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Abstract

Dietary factors regulate immunological function, but the underlying mechanisms remain elusive. Here we show that vitamin B9 is
a survival factor for regulatory T (Treg) cells expressing high levels of vitamin B9 receptor (folate receptor 4). In vitamin B9-
reduced condition in vitro, Treg cells could be differentiated from naı̈ve T cells but failed to survive. The impaired survival of Treg
cells was associated with decreased expression of anti-apoptotic Bcl2 and independent of IL-2. In vivo depletion of dietary vitamin
B9 resulted in the reduction of Treg cells in the small intestine, a site for the absorption of dietary vitamin B9. These findings
provide a new link between diet and the immune system, which could maintain the immunological homeostasis in the intestine.
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Introduction

To achieve immunosurveillance and immunological homeosta-

sis at the interface between the interior and exterior of the

gastrointestinal tract, the intestinal immune system tightly balances

states of immune activation and quiescence [1]. Thus, gastroin-

testinal tissues contain numerous kinds of T cells, such as Th1,

Th2, Th17, forkhead box P3 (Foxp3)+ regulatory T (Treg) cells,

IL-10–producing Foxp32 T regulatory type 1 cells, and T cells

expressing cd T cell receptor, which together create the

appropriate immunological environment.

Th17 and Treg cells are observed most frequently in the

intestine, and their preferential differentiation is achieved by a

unique cytokine environment created by transforming growth

factor b (TGF-b), IL-6, and IL-23 [2]. In addition to these host-

derived factors, the development and function of the immune

system are influenced by crosstalk with environmental factors [3].

For example, stimulation by segmented filamentous bacteria

results in the preferential induction of Th17 cells, whereas colonic

Treg cells are induced by crosstalk between epithelial cells and

Clostridium clusters IV and XIVa [4,5,6].

Nutritional molecules are also considered to be essential

environmental factors for the development, maintenance, and

regulation of gut immune responses. Thus, deficient or inappro-

priate nutritional intake increases the risk of infectious, allergic,

and inflammatory diseases [7,8]. Among various dietary factors,

vitamins are important participants in the regulation of immune

responses. For example, vitamin A is converted into retinoic acid

(RA) by gut-associated dendritic cells; RA induces the expression

of gut-homing molecules (e.g., a4b7 integrin and CCR9) on

activated T and B cells [9,10] and promotes the preferential

differentiation of Treg cells and the simultaneous inhibition of

Th17 cells [11,12,13,14]. Vitamin B6 is required for the metabolic

pathway of sphingosine 1-phosphate, a lipid mediator that

regulates cell trafficking [15]; disruption of vitamin B6 function

results in aberrant T-cell differentiation and cell trafficking in both

systemic and intestinal compartments [16,17,18].

Vitamin B9 (also known as folate and folic acid) is a water-

soluble vitamin derived from both diet and commensal bacteria

[19]. Vitamin B9 is essential for the synthesis, replication, and

repair of nucleotides for DNA and RNA and is thus required for

cell proliferation and survival [20]. Methotrexate (MTX) acts as a

vitamin B9 antagonist and blocks vitamin B9–mediated nucleotide

synthesis, making MTX useful as an anti-tumor [21] and anti-

rheumatoid arthritis agent [22]. Vitamin B9 deficiency also

reduces the proliferative responses of lymphocytes and natural

killer cell activity [23,24]. Additionally, the vitamin B9 receptor

folate receptor 4 (FR4) is both a marker of Treg cells and is

immunologically functional [25]; however, how it functions in the

intestinal immune system is largely unknown. In this study, we

examined the role of vitamin B9 in the regulation of Treg cell in

vitro and in vivo.

Materials and Methods

Mice and experimental treatment
Female Balb/c mice (7–9 wk of age) were purchased from

Japan Clea (Tokyo, Japan). Vitamin B9–deficient and control
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diets composed of chemically defined materials (Oriental Yeast,

Tokyo, Japan) were used within 3 months. All animals were

maintained in the experimental animal facility at the University

of Tokyo, and the experiments were approved by the Animal

Care and Use Committee of the University of Tokyo and

conducted in accordance with their guidelines (Approval #20–

28).

Lymphocyte isolation
Lymphocytes were isolated from the lamina propria (LP), as

previously described [18,26]. Briefly, lymphocytes were isolat-

ed from dissected PPs by enzymatic dissociation using

collagenase (Wako, Osaka, Japan). To isolate lymphocytes

from the LP of jejunum/duodenum, PPs were removed and the

remaining intestinal tissue was cut into 2-cm pieces and stirred

in RPMI 1640 medium containing 1 mM EDTA and 2% fetal

calf serum (FCS). The tissue pieces were then stirred in 0.5 (for

small intestine) or 1.0 (for large intestine) mg/mL collagenase,

and the dissociated cells were subjected to centrifugation

through a discontinuous Percoll gradient. Lymphocytes were

isolated at the interface between the 40% and 75% Percoll

layers.

Flow cytometry and cell sorting
Flow cytometry and cell sorting were performed as previously

described [18,26]. Cells were pre-incubated with anti-CD16/32

antibodies and then stained with fluorescent antibodies specific for

CD4, ICOS, and GITR (BD Biosciences, San Jose, CA) and FR4

(Biolegend). A Via-probe solution (BD Biosciences) was used to

discriminate between dead and living cells. Intracellular staining of

Foxp3 (eBioscience, San Diego, CA), phosphorylated STAT5,

Ki67 and Bcl2 (BD Biosciences) was performed in accordance with

the manufacturers’ instructions. Flow cytometry and cell sorting

were carried out using the FACSCantoII and FACSAria systems

(BD Biosciences), respectively.

Vitamin B9 measurement
To measure vitamin B9 concentrations, intestinal washes were

collected by washing 12 cm of jejunum/duodenum or whole colon

with 1 mL of PBS. The vitamin B9 concentration in intestinal

washes and serum was measured with a RIDASCREEN enzyme

immunoassay kit (R-Biopharm AG, Darmstadt, Germany) in

accordance with the manufacturer’s instructions. To measure the

amounts of intracellular vitamin B9, 56106 purified cells were

washed twice with PBS, and a cell lysate was obtained by

homogenizing cells in PBS containing 0.01% NP-40. After cell

debris was removed by centrifugation, vitamin B9 amounts in the

supernatant were measured with a RIDASCREEN enzyme

immunoassay kit.

In vitro culture
For the induction of Treg cells from naı̈ve T cells,

CD62LhiCD4+ naı̈ve T cells (105 cells/well) were cultured for 4

days with 5 mg/mL of immobilized anti-CD3 antibody and 1 mg/

mL of an anti-CD28 antibody (BD Biosciences) plus 2 ng/mL of

human TGF-b (PeproTech, Rocky Hill, NJ) in vitamin B9–null or

normal RPMI 1640 medium containing 10% FCS. To examine

the maintenance of differentiated Treg cells, purified CD25+CD4+

T cells (105 cells/well) were cultured for 4 days with 5 mg/mL of

immobilized anti-CD3 antibody with or without 1000 units/mL of

IL-2 (Peprotech) in vitamin B9–null or normal RPMI 1640

medium containing 10% FCS in the presence or absence of

100 nM MTX.

Statistics
Results were compared with the Student’s t-test by using

GraphPad Prism (GraphPad Software, San Diego, CA). Statistical

significance was established at P,0.05.

Results

Vitamin B9 is required for the survival of Foxp3+ Treg
cells

Foxp3+ Treg cells express high levels of FR4, which is essential

for their maintenance [25]. We therefore examined whether

vitamin B9 is required for the differentiation of Treg cells from

naı̈ve T cells, the survival of differentiated Treg cells, or both. To

address this, we initially performed an in vitro T-cell differentiation

assay. Purified naı̈ve CD4+ T cells were stimulated with anti-CD3

and anti-CD28 antibodies plus TGF-b in complete or vitamin B9–

reduced medium. Although a small amount of vitamin B9 is

supplied from fetal calf serum (FCS) even in vitamin B9–null

medium (0.2 ppb, compared with 25 ppb in normal medium), the

total cell number was decreased in the condition with reduced

vitamin B9 compared to the control; however, Foxp3+ Treg cells

were generated at a normal frequency (Fig. 1A).

To investigate the effects of vitamin B9 on differentiated Treg

cells, we cultured CD25+ Treg cells with anti-CD3 antibodies. The

total cell number was significantly lower in the vitamin B9–

reduced condition than in the control condition (Fig. 1B). The

reduction in cell number occurred predominantly among the

Foxp3+CD4+ Treg cells (Fig. 1B). The reduction of FR4hiFoxp3+

T cells was dependent on the dose of vitamin B9 (Fig. 1C).

We then measured the expression of Ki67 and anti-apoptotic

Bcl-2 to investigate whether decreased number of Foxp3+CD4+

Treg cells in vitamin B9–reduced medium was due to the defects

of cell proliferation, survival, or both. We found that both Ki67

and Bcl2 were decreased in Foxp3+CD4+ Treg cells cultured in

vitamin B9 vitamin B9–reduced medium, but magnitude of Bcl2

reduction was higher than Ki67 reduction (Fig. 2A and B). These

findings suggest that vitamin B9 is preferentially but not

exclusively required for the survival of Treg cells in vitro.

Vitamin B9 carrier-mediated pathway is not specifically
involved in the survival of Treg cells

Because vitamin B9 is highly hydrophilic, mammalian cells must

actively mediate the entry of vitamin B9 into cells by carrier- or

receptor-mediated pathways [27]. Carriers include the proton-

coupled folate transporter and the reduced folate carrier [27]. To

examine whether a carrier-mediated pathway is involved in

maintaining Treg cells, we employed MTX, an antagonist of

vitamin B9 that is transported mainly via the reduced folate carrier

and rarely via folate receptors [28,29]. MTX treatment reduced

the numbers of both Treg and non-Treg cells (Fig. 3), suggesting

that the carrier-mediated pathway does not specifically maintain

Treg cells.

Vitamin B9 is an IL-2–independent survival factor for Treg
cells

Treg cells could vigorously proliferate in some circumstances

(e.g., antigen-specific activation through their highly sensitive

TCR signaling [30] and IL-2-mediated activation [31]), which led

to a hypothesis that Treg cells simply require large amounts of

vitamin B9 as a source of nucleotides, and thus Treg cells might

express FR4 as an additional means of acquiring vitamin B9. If so,

FR4hi Treg cells should contain a larger amount of vitamin B9 in

the intracellular compartments; however, the amount of intracel-

Vitamin B9 in the Maintenance of Treg Cells
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lular vitamin B9 was equivalent between FR4hi Treg and FR4low/2

non-Treg cells (Fig. 4A). Thus, FR4 might have an additional

specific function for the survival of Treg cells.

IL-2 stimulation enhance the survival of Treg cells [31,32,33].

The FR4-mediated vitamin B9 signal might undergo crosstalk with

IL-2-mediated signaling to maintain the survival of FR4hiFoxp3+

Treg cells. To test this, Treg cells were cultured with an anti-CD3

antibody together with IL-2. Although the absolute cell numbers

were low in the reduced vitamin B9 condition, the magnitude of the

IL-2-mediated enhancement of Treg cell growth was similar in the

control and vitamin B9-reduced conditions (Fig. 4B). Consistent with

this finding, comparable expression of phosphorylated STAT5 was

noted in the control and vitamin B9-reduced conditions (Fig. 4C).

Dietary vitamin B9 maintains Foxp3+ Treg cells in the
small intestine

To examine whether vitamin B9 affects Treg cells in vivo, we

maintained mice on a vitamin B9–depleted diet for 8 wk. Mice

maintained with vitamin B9(2) diet showed less vitamin B9 in the

small-intestinal wash than controls (Fig. 5A). In contrast, the

amounts of vitamin B9 in the large-intestinal wash and serum were

not different in those mice (Fig. 5A), presumably due to vitamin B9

production from commensal bacteria [19].

We then focused on Treg cells in the mice maintained with

vitamin B9(2) diet. Consistent with our in vitro data, the small

intestines of mice maintained with vitamin B9(2) diet had fewer

Foxp3+ Treg cells than those of control mice (p = 0.018), and there

was no statistical difference (p = 0.3022) in the number of

Foxp32CD4+ non-Treg cells (Fig. 5B). The number of Treg and

Figure 2. Vitamin B9 is essential for the survival of Treg cells.
CD25+CD4+ T cells were cultured with anti-CD3 antibodies in Vit B9(+)
or Vit B9(2) medium. The expression of Ki67 (A) and Bcl2 (B) in
Foxp3+CD4+ T cells were determined by flow cytometry (top panels)
and graphs show the means fluorescent intensity (MFI; bottom panels).
Data are means 6 SD (n = 3). Data are representative of 4 independent
experiments.
doi:10.1371/journal.pone.0032094.g002

Figure 3. Vitamin B9 carrier-mediated pathway is not specific
pathway in the maintenance of T cell survival. CD25+ CD4+ T cells
were cultured with an anti-CD3 antibody in complete medium
containing 100 nM methotrexate (MTX), and the frequency and
absolute cell numbers of Foxp3+ and Foxp32 CD4+ T cells were
determined. Data are means 6 SEM (n = 4). Data are representative of
two independent experiments.
doi:10.1371/journal.pone.0032094.g003

Figure 1. Requirement of vitamin B9 for the maintenance of Treg cells. (A) Purified naı̈ve CD4+ T cells were stimulated with anti-CD3 and
anti-CD28 antibodies plus TGF-b in the presence of normal [Vit B9(+)] or reduced [Vit B9(2)] amounts of vitamin B9. After 4 days, total cell numbers
were calculated, and the differentiation into Foxp3+ Treg cells was examined by flow cytometry. Data are means 6 SEM (n = 4). (B) CD25+CD4+ T cells
were cultured with anti-CD3 antibodies in Cont or B9(2) medium. The frequencies of Foxp3+ and Foxp32CD4+ T cells (B) were determined by flow
cytometry. Cell numbers were calculated using the total cell number and flow cytometric data. Data are means 6 SEM (n = 6). (C) Experiments similar
to that shown in (B) were performed with different concentrations of vitamin B9. The relative cell number of Foxp3+ Treg cells is expressed as a ratio
to the cell number in control medium. The values and means are indicated with dots and lines, respectively. Similar results were obtained from 2
independent experiments.
doi:10.1371/journal.pone.0032094.g001

Vitamin B9 in the Maintenance of Treg Cells
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Figure 4. Vitamin B9 is IL-2-independent survival factor for Treg cells. (A) The amounts of intracellular vitamin B9 were measured using
purified CD4+FR4hi Treg or CD4+FR4low/2 non-Treg cells. Data are means 6 SEM (n = 4). (B, C) Experiments similar to those shown in Fig. 1B were
performed in the presence of anti-CD3 antibody stimulation with or without IL-2 stimulation. Cell number of Foxp3+CD4+ T cells (B) and the
expression of phosphorylated STAT5 (pSTAT5) in Foxp3+CD4+ T cells (C) were determined. Data in (B) are means 6 SEM (n = 6). Similar results were
obtained from 3 separate experiments.
doi:10.1371/journal.pone.0032094.g004

Figure 5. Depletion of dietary vitamin B9 selectively reduces Treg cells in the small intestine. Mice were maintained on a control [Vit
B9(+)] or vitamin B9-depleted [Vit B9(2)] diet for 8 wk. (A) Vitamin B9 concentrations were measured in intestinal washes of the small intestine (SI),
large intestine (LI), and serum. The data are mean 6 SEM (n = 6). (B, C) The frequency and cell numbers of Foxp3+ and Foxp32 CD4+ T cells in the
small intestine (B), colon, and spleen (C) were calculated using the total cell number and flow cytometric data (mean 6 SEM, n = 6). (D) Flow
cytometric analysis was performed to determine the expression levels of Foxp3, CTLA4, and GITR on the surface of FR4low/2 (thin line) and FR4hi (thick
line) CD4+ T cells in the LP. Similar results were obtained from 3 separate experiments.
doi:10.1371/journal.pone.0032094.g005
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non-Treg cells was not significantly changed in the colon and

spleen of mice maintained with vitamin B9(2) diet (Fig. 5C),

which could be explained by the similar concentration of vitamin

B9 in the large-intestinal washes and sera of both groups of mice.

We also found that Foxp3 and the inhibitory molecules CTLA4

and GITR, which are specifically expressed on Treg cells, were

comparable between those mice (Fig. 5D).

Discussion

We have shown that vitamin B9 is crucial for the maintenance

of Treg cells. Intriguingly, vitamin B9 was required for the survival

of differentiated Treg cells, but was not necessary for the

differentiation of naı̈ve T cells into Treg cells. This selective effect

of vitamin B9 on Treg cells is opposite to the effect of RA, a

vitamin A metabolite, which enhances the differentiation of naı̈ve

T cells into Treg cells [11,12,13,14]. RA also induces the

expression of gut-homing molecules (e.g., a4b7 integrin and

CCR9) on B and T cells activated by gut dendritic cells [9,10].

Because CCR9 was expressed normally on Treg cells in the LP of

mice maintained with vitamin B9(2) diet (data not shown), the

deficiency of dietary vitamin B9 did not affect the RA-mediated

expression of gut-homing molecules and, predictably, the

induction of Treg cells in the small intestine.

Treatment with the vitamin B9 antagonist MTX affected

survival of both Treg cells and non-Treg cells, suggesting that the

carrier-mediated pathway maintains sufficient amounts of intra-

cellular vitamin B9 for cell survival regardless of the T-cell subset.

The indiscriminate effects of MTX could be explained by the

ubiquitous expression of the folate carrier [29,34]. As the

mechanism of FR4-mediated Treg-cell maintenance, we consid-

ered initially that the proliferative activity of Treg cells could

require large amounts of vitamin B9 as a source of nucleotides for

DNA and RNA. However, the amounts of intracellular vitamin B9

were identical between Treg and non-Treg cells, implying that

FR4 specifically recognizes extracellular vitamin B9 for the

maintenance of Treg cell survival, consistent with a report that

FR4 expressed on Treg cells contributes to their immune function

and survival [25]. Additionally, the specific biological functions of

vitamin B9 receptors (FR1, FR2, and FR4) have been predicted on

the basis of their ,70% amino acid sequence identity, but the

expression of each receptor is rigidly restricted, with narrow tissue

and cell specificity [35,36]. Because FR1, FR2, and FR4 are

glycosyl phosphatidylinositol–anchored proteins [37], adapter

molecules may assist FR4 in the maintenance of Treg cell survival.

We found that vitamin B9/FR4 was not associated with IL-2–

mediated signaling in Treg cells. We will continue to study how

FR4-mediated vitamin B9 regulates the survival of Treg cells.

Mammals must obtain vitamin B9 from the diet or from

commensal bacteria. The absorption of vitamin B9 from the diet

occurs mainly in the small intestine, whereas the uptake of

microbial vitamin B9 predominantly occurs in the colon [38]. This

explains why depletion of dietary vitamin B9 specifically decreased

Treg cells in the small intestine, but not in the colon. It has been

proposed that bacterial vitamin B9 absorbed in the colon affects

the vitamin B9 status of the host [39,40], which may explain the

lack of changes in vitamin B9 in the serum and splenic Treg cells

in mice maintained with vitamin B9(2) diet. Bifidobacterium, one of

the most important genera of commensal bacteria to be used as a

probiotic, is well-studied as a vitamin B9 producer [41], and

colonic Treg cells are specifically induced by immunological

crosstalk with commensal bacteria, especially Clostridium clusters

IV and XIVa [5]. Although whether Clostridium clusters IV and

XIVa produce vitamin B9 remains unclear, our current findings

suggest that vitamin B9 is an essential survival factor for Treg cells

and, in vivo situation, diet vitamin B9 establishes an immunolog-

ical network in the maintenance of Treg cells specifically in the

small intestine.
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