction source and reflector equipment allowed sufficient
resolution to consider MH' of monoisotopic peptide masses.
Internal calibration was done using trypsin autolysis fragments at
m/z 842.5100, 1045.5642 and 2211.1046 Da. Peptide mass
fingerprinting was compared to the theoretical masses from the
SwissProt or NCBI sequence databases using Mascot (http://
www.matrixscience.com).

Western blot

Proteins were denatured in Laemmli sample buffer (2% SDS, 10%
glycerol, 5% 2-mercaptoethanol, 62.5 mM Tris-HCl pH 6.8,
0.004% bromophenol blue), separated on 12% polyacrylamide gels,
transferred to nitrocellulose membranes (TransBlot Transfer Medi-
um Biorad), and blotted with the primary antibodies listed in Table
S1. Antigen-antibody complexes were visualized using SuperSignal
West Femto Maximum Sensitivity Substrate (Pierce) on a GCD
camera (Chemidoc, Biorad). For signal detection, ECL Plus
(Amersham Bioscience) reagent was used. Western blot bands were
quantified by densitometry using a scanner and the associate
Quantity One software (Bio-Rad). Only the above-noise values (i.e.
the bands) were quantified and expressed as “adjusted volume OD”.

Isolation of total RNA, RT-PCR and qRT-PCR

Total RNA was extracted and purified from cultured B-TC3 and
B-TC3R cell lines using RNeasy Mini Kit (Qiagen, Milan, Italy)
including a digestion step with DNase I set. RNA quantity and quality
were assessed by UV spectrophotometry. 2 ug total RINA was reverse
transcribed in a volume of 20 pl with Oligo dT primers (Applied
Biosystems) and Stratascript RT (Stratagene), according to the
manufacturers’ protocol. Fas (TNF Superfamily, member 6), Trail
(Tumor Necrosis Factor Related Apoptosis Inducing ligand), iNOS
(Induced Nitric Oxide Synthase), MnSOD (Manganese Superoxide
Dismutase) were analyzed by polymerase chain reaction (PCR).
SOCS-3, IL-1RI, IFN-yR and SUMO#4 expression was analyzed by
real-time quantitative PCR (qQRT-PCR) in individual samples. Total
2 ng were used to measure mRINA levels relative to GAPDH mRNA
expression. Primer pair sequences, cDNA fragment sizes and
annealing temperatures are listed in Table S2. All reactions were
performed using a LightCycler (Roche Diagnostics GmbH, Ger-
many). All data were analyzed with gBASE Browser, which employs
a A-Ct relative quantification model with PCR efficiency correction
and single reference gene normalization (GAPDH).

siRNA transfection

SUMO4 was silenced using SUMO4 siRNA Duplex Oligoribonu-
cleotides and scrambled siRNA (Non-Targeting siRNA, Invitrogen). 3-
TC3R cells were transfected using INTERFERin transfection agent
(Polyplus Transfection), according to the manufacturer’s instructions.
Briefly, cells were seeded into six-well plates at a density of 2.5x10°
cells/well. The transfection agent and siRNA (100 nM) complex were
added to the cells and incubated for 72 hours. Each assay was
performed in duplicate in at least five independent experiments. Cell
viability after silencing was evaluated by M TT-assay.

Results

Selection of a B-TC3 cell population resistant to cytokine-
mediated cytotoxicity

Cytokine-resistant B-TC3 population (B-TC3R) was obtained
from a parental line that was cultured in medium with increasing
concentrations of IFN-y and IL-1f cytokines (from 10 IU/ml to
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250 IU/ml) over a 12-week period. During expansion, resistance
was maintained by adding repeatedly cytokines to fresh medium
every 24 hrs (100 IU/ml single cytokine or combination of both).
Resistant clones grew well also with higher cytokines concentra-
tions (up to 250 IU/ml). When compared to parental B-TC3, B-
TC3R showed a more fibroblastic-like morphology (Fig. 1A) and
significantly increased proliferation at 24, 48, 72 and 96 hours
(Fig. 1B) (24 hrs: B-TC3R 0.3%0.02 »s B-TC3 0.2%0.018, p =ns;
48 hrs: B-TC3R 0.68*0.02 us B-TC3 0.28+0.01, p<<0.001;
72 hrs: B-TC3R 1.15*0.05 »s B-TC3 0.35%0.06, p<<0.001;
96 hrs: B-TC3R 1.85%0.03 »s B-TC3 0.15+0.04, p<<0.001).
Viability was investigated using MTT assay. As expected, sensitive
B-TC3 cells showed time-dependent cytokine killing profile. After
72 hours of exposure with either IL-1B or IFN-y viability
decreased up to 75.6*1.3% and 15*2.2% respectively, while
IL-1B + IFN-y combination caused a further reduction to
8+3.2%, showing a synergistic cytotoxic effect. By contrast, -
TC3R cells maintained 100% of viability after 72 hours in the
same conditions (single or combined cytokines) (Fig. 1C). Taken
together, these results suggest that B-TC3 and B-TC3R cells are
characterized by different proliferation rates in response to
cytokine treatment.

Evaluation of cytokine-mediated apoptosis in B-TC3 and
B-TC3R cells

Propidium iodide analysis by flow cytometry was carried on
untreated and cytokine-treated cells. After 72 hours, B-TC3 cells
showed hypodiploidy, indicating DNA degradation and cell death
(untreated: 10.25%0.31%; cytokine-treated: 71.8%0.63%), while
in B-TC3R cells the treatment produced no significant increase in
subG0O peak (untreated: 1.5%£0.002%; cytokine-treated cells:
2.2%0.003%). A representative experiment is showed in Fig. 2A.

DNA fragmentation (degradation into multiples of 180-base
pair long fragments), a typical hallmark of apoptosis, was analyzed
by DNA laddering on agarose gels and presence of sub-diploid
cells was demonstrated by flow cytometry. B-TC3 cells, cultured
with combination of the two cytokines as described before, showed
the typical DNA ladder on agarose gels. No DNA fragmentation
was visible when B-TC3R cells were treated with the same
conditions (Fig. 2B).

IL-1B + IFN-y cocktail does not induce cleaved Caspase 3
in B-TC3R cells

Caspase 3 activity represents a marker of the apoptotic cascade
activation. Baseline Caspase 3 activity was 0.22+0.06% and
0.23%0.03% in B-TC3 and B-TC3R cells, respectively (p =NS).
In B-TC3, the exposure to IL-1f + IFN-y for 72 hours increased
Caspase 3 levels up to 88.3%0.3%. By contrast, the same
treatment in B-TC3R cells had no effect (Fig. 2C).

Maintenance of B-cell specific markers in B-TC3R cells

To investigate whether induced cytokine-resistance in f-TC3R
cells caused a loss of PB-cell specific markers, we performed
immunofluorescence analysis for PDX-1 (Pancreatic Duodenal
Homeobox-1), NKX6.1 (member of NK2 family of homeoprotein
transcription factors), GLUT2 (Glucose transporter 2), and insulin,
in both B-TC3 and B-TC3R cells (Fig. 3A). Immunostaining
revealed comparable expression of the markers in both sensitive
and resistant cells. The maintenance of insulin and GLUT?2 (a
member of the B-cell specific glucose sensor) and the nuclear
localization of the two transcriptions factors PDX-1 and NKX6.1,
strongly suggested the persistence of B-cell phenotype, despite the
acquired cytokine resistance.
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Figure 1. Selection of a -TC3 cell population resistant to cytokine-mediated cytotoxicity. (A) Cell phenotypes: B-TC3R cells (right) show a
more elongated (fibroblastic-like) appearance in comparison to parental B-TC3 cells (left). (B) Proliferation assay (MTT) at 0, 24, 48, 72 and 96 hours for
B-TC3 (continuous line) and resistant B-TC3R (dotted line). (C) Cytotoxicity assay (MTT) in B-TC3 (left) and B-TC3R (right) after cytokine treatment

(100 1U/ml IL-1B, 100 IU/ml IFN-y or their combination, for 72 hours).
doi:10.1371/journal.pone.0032109.g001

Evaluation of the secretory capacity in B-TC3R cells

To compare the insulin secretion properties of the “native” and
cytokine resistant cells, we investigated the ability to secrete C-
peptide in response to several secretory stimuli. Stimulation with
20 mM glucose, 100 uM of the secretagogue tolbutamide or direct
depolarization with 30 mM potassium chloride (KCI) showed that
B-TC3R cells respond to the different stimuli in a regulated
manner, although at a lower level in comparison to B-TC3
(Figure 3B-E). In particular, the selective impairment of glucose-
induced insulin secretion could be attributed to defects in
glucokinase expression, as shown by western blot analysis
(Figure 3F). By contrast, incubation with tolbutamide and KCI
showed only moderately reduced c-peptide levels.

Molecular characterization of B-TC3R cells

We analyzed the expression of genes encoding interleukin-1
receptor type 1 (IL-1RI) and interferon-y receptor (IFN-yR) in -
TC3 and B-TC3R cells. In B-TC3R cells, we found a marked
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decrease in mRNA levels for both receptors (96+0.8% and
89.5%1.5% decrease for IL-1RI and IFN-YR, respectively) (Fig. 4A
and B). However, this observation alone cannot entirely justify the
acquired resistant phenotype, as many cellular types are fully
responsive to cytokines although expressing only a few copies of
their receptors [19]. Therefore, we assumed other players must
have been involved in the mechanism of resistance. We thus
mvestigated members of the SOCS family, specifically SOCS-1, -2
and -3, which are known to be negative regulators of cytokine
signaling. In turn, the expression of these genes is induced by
various cytokines, including IL-1f and IFN-y and is involved in
inhibiting the JAK/STAT and NF-£B signaling pathways [20].
Although we were not able to detect any difference in SOCS-1
and -2 mRNA between B-TC3 and B-TC3R (data not shown), we
found that SOCS-3 was hyperexpressed specifically in B-TC3R
(Fig. 4C). In particular, after exposure to cytokines for 72 hours, -
TC3 cells showed a 1.6-fold increase of SOCS-3 mRNA level
compared to untreated cells. By contrast, B-TC3R cells exhibited a
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U = untreated.
doi:10.1371/journal.pone.0032109.g002

65-fold increase vs B-TC3 cells in both basal conditions and after
cytokine treatment (0.015+0.009 in B-TC3 and 1.395%+0.08 in B-
TC3R, respectively; p<0.005). Western Blot analysis for SOCS-3
confirmed these results (data not shown).

Proteomic profile of B-TC3 and B-TC3R cells

Proteomic technique has been widely used to investigate the
protein changes elicited by exposure of islets or insulinoma cells to
glucose [21,22], cytokines [23,24] and others substances [25,26].
Here we report the proteomic characterization of B-TC3R. Each
maps, performed in triplicate experiments, showed qualitative and
quantitative differences of protein profiles in B-TC3 (Fig. 5A) vs -
TC3R cells (Fig. 5B). The collection of proteins identified
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contained 190 proteins in B-TC3R cells (Table S3): among those,
99 proteins (52.1%), including isoforms, were differentially
expressed (Fig. 5C). In this last group, 83 were upregulated
(43.7%) and 16 were downregulated (8.4%). The majority of
upregulated proteins in B-TC3R cells included negative apoptosis
regulators (ANXAS5, GSTPI, HSP and GRP proteins), galactic
protein family member (LEG1), stress response proteins (SUMO4,
NPM, PRDX2¢, NDKA, NDKB, FKBI, PPIF, TCPE, Terabit,
PSB5, DDAHI), glycolytic enzymes (ALDOA, ENOA, FUMH,
G3P, IPYR, KPYM, LDHA, PGK, PNPH, TPIS, PGK and
LDHB), redox protein family members (PRDX1, PRDX4,
SODC), cell-cycle and biosynthesis regulators (PDIA3 members),
specific components of the catabolic protein machinery (UBIQ),
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Figure 3. Evaluation of f-cell specific markers and secretory function in §-TC3R cells. (A) Inmunofluorescence analysis shows persistence
of B-cell markers in B-TC3R cells (right panel) despite the acquisition of cytokine resistance. Left panel: sensitive $-TC3. (B-D) Stimulation with 20 mM
glucose (GLUC), 100 uM of the secretagogue tolbutamide (TOL) or direct depolarization with 30 mM potassium chloride (KCl) during 2-h static
incubation of both B-TC3 and B-TC3R cells. (E) C-peptide secretion after 1-hr static incubation in 3-TC3 and B-TC3R cells. (F) western blot analysis of
glucokinase (GCK) in B-TC3 and B-TC3R cells. Graph shows quantification of proteic bands performed by densitometric analysis.

doi:10.1371/journal.pone.0032109.9003

UCHLI), calcium-binding protein family (S10A6, S10A4,
S10AB), protein binding (ACBP and C1QBP) and cytoskeleton
(PROF1, VINC a and b, IF6) (Fig. 5D).

The predictive protein interaction analysis showed the complex
network of proteins involved in cell death, inhibition of apoptosis
and folding (Fig. 5E), suggesting the existence of protein cross-talk.
Acronyms and details on identified proteins are listed in Table S3.

SUMO4 expression, NF-kB and JAK/STAT signalling
pathways in B-TC3R cells

Proteomic analysis of B-TC3R cells showed upregulation of
SUMO4, a stress responses protein acting as negative feedback
regulator in NF-AB and JAK/STAT signalling pathways. This
result was confirmed by qRT-PCR, which showed a remarkable
increase in SUMO4 expression in untreated B-TC3R cells
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compared to untreated B-TC3 cells (50£5.9 vs 0.015%+0.001,
respectively; p<<0.005). In addition, IL-1B treatment for 72 hours
in B-TC3R cells determined a 14-fold increase compared to their
respective untreated cells (Fig. 6A).

Western blot analysis (Fig. 6B) revealed that after 72-hour
cytokine treatment, phosporilated Mek (p-Mek) was higher in -
TC3R than in B-TC3 cells (48.560.2 vs 25.70£0.8, respectively;
p<<0.005), as expression of higher proliferation rate. In addition,
both phosphorylated p65 (p-p65) and STAT-1a (pSTAT-10 were
were undetectable in B-TC3R compared to sensitive -TC3 cells.
Notably, the lack of pSTAT-1a by accumulation of the unpho-
sphorilated form STAT-10., as well as the NF-AB inhibitory protein
I/Ba. (B-TC3R compared to B-TC3: 189.71£0.3 us 47£0.2 and
176.03%0.2 vs 2.21%0.3, respectively; p<<0.005). Quantification
of western blot bands by optical density analysis is shown in
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Figure 4. Molecular characterization of §-TC3R cells. gRT-PCR analysis of (A) IL-1RI, (B) IFN-yR, and (C) SOCS-3 in B-TC3 and B-TC3R cells after
cytokine treatment compared to respective untreated cells. IL-1RI and IFN-yR are markedly downregulated, while SOCS-3 shows a 65-fold increase in
B-TC3R compared to B-TC3 cells. Cytokine treatment is 100 IU/ml IL-1B, 100 IU/ml IFN-y or their combination, for 72 hours.

doi:10.1371/journal.pone.0032109.g004
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Figure 5. Proteomic analysis of §-TC3 and B-TC3R cells. (A-B) Proteomic maps. B-TC3R gel (B) displays the locations of the proteins that are
differentially expressed in comparison to B-TC3; see Table S3 for further information relative to single detected protein. Gels are representative of
three experiments. (C) Comparative proteomic profile. Graph represents protein expression levels in B-TC3 (black peaks) and B-TC3R (grey peaks).
Relative volumes of the spots (V%) were calculated by ImageMaster 2D Platinum software, the same software used for gel analysis. (D) Proteomic
groups. Proteins characterized by significant variation are grouped into four different classes. (E) Proteomic network. Protein interaction network
reveals that 28 out of 99 proteins are differentially expressed, which are distributed into groups of different biological functions (mainly belonging to

cell death pathway, negative regulators of apoptosis and protein folding).

doi:10.1371/journal.pone.0032109.g005

Fig. 6C. RT-PCR analysis further confirmed the inhibition of the
NF-£B and JAK/STAT signalling pathways, as iNOS, MnSOD
and FAS/CD95 (which are NF-£B-induced genes) and TRAIL (a

TC3R cells (Fig. 6C).

Silencing of SUMOA4 restores cytokine sensitivity in -
TC3R

To verify the relationship between SUMO4 and the acquired
cytokine resistance of B-TC3R cells, we silenced SUMO4 using a
specific small interfering RNA (siRNA). Silencing efficacy (73%) is
shown in Fig. 7A. As demonstrated by MTT assay, siRNA
treatment caused loss of cytokine resistance in B-TC3R cells. The
reduction of cell viability in cells treated with stIRNA compared to
non-targeting was 47.3%, 30%, 22%, and 10.6% after 24, 48, 72
and 96 hours, respectively (Fig. 7B).

Discussion

In our study we aimed at investigating the possible mechanisms
involved in resistance to cytokine-induced B-cell death. To this
purpose, we created a cytokine-resistant B-cell line (B-TC3R) by
chronically treating with IL-1B + IFN-y the cytokine-sensitive
murine insulinoma B-TC3 cell line. We found that B-TC3R cells
maintained 100% viability after exposure with IL-1f + IFN-y,
showing no increase in Caspase 3 activity, DNA fragmentation or
significant elevation of the subGO cell population. This was
accompanied by a much higher proliferation rate in comparison to
the parental line. Despite the acquisition of the new cytokine-
resistant phenotype, B-TC3R cells maintained the expression of
several specific B-cell markers, among them the two nuclear
transcriptions factors PDX-1 and NKXG6.1, insulin and GLUT?2.
In addition, the evaluation of the secretory ability showed that -
TC3R cells are able to respond to different stimuli in a regulated
manner by secreting mature insulin (assessed as C-peptide),
although at a lower levels in comparison to cytokine-sensitive -
TC3 cells. In particular, while the incubation with KCl and
tolbutamide caused only mildly reduced secretion levels in B-
TC3R cells, the glucose-induced response resulted consistently
mmpaired. This difference is likely due to a cytokine-mediated
modification in the expression of the genes responsible for glucose-
induced insulin secretion, such as GLUT2 and glucokinase.
However, both B-TC3 and B-TC3R cells have comparable
expression of GLUT2 in immunofluorescence, suggesting that it
cannot account for the impaired glucose-induced insulin secretion
found in B-TC3R cells. By contrast, glucokinase expression was
severely reduced in B-TC3R cells by western blot analysis.
Glucokinase is a rate-limiting enzyme in B-cell glycolysis and is
thought to be the intracellular sensor for glucose-induced insulin
secretion, because it has a A5, higher than the physiological
concentration of glucose [27,28]. Therefore a downregulation of
glucokinase would be compatible with the impaired response
observed in cytokine-resistant cells. This is further supported by
the only moderately reduced c-peptide secretion observed after
incubation with KCIl and tolbutamide, as the continuous and

@ PLoS ONE | www.plosone.org

strong membrane depolarization induced by these two stimuli
bypasses the intracellular “glucose sensor”.

Several possible mechanisms involved in the acquisition of
cytokine resistance in B-TC3R were investigated. First, we found
downregulation of IL-1RI and IFN-yR. However, the decreased
IL-1R1 and IFN-YR expression in B-TC3R cells is not sufficient
per se to explain cytokine resistance, as cells may increase receptor
binding affinity as compensatory mechanism [19]. Interestingly,
we also found that B-TC3R cells express higher levels of SOCS-3
and SUMO4 proteins, in addition to the inactivation of NF-AB
and STAT-1a pathways. SOCS-3 is a classical negative regulator
of cytokine signalling, which has been shown to act as a negative
feedback regulator of IL-1PB, preventing its action on gene
expression profile induced by STAT-1a, NF-AB and MAPK [1-
3,6,29,30]. Taken together, these findings could be responsible for
the acquired cytokine resistance.

A more large-scale analysis of protein expression pattern was
obtained by proteomic analysis. We identified 99 differentially
expressed protein spots (including isoforms); among these, 83 were
upregulated and 16 were downregulated in B-TC3R cells. Many
upregulated proteins belonged to families with either metabolic or
chaperone functions. In particular, in B-TC3R cells we found
upregulation of many proteins involved in glycolysis and Krebs
cycle (ALDOA, ENOA, FUMH, G3P, IPYR, KPYM, LDHA,
PGK, PNPH, TPIS, PGK and LDHB), cell cycle and biosynthesis
regulators (PDIA3 members which catalyze SS bond rearrange-
ments and the master regulator of the unfolded protein GRP78).
These findings are consistent with the higher growth rate exhibited
by B-TC3R cells in comparison to sensitive B-TC3 cells [31,32].
At the same time, negative regulators of apoptosis and stress
responses proteins (chaperones, heath shock proteins, oxidoreduc-
tases) were found increased in B-TC3R cells, suggesting that this
pattern is due to an adaptation to the continuous cytokine
exposure. In particular, among proteins belonging to the latter
category, we found upregulation of DDAHI and PSB5. Altered
DDAHI1 protein expression suggests increased nitric oxide
production and increased oxidative stress [33]. PSB5 plays a role
in the protection against oxidative damage through the Nrf2/ARE
pathway. Activation of Nrf2/ARE pathway protects endothelial
cells from oxidant injury and inhibits inflammatory gene
expression [34]. Furthermore, members of redox protein family
(PRDX1, PRDX4, SODC) were found upregulated. The observed
induction of SODC in beta cells after cytokines exposure is
consistent with previous findings obtained with microarray or
Western Blot analysis [35]. A long exposure of B-cells to cytokines
results in upregulation of B-cell ROS scavenging machinery. Thus,
our resistant cells seem to be characterized by several protective
mechanisms against oxidative stress and apoptotic cell death. In
our study we also describe proteins not previously identified by
proteomic analysis, such as catabolic machinery members (UBIQ),
UCHLI), and calcium-binding proteins family (SI0A6, S10A4,
S10AB). S10A proteins, involved in the reorganization of the actin
cytoskeleton, could explain the different morphology of B-TC3R
in comparison to B-TC3 cells.

SUMO#4 was the only protein implicated in cytokine signalling
that was found upregulated by proteomic analysis. Recent studies
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Figure 6. SUMO4 hyperexpression blocks NF-AB and JAK/STAT signalling pathways in B-TC3R cells. (A) Analysis of SUMO4 gene
expression by qRT-PCR in B-TC3 and B-TC3R cells after cytokines exposure compared with untreated cells. SUMO4 is undetectable in 3-TC3 cells, while
it is strongly upregulated after cytokine exposure in B-TC3R cells. Cytokine treatment is 100 IU/ml IL-18, 100 IU/ml IFN-y or their combination, for
72 hours. (B) Effects of cytokine treatment on unphosphorilated and phosphorylated forms of Mek, p65 and Stat-1a. Cytokine treatment upregulates
p-Mek protein levels in B-TC3R cells in comparison to 3-TC3; whereas it does not activate p-65 and Stat-1a. U: untreated; Cyt: 100 IU/ml IL-1 + IFN-y
for 20 min. Data shown are representative of 5 independent experiments. (C) Quantification of proteic bands performed by densitometric analysis.
OD: optical density units. Each bar represents average * SD of 5 independent experiments. (D) NF-kB and JAK/STAT signalling pathways are blocked
in B-TC3R cells. Cytokine treatment induces expression of NF-kB and the JAK/STAT-dependent genes iNOS, MnSOD, FAS and TRAIL, in B-TC3 cells
compared to untreated cells. By contrast, these genes are not expressed in both untreated and cytokine-treated B-TC3R cells. U: untreated; cytokine
treatment is 100 IU/ml IL-1B, 100 IU/ml IFN-y or their combination, after 72 hours. bp =base pairs.

doi:10.1371/journal.pone.0032109.9g006

suggested a role for SUMO4 in prevention of apoptosis by specific consistent with Chen et al. who described an increased expression
targeted SUMOylation of anti-oxidant enzymes, chaperones, of total STAT-1a. protein in long-term cell cultures in the presence
DNA damage signalling and anti-stress transcription factors of cytokines [43]. In addition, recent studies have showed that a

[36,37]. SUMO4 also plays a role as a negative feedback regulator genetic susceptibility of SUMO4 may be implicated in the
in NF-AB and JAK/STAT signalling pathways [38]. Upon pathogenesis of TIDM. Sequence analysis of diabetic patients

cytokine stimulation, NF-AB signalling initiates a kinase cascade, and controls revealed that a mutation (M55V) located in one of the
which eventually activates IfBo kinase (IKK) complex to SUMO#4 domains results in impaired SUMO4, leading to higher
phosphorylate I£Ba. and dissociate it from SUMO4 conjugation. levels of activated NF-ZB, which in turn transcribes immune

Dissociated 1kBa is thereafter rapidly degraded by the ubiquitin/ response genes [44,45]. In our opinion, hyperespression of
proteasome pathway, then NF-AB is activated and translocated SUMO4 could be the key event responsible for cytokine resistance
into the nucleus where it binds to promoters, and activates gene in B-TC3R cells by blocking JAK/STAT and NF-iB lethal
transcription [39,40]. Thus, the remarkable upregulation of signalling. To confirm this hypothesis, we silenced SUMO4 in -
SUMO¢4 found in B-TC3R cells could explain the accumulation TC3R cells. Silencing resulted in a significant reduction of cell
of IfBa in the cytosol and the consequent absence of p65 viability after cytokine treatment. The high silencing rate (73%)
phosphorylation. In particular, SUMO4 expression rapidly correlates with the increased killing activity of IL-1B and IFN-y up
increased upon IL-1Bexposure. These findings suggest the NF-iB to 89%, confirming direct SUMO4 effect on cytotoxicity. So far,

signalling is blocked or severely impaired, as confirmed by the no similar effect in preventing lethal effect of cytokines was ever
absence of expression of its downstream genes, ic. iINOS found after inhibition of a single factor.
(inducible nitric oxide synthase) [30], MnSOD (Manganese In conclusion, our study represents the first extensive proteomic
superoxide dismutase, a free radical scavenger) and FAS (CD95) characterization of a murine cytokine-resistant B-cell line. This
[41,42]. knowledge might be useful to investigate the different pathways
Interestingly, we found simultaneous STAT-1o hyperexpression involved in the development of cytokine resistance and define new
and lack of its phosphorylated form pSTAT-1a, as well as absence strategies for preservation of the B-cell mass during immune-
of TRAIL (Tumor Necrosis Factor-alpha-related apoptosis- mediated inflammation. In addition, unraveling the mechanisms
inducing ligand), which represents its target gene. This phenom- behind B-cell cytokine resistance may be also exploited for

enon could be due to SUMOylation of STAT-1a, which it is prolonging the survival of transplanted islets or engineered B-cells
known to inhibit its DNA-binding activity. Our findings are in Type 1 diabetes.
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Figure 7. Silencing of SUMOA4 restores cytokine sensitivity in B-TC3R. (A) Efficacy of SUMO4 silencing after 72 hours assessed by qRT-PCR
analysis. (B) Loss of cytokine-resistance after SUMO4 silencing. MTT assay shows reduction of cell viability in cytokine treated B-TC3R cells after
silencing with SUMO4 siRNA compared to non-targeting siRNA (47.3%, 30%, 22%, 10.6% after 24, 48, 72 and 96 h, respectively).
doi:10.1371/journal.pone.0032109.9g007
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